Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica"

Transcript

1 srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail:

2 () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu: () t ( t ϕ ) t ϕ j t t * t granda complssa associata a qulla istantana->fasor jϕ

3 Vttori complssi ora considriamo la funion vttorial (t) l cui componnti sui tr assi variano cosinusoidalmnt nl tmpo: () () t () t () t t () t t () t t () t t I rlativi fasori jϕ jϕ jϕ j j j i introduc il vttor complsso quantità rali j dov

4 i ha ch: () ( ) t t Vttori complssi j t jϕ cos t t ( ω t) sin( ω t) Il vttor istantano (t) è dato dalla somma di vttori ω t hanno: dirioni fiss nllo spaio ampi variabili nl tmpo () cos( ω t ϕ ) cos( ωt ϕ ) cos( ωt ϕ ) t j j j t j t ϕ ( ϕ ω ω ) j ϕ jϕ j ϕ cos ( ) sin( ω t) quindi individuano un piano sul qual l strmo libro di (t) dscriv un luogo gomtrico al variar di t ch

5 Proprità di vttori complssi Un vttor complsso non si può disgnar com i vttori rali prché ha componnti complss non associabili ai punti di una rtta. Modulo di un vttor complsso (quantità ral positiva) * Prodotto scalar: s il prodotto scalar tra du vttori complssi è nullo non è dtto ch i vttori part ral part immaginaria siano sparatamnt ortogonali tra loro ( j3) ( ) j u ju j ( 3 j) 3 j( ) v jv u 3 v u v j ( j3) 3 j u v 3 u v 3

6 Vttori complssi: rapprsntaion quantità non linari P( t) V ( t) I( t) [ ] ( iω t iω t * iω t V I I ) V i ω t ( ) iω t * iω t iω t * I I VI VI VI i ω t * VI valor mdio in un priodo dlla potna istantana fornita dal gnrator al circuito Potna complssa P T T * P VI P jp p. ral p. rattiva () P t dt

7 Polariaion () t ( ) t t t j t cos( ω t) sin( ω t) θ Un vttor sinusoidal può ssr rapprsntato dalla somma di du vttori ch oscillano in quadratura scondo dirioni fiss. Il vttor (t) giac sul piano ch contin d d il suo strmo dscriv una traittoria llittica. L coordinat dll strmo di (t) saranno: X Y cos cos ( ω t) ( ) sin ω t ( ω t) sin( ω t) X X Y Y sin cos ( ω t) ( ω t) ( X Y ) ( X Y ) ( )

8 Polariaion Y θ X X Y ( t) cos( ω t) sin( ω t) () t sin( ω t) sinϑ sin ( ω t) Y sinϑ cosϑ cos ( ω t) X cosϑ X Y cotϑ Y sinϑ ( cos( ω t) ) sin ( ω t) ( ) X XY cotϑ Y cot ϑ Y X XY cotϑ Y cot sin ϑ X XY cotϑ Y cot ϑ sin ϑ b 4ac 4cot ϑ 4 cot ϑ ϑ sin ϑ conica dl tipo: ax bxy cy il cui discriminant: sin < ϑ d

9 Polariaion () t cos( ω t) sin( ω t) j Nl caso in cui θ π/ cioè Polariaion circolar X Y Nl caso in cui θ cioè oppur o X Y ( t) cos( ω t) m sin( ω t) () t Polariaion linar

10 srcii su polariaion ) 3 3 Polariaion linar [ ] t ( 3 ) cos( t) () t ( 3 ) ω () t cos ( ω t) () t cos( ω t) () t 3cos( ω t) () t 4 9 cos( ω t) 4 cos( ω t) () t 4 ma

11 ) j ( 3 ) ( 3 ) ( 3 ) 3 ( t) ( 3 ) cos( ω t) ( 3 ) sin( ω t) ( 3 )( cos( ω t) sin( ω t) ) () t 4 cos( ω t) sin( ω t) d dt cos ( sin ( ω t) cos( ω t) ) ( ) ω tan ω t ( ω t) ± tan ( ω t) sin ( ω t) ± tan tan ( ω t) ( ω t) () t ma 5 5

12 3) j Polariaion circolar [ ] t ( 3 4 ) cos( ω t) 5 sin( t) () t ( j ) ω () t 9cos ( ω t) 6cos ( ω t) 5sin ( ω t) 5 4) 5 3 j

13 pplicaion torma di Ponting τ τ ( p p ) dτ i mi ( p p ) dτ I nlla rgion non sistono corrnti imprss problma statico V c dτ τ p ssndo σ

14 ( ) Π t n n d d pplicaion torma di Ponting '' ' t ( ) ( ) ( ) ( ) '' ' d d d d n n n n '' ' n n su d ( ) ( ) '' ' d d ( ) ( )d d '' ' ϕ d d d ( ) ( ) ( ) '' π π ϕ d d d d

15 pr il campo lttrico V pplicaion torma di Ponting V λ V V pr il torma di Gauss π λ : carica pr unità di lungha distribuita πε sulla suprfici dl conduttor intrno V λ λ λ V V d d d ( ln ln ) ln πε πε πε λ V V πε ln ln pr il campo magntico ϕ ϕ tangnial risptto ad una circonfrna cost λ ε

16 pplicaion torma di Ponting pr la lgg dlla circuitaion di mpr s s ds In dfinitiva: π ϕ dϕ π I ϕ ϕ I π V ' ln ( ) d π ϕ d ' I π VI d V ln I Potna fornita al carico dal gnrator di tnsion. La potna dissipata sul carico è pari alla potna trasmssa attravrso il dilttrico. La trasmission di nrgia dal gnrator al carico avvin attravrso il dilttrico non attravrso i conduttori dl cavo.

17 Funioni d onda in rgim sinusoidal In gnral l soluioni dll quaioni di campi monocromatici saranno di vttori con componnti dl tipo: L ampia la fas sono funion dlla jϕ Ψ Ψ Ψ cos posiion Ψ Ψ () r, ϕ ϕ() r ( ω t ϕ ) apprsntano ond ch si propagano -> funioni d onda I luoghi di punti r ch soddisfano quaioni dl tipo L oscillaioni di Ψ avvngono in fas ϕ () r cost suprfici quifas

18 Funioni d onda in rgim sinusoidal I luoghi di punti r ch soddisfano quaioni dl tipo ω t ϕ () r cost () t fas istantana front d onda ll istant t la suprfici ω t ϕ r cos coincid con una sup. quifas, all istant succssivo ssa coincid con una sup. cui compt un valor dcrscnt dlla fas. Il moto di fronti d onda costituisc ciò ch si intnd pr propagaion di un onda monocromatica Ni casi particolari in cui l sup. quifas d i fronti d onda sono piani, sfr, cilindri, l onda vin dtta piana, sfrica, cilindrica. Il vttor : rad β - ϕ Vttor d onda m prpndicolar alla sup. quifas orintato nl vrso dlla propagaion

19 Funioni d onda in rgim sinusoidal upponiamo ch un ossrvator voglia sguir un front d onda muovndosi nlla dirion di un vrsor a partndo dal punto r. La vlocità v a con cui l ossrvator dovrbb muovrsi si chiama vlocità di fas nlla dirion a ϕ dϕ a ϕ a ( v dt) a v dt a β v dt a L ossrvator d altro canto vd smpr lo stsso valor di fas istantana d ( ϕ ω t) dϕ ω dt a

20 Funioni d onda in rgim sinusoidal v a ω v v a β cosθ ω β vlocità di fas vlocità di fas nlla dirion dl vttor d onda smpio Ψ jk s indichiamo con φ a l argomnto di si ha ϕ ϕ a k l sup. quifas sono piani prpndicolari all ass β ( a k) ( k) k - ϕ Onda piana ch si propaga nl vrso positivo dll β k v ω k

21 Funioni d onda in rgim sinusoidal Du piani quifas cui comptono valori di fas ch diffriscono di π sono sparati da una distana fissa (lungha d onda) λ π β λ v f L ampia dll oscillaioni è idntica in tutti i punti di un piano quifas: onda piana uniform vt smpio Ψ jk smpio 3 Ψ γ α [] γ dov γ sono complss Ψ α jϕ ϕ ϕ Im bbiamo un onda piana prché l sup. quifas sono prpndicolari all ass. L onda è uniform a [] γ

22 Funioni d onda in rgim sinusoidal L ampia dll oscillaioni si attnua con lgg sponnial nl vrso di propagaion Ψ Ψ() ( d ) α α ( d ) α d

23 smpio 4 Funioni d onda in rgim sinusoidal Ψ ( θ, ϕ) jkr r L suprfici quifas sono i luoghi di punti krcost -> suprfici sfrich

Argomento 6 Lezione 9 Lezione 10 Francesca Apollonio Dipartimento Ingegneria Elettronica

Argomento 6 Lezione 9 Lezione 10 Francesca Apollonio Dipartimento Ingegneria Elettronica Argomnto 6 Lion 9 Lion Fransa Apollonio Dipartimnto Inggnria lttronia -mail: quaion di lmholt ω µ mi ω µ i ω i La lass di soluioni fornita dall q. di lmholt è più ampia di qulla fornita dal sistma di q.

Dettagli

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011.

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011. I ompitino di Fisica Gnral II di Inggnria IVILE 7 MAGGIO. Esrcizio : Una carica lttrica = µ è distribuita uniformmnt su un arco di circonfrnza di raggio = cm ch sottnd un angolo = 6 risptto al cntro dlla

Dettagli

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 14 Lezione 15

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 14 Lezione 15 Argomnto 8 ion 4 ion 5 Francca Apollonio Dipartimnto nggnria Elttronica E-mail: in di tramiion Formalimo utiliato pr lo tudio di fnomni di propagaion: toria dll lin di tramiion a toria dll lin di tramiion

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ).

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ). 1 La funion diadica di Grn prmtt di sprimr il campo lttrico in funion dll su sorgnti. Poiché sia il campo lttrico Er ( ) sia la sorgnt lttrica Jr ( ) sono quantità vttoriali, la funion di Grn risulta ssr

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Condensatori e dielettrici

Condensatori e dielettrici La fibrillazion è una contrazion disordinata dl muscolo cardiaco. Un fort shock lttrico può ripristinar la normal contrazion. Pr usto è ncssario applicar al muscolo una corrnt di A pr un tmpo di ms. L

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011 sam i Fisica orso ntratno i ng. nformatica Biomica 7 Problma Sia ato un filo conuttor tituito a u lunghi fili rttilini raccorati a un tratto smicircolar i raggio, com rapprsntato in figura. l filo è prcorso

Dettagli

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/Architttura Corrzion prova scritta Esam di Mccanica Razional 30 gnnaio 01 1. Dati i tnsori: { L = 3x y + y z + 3 z x M = x x y y

Dettagli

+ V in - + V out - V(z) z=l (sezione di carico) z=0 (sezione di generatore)

+ V in - + V out - V(z) z=l (sezione di carico) z=0 (sezione di generatore) Appunti di ompatibilità Elttromagntica ERDITE DI OTENZA NEI AI Il calcolo dll prdit di potna ni cavi di intrconnssion ha grand importana, data la prsna di cavi in tutti i sistmi di misura. r introdurr

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Cap. 4 Rappresentazione e analisi delle reti elettriche in regime variabile Regime PAS

Cap. 4 Rappresentazione e analisi delle reti elettriche in regime variabile Regime PAS orso di Elttrotcnica NO vr. 0000B orso di Elttrotcnica NO Anglo Baggini ap. 4 apprsntazion analisi dll rti lttrich in rgim variabil gim PAS potsi Abbiamo già rimosso d dt 0 Edl dφ dt Edl 0 0 Adsso rimuoviamo

Dettagli

Flusso di E. Flusso di un vettore E attraverso una superficie S

Flusso di E. Flusso di un vettore E attraverso una superficie S S la suprfici è chiusa si parlrà di flusso uscnt di (normal n orintata vrso l strno) di flusso ntrant (n punta vrso l intrno). Tutorato 1 Flusso di 1/8 S n ds Flusso di un vttor attravrso una suprfici

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 giugno 01 1) Un blocco di massa m 500g vin tirato mdiant una fun lungo un piano inclinato di 60, scabro, si muov con acclrazion costant pari

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.   (versione del ) Sistemi trifase Sistmi trifas Part www.di.ing.unibo.it/prs/mastri/didattica.htm (vrsion dl 5--08) Sistmi trifas l trasporto la distribuzion di nrgia lttrica avvngono in prvalnza pr mzzo di lin trifas Un sistma trifas

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Fisica Generale L-B - Prof. M. Villa. CdL in Ing. Elettronica e dell Automazione. I Parziale 25 Maggio Compito A

Fisica Generale L-B - Prof. M. Villa. CdL in Ing. Elettronica e dell Automazione. I Parziale 25 Maggio Compito A Fisica Gnral L-B - Prof. M. Villa CdL in Ing. Elttronica dll Automazion I Parzial 5 Maggio 006 Compito A In una rgion di spazio è prsnt un potnzial lttrostatico dato da V (x, y, z) = α(x y ) con α costant

Dettagli

Eq. del moto: F v B. Trasformazione a un riferimento in rotazione, vel. angolare ω: Relaz. fra le accelerazioni nei 2 riferimenti (* in rotazione):

Eq. del moto: F v B. Trasformazione a un riferimento in rotazione, vel. angolare ω: Relaz. fra le accelerazioni nei 2 riferimenti (* in rotazione): Diamagntismo: Modllo di Langvin Torma di Larmor q Insim di particll carich, con fisso, soggtt a: m For cntrali For a du corpi(cntrali) C. magntico Eq. dl moto: ma = Σ F = F C k onk k F v B i + Σ i k +

Dettagli

TEMA 1 : Nella rete in figura calcolare la corrente i 3

TEMA 1 : Nella rete in figura calcolare la corrente i 3 Esam di Elttrotcnica dl 09/02/2011. Tutti i tmi hanno lo stsso pso. Link: http://prsonal.dln.polito.it/vito.danil/ Gli studnti immatricolati nll A.A 2007-08 o succssivi dvono obbligatoriamnt sostnr l sam

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie 03. 03 d. L ond stazionari 03. Contnuti : la fnomnologia, il formalismo ral qullo complsso, il principio di sovrapposizion l analisi spttral. slid#3 Pitagora Samo 570-495 a.c. Jan Baptist Josph Fourir

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Riferimenti, coordinate, equazioni per rette e piani

Riferimenti, coordinate, equazioni per rette e piani Rifrimnti, coordinat, quaioni pr rtt piani Diamo pr scontato ch il lttor abbia familiarità con l noioni di bas sullo spaio di vttori applicati dl piano dllo spaio. Pr qust si può consultar il paragrafo.

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

a y ADDIZIONE PRODOTTO Nuove Operazioni in R 2 Def. (a,b) + (c,d) := (a+c, b+d)

a y ADDIZIONE PRODOTTO Nuove Operazioni in R 2 Def. (a,b) + (c,d) := (a+c, b+d) Nuov Opraioni in R ADDIZIONE Df. (a,b (c,d : (ac, bd Numri Complssi Tal opraion è analoga alla somma di vttori, con ssa R assum la struttura di gruppo abliano. PRODOTTO Df. (a,b * (c,d : (ac-bd,adbc Tal

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 7 Lezione 8.

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 7 Lezione 8. Argomno 5 Lion 7 Lion 8 Frncsc Apollonio Diprimno Inggnri lronic -mil: quion dll ond dominio dl mpo B r L-S-O-I-nonD r D r ε r B r µ r D r r J r J r cosni Pr smplicià di noion frmo rifrimno d ssn di crich

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

Risultati esame scritto Fisica 2-21/07/2014 orali: alle ore 9.30 presso aula G7

Risultati esame scritto Fisica 2-21/07/2014 orali: alle ore 9.30 presso aula G7 Risultati sam scritto Fisica - /7/ orali: 5-7- all or 9. prsso aula G7 gli studnti intrssati a visionar lo scritto sono prgati di prsntarsi il giorno dll'oral Nuovo ordinamnto voto AIO ANTONA nc AROBI

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Campi conservativi e potenziali / Esercizi svolti

Campi conservativi e potenziali / Esercizi svolti SRolando, 01 1 Campi consrvativi potnziali / Esrcizi svolti ESERCIZIO Stabilir s il campo vttorial F (x, y) = xy xy + y +, x + xy +1 è consrvativo nl proprio dominio In caso armativo, calcolarn il potnzial

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

PROVA SCRITTA DI ELETTROTECNICA, 18 febbraio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca

PROVA SCRITTA DI ELETTROTECNICA, 18 febbraio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca OVA STTA D EETTOTENA, 8 fbbraio 00 D: ng. Gstional, rof.. trarca Esrcizio: Dtrminar la potnza dissipata sul rsistor applicando il torma dl gn. quivalnt di corrnt la sovrapposizion dgli fftti (Fig.). 0Ω;

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

1) Sulla base delle informazioni ricavabili dal grafico in figura 2, mostra, con le opportune

1) Sulla base delle informazioni ricavabili dal grafico in figura 2, mostra, con le opportune PROBLEMA Si può pdalar agvolmnt su una bicicltta a ruot quadrat? A Nw York, al MoMath-Musum of Mathmatics si può far, in uno di padiglioni ddicati al divrtimnto matmatico (figura ). È prò ncssario ch il

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Danila TONDINI Parzial n. - Compito I A. A.

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI Ing. Nicola Cappuccio 214 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 RIEPILOGO rappresentazione z = ρcos θ+ jρsin θ somma di due complessi con al regola del parallelogramma

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-04/07/12. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-04/07/12. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzion dlla Prova Scritta di Analisi Matmatica -/7/2 C.L. in Matmatica Matmatica pr l Applicazioni Proff. K. R. Payn E. Trrano Esrcizio. L funzioni f n (x) sono continu quindi misurabili su (, + ). La

Dettagli

Algebra lineare Geometria aprile 2006

Algebra lineare Geometria aprile 2006 Algbra linar Gomtria april ) Nllo spaio vttorial R [] si considrino i sottoinsimi U {p() R [] p() } V {p() R [] p() p(-)} la union : R [] R [] tal ch p() R [] (p()) p(-) i) Si vriichi ch U V sono sottospai

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Corso di Teoria delle Strutture Dispense - parte #1 Richiami di Elasticità Lineare

Corso di Teoria delle Strutture Dispense - parte #1 Richiami di Elasticità Lineare Corso di Toria dll Struttur Dispns - part # Richiami di Elasticità Linar A.A. 26 27 Vrsion.. Indic Sistma di Rifrimnto 3. Cambio di bas..................................... 4.2 Cambio dlla bas di Lin...............................

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari.

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari. OO SCHOTTKY Si tratta dl più smplic dispositivo unipolar, in cui cioè la corrnt è lgata sclusivamnt ai portatori maggioritari. livllo dl vuoto q q s E Fm q m E Fs E Fm q( m -) q( m - s )= bi E Fs prima

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli