Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n"

Transcript

1 Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n Acceleratori di particelle Formulazione covariante dell'elettrodinamica Anno Accademico 2018/2019

2 Acceleratori di particelle Per accelerare una particella carica occorre un campo elettrico 0 KV 100 KV 200 KV 300 KV 400 KV 500 KV 600 KV Poco pratico: Per raggiungere elevate energie occorrono tensioni elevatissime 1 milione di volt per 1 MeV LHC raggiunge energie oltre i 6.5 TeV 1 TeV = ev = 10 6 MeV Elettromagnetismo Prof. Francesco Ragusa 509

3 Acceleratori di particelle Si fa in modo che il potenziale acceleratore viaggi con la particella 50 KV KV KV KV KV KV +50 KV Il potenziale che viaggia è un onda elettromagnetica Il campo elettrico deve essere longitudinale La velocità dell onda e della particella devono essere uguali Cavità risonanti: immagazzinano tanta energia ( ρ ~ E 2 ) Limitato dall emissione di elettroni dalle pareti Elettromagnetismo Prof. Francesco Ragusa 510

4 Cavità acceleratrici LEP Elettromagnetismo Prof. Francesco Ragusa 511

5 Acceleratori lineari Per costruire un acceleratore si possono disporre tante cavità acceleratrici in serie ( Acceleratore Lineare ) L Acceleratore Lineare PEP II di SLAC (Stanford, California): fino a 9 GeV L'acceleratore SLC, sempre a SLAC: fino a 45 GeV Elettromagnetismo Prof. Francesco Ragusa 512

6 Acceleratori Circolari acceleratore lineare dipoli magnetici cavità acceleratrici Anello con alto vuoto ( Beam Pipe) Un campo magnetico perpendicolare al disegno confina le particelle in una orbita circolare Le particelle sono preaccelerate da un acceleratore lineare (LINAC) Vengono iniettate nell anello dell acceleratore: Il campo magnetico viene regolato in modo che p = 0.3 B R Le particelle seguono un orbita circolare Una cavità accelera le particelle ad ogni attraversamento Il campo magnetico aumenta in fase con l aumento di energia: sincrotrone Oltre ad aumentare l'energia della particella la cavità compensa l energia che la stessa perde per radiazione Essenziale per accelerare elettroni Per raggiungere energie molto elevate si utilizzano molte cavità Elettromagnetismo Prof. Francesco Ragusa 513

7 Cavità acceleratrici Una delle caratteristiche importanti di una cavità è l'energia che trasferisce ad una particella carica che la attraversa Il "gradiente" della cavità de/dx misurato usualmente in MeV/m Per le cavità superconduttrici di LEP si ha de/dx 5 MeV/m Valori massimi oggi dell'ordine di 50 MeV/m Troviamo una importante relazione fra il gradiente de/dx e la forza dp/dt Per una particella relativistica Inoltre Dalle relazioni trovate possiamo ricavare Calcoliamo esplicitamente dp/dt Preliminarmente calcoliamo Elettromagnetismo Prof. Francesco Ragusa 514

8 Formula di Larmor Calcoliamo adesso dp/dt Riscriviamo la formula di Larmor che abbiamo trovato nel caso di v a Possiamo adesso confrontare La potenza irradiata P La potenza assorbita dalla cavita de/dt Elettromagnetismo Prof. Francesco Ragusa 515

9 Acceleratore lineare Ricordiamo che Calcoliamo il rapporto Introduciamo il raggio classico dell'elettrone Abbiamo per particelle relativistiche β 1 Introducendo r e = m, m e c 2 = 0.5 MeV, de/dx = 50 MeV/m In un acceleratore lineare l'energia perduta per radiazione è trascurabile rispetto a quella guadagnata dalla cavità Elettromagnetismo Prof. Francesco Ragusa 516

10 Acceleratore circolare Per un acceleratore circolare le cose sono differenti Per mettere in evidenza i punti importanti supponiamo che la particella sia stata accelerata fino a raggiungere una energia E = mc 2 γ Mentre la particelle percorre l'orbita il modulo della velocità non cambia La direzione della velocità cambia continuamente La particella emette radiazione (tanta) Dopo l'accelerazione lo scopo della cavità è mantenere costante l'energia Calcoliamo l'energia irraggiata La formula di Larmor per v e a perpendicolari L'accelerazione centripeta e l'energia sono La potenza irradiata aumenta con la quarta potenza dell'energia E La potenza irradiata diminuisce con l'inverso del quadrato del raggio R dell'acceleratore A parità di R e E gli elettroni irraggiano molto di più dei protoni Elettromagnetismo Prof. Francesco Ragusa 517

11 Acceleratore circolare Quanta energia viene irraggiata? Il tempo necessario per percorrere l'orbita è L'energia irraggiata in un'orbita è Calcoliamo nei seguenti casi ( β 1, R = 4.3 Km) Fascio di elettroni da 100 GeV (LEP 2): γ = Fascio di protoni da 100 GeV (confronto): γ = Fascio di protoni da 6.5 TeV (LHC): γ = Per convertire in ev occorre dividere per il valore numerico di e = Si ottengono i seguenti risultati Elettroni da 100 GeV (LEP 2): γ = ΔE = MeV Protoni da 100 GeV (confronto): γ = ΔE = ev Protoni da 6.5 TeV (LHC): γ = ΔE = 3.4 MeV Elettromagnetismo Prof. Francesco Ragusa 518

12 Formulazione covariante dell'elettrodinamica Riscriveremo adesso le leggi dell'elettrodinamica utilizzando una formulazione covariante Per approfondimenti si può consultare il testo Nolting W. - Theoretical Physics 4 - Special Theory of Relativity - Springer 2017 Attenzione Il testo del Griffiths utilizza una convenzione dei segni lievemente differente Il tensore F μν definito nella diapositiva ha i segni opposti a quelli utilizzati in questa parte del corso La convenzione oggi più utilizzata è quella vista nelle diapositive seguenti Elettromagnetismo Prof. Francesco Ragusa 519

13 Operatore di derivazione Consideriamo le quattro operazioni di derivazione Possiamo riscriverle in funzione delle componenti x μ (x 0 = ct) Le 4 derivate si trasformano come le componenti di un 4-vettore covariante Per dimostrarlo consideriamo innanzitutto un sistema inerziale S in moto rispetto al sistema inerziale S in cui le coordinate sono x μ Ricaviamo l espressione di x in funzione di x' Pertanto Elettromagnetismo Prof. Francesco Ragusa 520

14 Operatore di derivazione Calcoliamo la forma dell'operatore derivazione nel sistema inerziale S Si ha ovviamente La derivata di x α si calcola immediatamente Otteniamo pertanto Si trasforma in modo covariante Introduciamo una notazione più semplice Analogamente definiamo le componenti contravarianti Elettromagnetismo Prof. Francesco Ragusa 521

15 Operatore di d Alembert Introduciamo l operatore di D Alembert (o d Alembertiano) È un operatore scalare È il prodotto scalare di un 4-vettore con se stesso Ha la stessa forma in tutti i sistemi di riferimento In forma esplicita Elettromagnetismo Prof. Francesco Ragusa 522

16 Equazione di continuità Abbiamo visto che la carica elettrica è un'invariante relativistico ( e seg.) Abbiamo anche visto che la densità di carica ρ non è un invariante Anche la densità di corrente non è definita in modo covariante Consideriamo un sistema di riferimento S in cui abbiamo una densità di carica elettrica ρ 0 a riposo La carica contenuta in un volume dv 0 è In un sistema inerziale S in moto rispetto a S avremo Sappiamo che l'invarianza della carica richiede che Nel sistema inerziale S in cui le cariche sono in movimento avremo pertanto Elettromagnetismo Prof. Francesco Ragusa 523

17 Equazione di continuità L'evidente somiglianza con la definizione di quadri-momento suggerisce che ρ e J siano le componenti di un 4-vettore Alternativamente Utilizzando le espressioni covarianti introdotte possiamo esprimere in modo covariante anche l'equazione di continuità quadri-divergenza nulla Elettromagnetismo Prof. Francesco Ragusa 524

18 Potenziale vettore A μ Abbiamo visto che anche i potenziali obbediscono all'equazione non omogenea dell'onda (vedi diapositiva ) Elaboriamo la seconda equazione Utilizziamo l'operatore di d'alembert e introduciamo J μ Queste equazioni suggeriscono che anche φ e A siano le componenti di un quadri-vettore Elettromagnetismo Prof. Francesco Ragusa 525

19 Potenziale vettore A μ Per finire esprimiamo in forma covariante il gauge di Lorentz Ricordiamo la formula della condizione (vedi diapositiva ) Elaboriamo In definitiva Ancora una volta una condizione sulla quadri-divergenza Elettromagnetismo Prof. Francesco Ragusa 526

20 Il tensore campo elettromagnetico Ricordiamo la relazione fra i campi E e B e i potenziali (vedi diapositiva ) Scriviamo esplicitamente le componenti di B Cambiano gli indici delle componenti (x x 1, y x 2, z x 3 ) In forma più sintetica ( / x k = k = k, k = 1,2,3) Elettromagnetismo Prof. Francesco Ragusa 527

21 Il tensore campo elettromagnetico Veniamo al campo elettrico Cambiamo gli indici (x x 1, y x 2, z x 3, ct = x 0 ) In una forma più sintetica ( / x 0 = 0 = 0, / x k = k = k, k = 1,2,3) Elettromagnetismo Prof. Francesco Ragusa 528

22 Il tensore campo elettromagnetico Riassumendo Introduciamo il tensore campo elettromagnetico Una sorta di "rotore" quadri-dimensionale La quantità F μν F μν è un invariante relativistico Ha lo stesso valore in tutti i sistemi inerziali È facile verificare che Non è possibile che un campo elettrostatico puro sia trasformato in un campo magnetostatico puro attraverso un cambio di sistema inerziale Elettromagnetismo Prof. Francesco Ragusa 529

23 Il tensore campo elettromagnetico È possibile e utile definire un altro tensore, il tensore duale di F μν Per la definizione si utilizza il tensore ε μνρσ di Levi Civita Un tensore totalmente anti-simmetrico a 4 indici Il tensore duale è definito come È ottenuto da F μν con la sostituzione Si può costruire un secondo invariante Elettromagnetismo Prof. Francesco Ragusa 530

24 Il tensore campo elettromagnetico Osservazioni Per un campo elettrostatico o magnetostatico puro Il primo invariante è positivo o negativo rispettivamente Il secondo invariante è nullo Il passaggio ad un altro sistema inerziale può fare comparire un altro campo Perpendicolare all'altro I moduli dei campi devono mantenere il segno del primo invariante Per i campi di un'onda elettromagnetica i due invarianti sono nulli I moduli dei campi E e B sono sempre nella relazione E = cb in ogni sistema inerziale I campi E e B sono ortogonali in tutti i sistemi inerziali Elettromagnetismo Prof. Francesco Ragusa 531

25 Equazioni di Maxwell Le equazioni di Maxwell possono essere riformulate attraverso un formalismo covariante che utilizzi il tensore F μν Iniziamo con le due equazioni non omogenee (vedi diapositiva ) Possono essere riscritte come Osserviamo che nel secondo membro delle due equazioni sono presenti le componenti del quadri-vettore densità di corrente Deve essere possibile riscrivere il primo membro in modo che sia evidente che si tratta delle componenti di un quadrivettore Elettromagnetismo Prof. Francesco Ragusa 532

26 Equazioni di Maxwell Consideriamo la prima equazione Elaboriamo il primo membro In definitiva Consideriamo la seconda equazione Consideriamo la componente x Analogamente per le altre componenti Otteniamo infine Elettromagnetismo Prof. Francesco Ragusa 533

27 Equazioni di Maxwell Consideriamo adesso le equazioni omogenee (vedi diapositiva ) Queste due equazioni ci hanno permesso di introdurre i potenziali La divergenza di un rotore è nulla Il rotore di un gradiente è nullo L'introduzione dei potenziali rende automatico il rispetto delle due equazioni In totale si tratta di quattro equazioni Analizziamo la prima equazione Analogamente, per la componente x della seconda equazione Elettromagnetismo Prof. Francesco Ragusa 534

28 Equazioni di Maxwell Per le restanti due componenti si trova Ricordiamo le prime due Le quattro equazioni possono essere sintetizzate in In questa equazione gli indici αβγ Sono una scelta senza ripetizione di 3 di (0,1,2,3) Quattro possibilità: (0,1,2) (0,1,3) (0,2,3) (1,2,3) I tre termini dell'equazione hanno permutazioni cicliche di αβγ Una forma equivalente ma più compatta è Può essere formulata utilizzando il tensore duale L'equazione diventa Elettromagnetismo Prof. Francesco Ragusa 535

29 Equazioni di Maxwell L'equazione omogenea implica che il tensore F μν sia derivabile dal potenziale A μ Applicando l'equazione al tensore F μν espresso con il potenziale A μ Sono considerazioni analoghe a quelle che hanno condotto all'introduzione dei potenziale nella formulazione non covariante Scrivere il tensore F μν nella forma data assicura che le equazioni di Maxwell omogenee siano soddisfatte sempre Elettromagnetismo Prof. Francesco Ragusa 536

30 Invarianza di gauge Ricordiamo la trasformazione di gauge generale (vedi diapositiva ) Per una arbitraria funzione λ(x,t) i campi E e B restano invariati se si applica ai potenziali la trasformazione Esprimiamo la trasformazione di gauge in forma covariante Per le componenti spaziali di A μ ricordiamo la definizione di μ e μ Otteniamo Per finire riscriviamo in forma covariante il gauge di Lorenz Elettromagnetismo Prof. Francesco Ragusa 537

31 Invarianza di gauge Si verifica facilmente che l'espressione del tensore F μν è invariante rispetto alle trasformazioni di gauge Applichiamo una trasformazione di gauge Calcoliamo il nuovo tensore del campo elettromagnetico Elettromagnetismo Prof. Francesco Ragusa 538

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 25 6.04.2018 Campo elettrico di una carica accelerata Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Franeso Ragusa Università degli Studi di Milano Lezione n. 38 31.5.19 Aeleratori di partielle Formulazione ovariante dell'elettrodinamia Anno Aademio 18/19 Aeleratori di partielle

Dettagli

Introduzione agli acceleratori Parte III: Emissione di sincrotrone

Introduzione agli acceleratori Parte III: Emissione di sincrotrone Introduzione agli acceleratori Parte III: Emissione di sincrotrone Gabriele Chiodini Istituto Nazionale di Fisica Nucleare Sezione di Lecce Corso di Laurea Magistrale in Fisica dell Università del Salento

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 22 22.3.2019 Forze sui dipoli magnetici Invarianza relativistica della carica Trasformazione di Lorentz del campo E

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 28.05.2019 Dipolo oscillante Radiazione di una carica in moto Casi dell'accelerazione parallela e perpendicolare

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 1.04.2019 Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica relativistiche Forza magnetica e relatività

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 30.11.2018 Sfera di dielettrico polarizzata Carica puntiforme e semispazio dielettrico Energia elettrostatica Anno

Dettagli

Operatore applicato a prodotti

Operatore applicato a prodotti Operatore applicato a prodotti Con l'operatore «Nabla" ( ) abbiamo definito tre operazioni applicandolo Ad una funzione scalare per costruire un vettore: gradiente φ Ad una funzione vettoriale per costruire

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 20.3.2018 Applicazioni della legge di Ampère Potenziale Vettore Anno Accademico 2017/2018 Filo di raggio a percorso

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 16.3.2018 Sorgenti del campo magnetico Divergenza e rotore del campo magnetico Applicazioni della legge di Ampère

Dettagli

PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A

PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A PROGRAMMA DEL CORSO DI FISICA TEORICA 1 PROF. E. PACE CORSO DI LAUREA TRIENNALE IN FISICA A. A. 2013-2014 ELETTROSTATICA NEL VUOTO Equazione di Poisson ed equazione di Laplace. Teorema di Green; I e II

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 17.05.2019 Il tensore degli stress Energia e quantità di moto dell'onda Propagazione nella materia Riflessione e

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 23.3.2018 Potenziale di una spira. Dipolo magnetico. Forze su circuiti magnetici Anno Accademico 2017/2018 Il momento

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 11.05.2018 Guscio sferico di carica Uso del potenziale scalare Sfera magnetica in campo uniforme Anno Accademico

Dettagli

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche Chi fa lavoro? Nell'analisi del sistema precedente abbiamo osservato che se si aumenta la corrente la forza magnetica supera il peso e il circuito si sposta verso l'alto La massa m acquista energia potenziale

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 5.06.2018 Potenziali per una carica puntiforme Quantità di moto elettromagnetica Radiazione. Dipolo oscillante Anno

Dettagli

Interazioni Elettrodeboli. Lezione n. 6. Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether

Interazioni Elettrodeboli. Lezione n. 6. Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 6 23.10.2017 Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether anno accademico

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 4 12.10.2017 Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb anno accademico 2017-2018 Scattering Coulombiano:

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 22.05.2018 Propagazione nella materia Riflessione e rifrazione. Incidenza obliqua Potenziali elettrodinamici. Trasformazioni

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 27.03.2018 Forse sui circuiti percorsi da corrente Invarianza relativistica della carica Trasformazioni di Lorentz

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 15.05.2018 Onde elettromagnetiche Equazione dell'onda Soluzione dell'equazione dell'onda Onde piane. Polarizzazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 24.05.2019 Potenziali di Liénard-Wiechert Campi di una carica in moto rettilineo uniforme Radiazione del dipolo Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 32 13.05.2019 Sfera in campo uniforme Magneti permanenti Onde elettromagnetiche Anno Accademico 2018/2019 Sfera in campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 21.05.2019 Riflessione e rifrazione. Incidenza obliqua Potenziali elettrodinamici. Invarianza di gauge Potenziali

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 26 11.04.2018 Interpretazione relativistica di B Trasformazione dei campi E e B Legge di Faraday Anno Accademico 2017/2018

Dettagli

Interazioni Elettrodeboli. Lezione n. 5

Interazioni Elettrodeboli. Lezione n. 5 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 5 16.10.2018 Proiettori di spin. Effetti polarizzatori nello scattering Coulombiano. Analisi di Fourier del campo di Klein

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 27.10.2017 Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico 2017/2018 Separazione

Dettagli

Interazioni Elettrodeboli. Lezione n. 7

Interazioni Elettrodeboli. Lezione n. 7 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 7 24.10.2017 Tensore energia impulso Invarianza di gauge globale Quantizzazione del campo di Dirac Invarianza di gauge locale

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 19.3.2019 Campo di una spira circolare Potenziale Vettore Potenziale di una spira Anno Accademico 2018/2019 Campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 15 1.12.2017 Campo "Spostamento elettrico" Legge di Gauss nel dielettrico Soluzione dell'equazione di Laplace in presenza

Dettagli

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides)

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Questa sintesi fa riferimento alla lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche del

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 3 10.10.2017 Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica anno accademico 2018-2019

Dettagli

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 3 10.10.2017 Equazione di Dirac 2 Descrizione relativistica dello spin anno accademico 2017-2018 Operatore di spin L operatore

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 18.05.2018 Polarizzazione Teorema di Poynting Energia e quantità di moto dell'onda Anno Accademico 2017/2018 Soluzioni:

Dettagli

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento La legge di Ampere e` inconsistente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 16 13.12.2017 Carica puntiforme e dielettrico Energia elettrostatica Corrente elettrica. Equazione di continuità Legge

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

Fisica Nucleare e Subnucleare

Fisica Nucleare e Subnucleare Fisica Nucleare e Subnucleare Prova Scritta, 17 Febbraio 2015 Modulo I 1) Una trasformazione di Lorentz collega le coordinate dello spazio tempo di due sistemi di riferimento inerziali e può essere scritta

Dettagli

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 4 12.10.2017 Campo elettrico come gradiente del potenziale Anno Accademico 2017/2018 Il campo elettrico come gradiente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 3.11.2017 Equazione di Poisson Funzione δ(x) di Dirac Metodo delle cariche immagine Anno Accademico 2017/2018 Equazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 39 07.06.2019 Equazione del potenziale Forza di Lorentz Funzioni di Green Teoria dell'elettrone Anno Accademico 2018/2019

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 26.03.2019 La teoria della relatività ristretta Campo elettrico di una carica in moto rettilineo uniforme Anno Accademico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 7.11.2018 Soluzioni dell'equazione di Laplace Equazione di Poisson Funzione delta di Dirac Anno Accademico 2018/2019

Dettagli

Interazioni Elettrodeboli. Lezione n. 17

Interazioni Elettrodeboli. Lezione n. 17 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 17 29.11.2018 Interazioni di neutrini Difficoltà dell'interazione di Fermi Particelle di spin 1 Propagatore del fotone e

Dettagli

Interazioni Elettrodeboli. Lezione n. 5. Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico

Interazioni Elettrodeboli. Lezione n. 5. Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 5 17.10.2017 Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico anno accademico

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 31 4.05.2018 Teoria macroscopica del magnetismo nella materia Anno Accademico 2017/2018 Magnetizzazione e suscettività

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 16.5.217 Teoria macroscopica del magnetismo nella materia Anno Accademico 216/217 Discontinuità del campo magnetico

Dettagli

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI La materia ordinaria contiene, fra altre, particelle di due tipi, elettroni e protoni, che interagiscono scambiando fra loro particelle

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 20 13.3.2018 Proprietà della forza magnetica Anno Accademico 2017/2018 La forza di Lorentz Insistiamo ancora sul fatto

Dettagli

Le simmetrie nell elettromagnetismo

Le simmetrie nell elettromagnetismo Le simmetrie nell elettromagnetismo Adriana Pecoraro N94/56 Lucia Trozzo N94/51 1 Introduzione In questa tesina saranno trattate le simmetrie del campo elettromagnetico libero. Nella prima sezione saranno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 24.04.2018 Energia Magnetica. Oscillatore LC Equazione del rotore di B e corrente di spostamento Anno Accademico

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 4 11.10.2018 Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ anno accademico

Dettagli

E e B sono inscindibili tra loro e vale la

E e B sono inscindibili tra loro e vale la Onde elettromagnetiche nel vuoto le onde e.m. sono costituite da un campo elettrico e da uno magnetico variabili nel tempo che si propagano in fase tra loro obbediscono al principio di sovrapposizione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 29.11.2017 Campo elettrico di materia polarizzata Densità di carica superficiali e di volume Sfera di dielettrico

Dettagli

Trasformazioni di Lorentz, Quadrivettori, Impulso ed Angoli

Trasformazioni di Lorentz, Quadrivettori, Impulso ed Angoli Trasformazioni di Lorentz, Quadrivettori, Impulso ed Angoli Trasformazioni tra Sistemi di Riferimento Quantita di interesse in un esperimento: sezioni d urto, distribuzioni angolari, polarizzazioni. Confrontabili

Dettagli

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 13.04.2016 Induzione elettromagnetica Anno Accademico 2015/2016 La scoperta di Faraday Ricordiamo la scoperta di

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

COME OTTENERE L'EQUAZIONE DI SCHRODINGER MONO- DIMENSIONALE SECONDO LA MECCANICA ONDULATORIA

COME OTTENERE L'EQUAZIONE DI SCHRODINGER MONO- DIMENSIONALE SECONDO LA MECCANICA ONDULATORIA http://www. COME OTTENERE L'EQUAZIONE DI SCHRODINGER MONO- DIMENSIONALE SECONDO LA MECCANICA ONDULATORIA Accertato che la luce aveva un comportamento dualistico ondaparticella, il fisico Louis de Broglie

Dettagli

Equazione d onda per il campo elettromagnetico

Equazione d onda per il campo elettromagnetico Equazione d onda per il campo elettromagnetico Leggi fondamentali dell elettromagnetismo. I campi elettrici sono prodotti da cariche elettriche e da campi magnetici variabili. Corrispondentemente l intensità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 13 28.11.2018 Sfera polarizzata. Legge di Gauss nella materia Il campo Spostamento Elettrico D Sfera di dielettrico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 30.04.2019 Magnetismo nella materia Diamagnetismo. Paramagnetismo Teoria macroscopica del magnetismo nella materia

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Trasformazioni di Lorentz

Trasformazioni di Lorentz Trasformazioni di Lorentz Regole di trasformazione fra un sistema inerziale S (descritto da x, y, z, t) ed uno S (descritto da x, y, z, t ) che viaggia a velocità V lungo x rispetto a S: x = γ(x V t) y

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 3 6.3.19 La teoria della relatività ristretta Campo elettrico di una carica in moto rettilineo uniforme Anno Accademico

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo

Argomenti delle lezioni del corso di Elettromagnetismo Argomenti delle lezioni del corso di Elettromagnetismo 2015-16 29 febbraio (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione

Dettagli

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 3 6.10.2017 Distribuzioni di carica Potenziale elettrostatico Anno Accademico 2017/2018 Distribuzioni di carica Fino

Dettagli

Aitchison I., Hey A. Gauge Theories in Particle Physics,Vol. 1 - A Practical Introduction (3rd ed.) IOP Publishing 2003

Aitchison I., Hey A. Gauge Theories in Particle Physics,Vol. 1 - A Practical Introduction (3rd ed.) IOP Publishing 2003 Testi consigliati Aitchison I., Hey A. Gauge Theories in Particle Physics,Vol. 1 - A Practical Introduction (3rd ed.) IOP Publishing 2003 Aitchison J., Hey G. Gauge Theories in Particle Physics, 2nd ed.

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 27 15.04.2019 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2018/2019 Forze elettromotrici indotte

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

Particella in un campo elettromagnetico

Particella in un campo elettromagnetico Particella in un campo elettromagnetico Vogliamo descrivere dal punto di vista quantistico una particella carica posta in un campo elettromagnetico. Momento di una particella Dal punto di vista classico

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 28 20.04.2018 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2017/2018 Induttanza Consideriamo una

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 19 5.3.2019 Proprietà della forza magnetica Densità di Corrente. Forza su una corrente. Legge di Biot e Savart Anno

Dettagli

ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI

ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI ESPLICITA DERIVAZIONE DELLA RELAZIONE RELATIVISTICA MASSA-ENERGIA PER UN SISTEMA COMPOSTO CON POTENZIALI INTERNI Di Riccardo Messina L espressione dell equivalenza massaenergia che è qui riportata non

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

APPUNTI SULLA RELATIVITA' RISTRETTA. X = X ' V t

APPUNTI SULLA RELATIVITA' RISTRETTA. X = X ' V t APPUNTI SULLA RELATIVITA' RISTRETTA TRASFORMAZIONI DI LORENTZ X è la posizione del punto P misurata dal sistema O e X' è la posizione del punto P misurata dal sistema O'. Le equazioni di trasformazione

Dettagli

Interazioni Elettrodeboli. Lezione n. 8. Quantizzazione del campo di Dirac Invarianza di gauge locale Quantizzazione del campo elettromagnetico

Interazioni Elettrodeboli. Lezione n. 8. Quantizzazione del campo di Dirac Invarianza di gauge locale Quantizzazione del campo elettromagnetico Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 8 25.10.2018 Quantizzazione del campo di Dirac Invarianza di gauge locale Quantizzazione del campo elettromagnetico anno

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Acceleratori

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Acceleratori Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Acceleratori Acceleratori Gli acceleratoti sono, insieme ai rivelatori, una delle componenti essenziali per la sperimentazione

Dettagli

Interazioni Elettrodeboli. Lezione n. 7

Interazioni Elettrodeboli. Lezione n. 7 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 7 23.10.2018 Quantizzazione canonica. Teorema di Noether Tensore energia impulso Invarianza di gauge globale Quantizzazione

Dettagli

Relatività. 1. Principio di relatività galileiana. 2. Esperimento di Mickelson-Morley. 3. Espansione dei tempi/contrazione delle

Relatività. 1. Principio di relatività galileiana. 2. Esperimento di Mickelson-Morley. 3. Espansione dei tempi/contrazione delle Relatività 1. Principio di relatività galileiana 2. Esperimento di Mickelson-Morley 3. Espansione dei tempi/contrazione delle lunghezze di corpi in moto 4. Massa e quantità di moto relativistiche 5. Energia

Dettagli

produzione di particelle in laboratorio

produzione di particelle in laboratorio produzione di particelle in laboratorio In un urto tra due particelle, può essere prodotta una particella pesante a spese dell energia cinetica dello stato iniziale In questo modo possono essere prodotte

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Interazioni Elettrodeboli. Lezione n. 15

Interazioni Elettrodeboli. Lezione n. 15 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 15 28.11.2017 Corrente adronica debole Decadimento del mesone π Decadimento del leptone τ: τ π ν τ Proprietà isotopiche

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 25 2.04.2019 Trasformazione dei campi E e B Induzione elettromagnetica Legge di Faraday Anno Accademico 2018/2019 Trasformazione

Dettagli

Collana di Fisica e Astronomia

Collana di Fisica e Astronomia Collana di Fisica e Astronomia A cura di: Michele Cini Stefano Forte Massimo Inguscio Guida Montagna Oreste Nicrosini Franco Pacini Luca Peliti Alberto Rotondi Maurizio Gasperini Manuale di Relatività

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo

Argomenti delle lezioni del corso di Elettromagnetismo Argomenti delle lezioni del corso di Elettromagnetismo 2016-17 6 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Operatori vettoriali su R ³

Operatori vettoriali su R ³ Operatori vettoriali su R ³ Sui campi scalari e vettoriali tridimensionali è possibile definire degli operatori vettoriali che giocano un ruolo importantissimo anche per le applicazioni nel campo fisico

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Tensore degli sforzi di Maxwell Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) B 0 (1) E B (2) E ϱ (3) ɛ 0 B µ 0 j + µ 0 ɛ 0 E La forza di Lorentz che agisce

Dettagli

Indice. Parte I Fondamenti teorici

Indice. Parte I Fondamenti teorici Parte I Fondamenti teorici 1 I fondamenti della Relatività Ristretta... 3 1.1 Postulati della Relatività... 4 1.2 Trasformazioni di Lorentz e di Poincaré... 5 1.2.1 Linearità delle trasformazioni.....

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli