Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)"

Transcript

1 Tensore degli sforzi di Maxwell Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) B 0 (1) E B (2) E ϱ (3) ɛ 0 B µ 0 j + µ 0 ɛ 0 E La forza di Lorentz che agisce su di una carica (puntiforme) che si muove con velocità v è data dalla 1 F q(e + v B). (5) (4) che può essere scritta (nel caso di una distribuzione di carica nota ϱ come un integrale su di una forza per unità di volume F d f. Se si potesse esprimere la forza f tramite le derivate di un tensore, basterebbe la conoscenza di tale tensore sulla superficie che racchiude un certo volume per conoscere le forze che agiscono sullo stesso volume (teorema della divergenza o di Gauss), più precisamente se valesse f div T β x β T β (6) si avrebbe F d f d div T T da T β da β, (7) S( ) S( ) β dove S( ) è la superficie chiusa che racchiude il volume in cui il tensore T β è noto. T β è rappresentato da una matrice 3 3 simmetrica (come si dimostrerà) ed è detto tensore degli sforzi. 1 si suppone che la presenza della carica q di prova non alteri apprezzabilmente i campi esterni E e B 1

2 Tensore degli sforzi nela caso elettrostatico Come primo esercizio lo ricaviamo nel caso elettrostatico e nel vuoto. In questo caso la forza di Lorentz agente sulle cariche è dovuta solamente al campo elettrico presente F d f d ϱ E ɛ 0 d ( E) E (8) da cui f ɛ 0 ( E) E che può essere rimaneggiata per ottenere il tensore T, infatti (la somma su indici ripetuti verrà sottintesa ora in avanti) f ɛ 0 E ( E) ɛ 0 E x β E β ɛ 0 x β (E E β ) E β x β E dove si è fatto uso delle proprietà delle derivate di un prodotto di funzioni. L equazione (9) può essere ulteriormente rimaneggiata (in particolare il secondo termine in parentesi) se si tiene conto della relazione E x β (9) E β x (10) valida in maniera banale per β e soddisfatta anche nel caso β in virtù delle proprietà irrotazionali del campo elettrico statico, ovvero E 0. Si ottiene: f ɛ 0 x β ɛ 0 (E E β ) E β E β x β x E E β 1 2 δ βe E x β T β, (11) giungendo così alla forma desiderata che definisce il tensore degli sforzi come la matrice simmetrica Ex E2 E x E y E x E z T ɛ 0 E y E x Ey E2 E y E z. (12) E z E y E z E y Ez E2 T ammette quindi una forma diagonale da raggiungere attraverso una rotazione degli assi del sistema di riferimento, assi principali) e gli elementi 2

3 sono gli autovalori dell equazione T x λ x, λ 1 ɛ 0 2 E 2, λ 2,3 ɛ 0 2 E 2 (verificare come esercizio). Evidentemente questo sistema è quello in cui il campo elettrico E risulta orientato lungo l asse ˆx e quindi le componenti E y E z 0 e vale E 2 Ex, 2 da cui T ɛ E E E2. (13) Studiamo ad esempio le forze (di tensione o di pressione) esercitate da un campo elettrico statico su di una superficie localmente piana da ˆn da (da x, da y, da z ) (ˆx ˆn, ŷ ˆn, ẑ ˆn) da. Il sistema di riferimento è scelto in modo da avere assi principali ela forma diagonale della matrice, in pratica l asse ˆx va orientato lungo E. Risulta che (dalla (7) df x T xx da x + T xy da y + T xz da z T xx da x df y T yx da x + T yy da y + T yz da z T yy da y df z T zx da x + T zy da y + T zz da z T zz da z. (14) Esempio 1): il campo elettrico risulti ortogonale all elemento di superficie e quindi parallelo a da ˆn da (da x, 0, 0), si ottiene df x T xx da x 1 2 ɛ 0E 2 da df y T yy da y 0 df z T zz da z 0. (15) Ovvero una tensione sulla superficie, cioè una forza nella stessa direzione di ˆn, df ˆx df x ˆn df x. Esempio 2): il campo elettrico risulti paralleo all elemento di superficie e quindi ortogonale a da ˆn da (0, da y, 0) (per esempio). Si ottiene df x T xx da x 0 df y T yy da y 1 2 ɛ 0E 2 da df z T zz da z 0. (16) Ovvero una compressione sulla superficie, cioè una forza nella direzione opposta a ˆn, df ŷ df y ˆn df y. 3

4 Esempio 3): il campo elettrico (che va posto lungo l asse principale ˆx per semplicità) formi un angolo generico θ con la normale alla superficie da ˆn da (cos θ, sin θ, 0) da. Si ottiene df x T xx da x ɛ 0E 2 cos θ da df y T yy da y 1 2 ɛ 0E 2 sin θ da df z T zz da z 0. (17) Ovvero la forza df ˆx df x + ŷ df y 1ɛ 2 0E 2 da (cos θ, sin θ), è posta in modo tale che il campo elettrico risulta lungo la bisettrice tra ˆn e df. In particolare per θ 45 0 la forza risulta parallela alla superficie. (si noti che il risultato (17) si riduce ai risultati precendeti se θ 0 risultato(15), se θ π/2, risultato (16). Tensore degli sforzi: caso generale Nel caso generale la forza di Lorentz (5) potrà essere scritta (per distribuzioni continue di cariche e correnti libere introdotte in un mezzo) F d f T β da β S( ) β d ϱ E + (j B) ( d d ( D) E + H D ) B E ( D) B H D B che può ultyeriormente essere rimaneggiata utilizzando le, (18) ottenendo: D (D B) B + D B, B E, (19) 4

5 F d (D B) + (E ( D) D ( E)) + + (H ( B) B ( H)). (20) Il termine H( B) è stato aggiunto per ottenere espressioni simmetriche in E, D e H, B dato che risulta in ogni caso nullo in virtù della B 0. Si può dimostrare (vedi appendice) la seguente uguaglianza 1 2 E ( D) D ( E) E D D E + E D β 1 x x x β 2 E D δ β analogamente per la parte con H e B. In conclusione potremmo scrivere, (21) ϱe + (j B) + 1 E D D E 1 H B B H + 2 x x 2 x x D B }{{}}{{} { E D β 1 x β 2 E D δ β + H B β 1 } 2 H B δ β, e, per i mezzi omogenei ed isotropi dove le costanti dielettriche e magnetiche non dipendono dalla posizione, i termini si annullano perchè i contributi }{{} tra parentesi si cancellano tra loro. Si ottiene ϱe + (j B) + D B { E D β 1 x β 2 E D δ β + H B β 1 2 H B δ β } x β T β, 5

6 dove si è identificato il tensore degli sforzi con T β. La forma integrale della precendente equazione ne aiuta l interpretazione: d ϱe + (j B) + d d D B dt T β da β S( ) }{{}}{{} β }{{} forza sulla materia ovvero tensore di Maxwell variazione quantità di variazione della quantità moto del campo di moto meccanica d dt pmeccanica + d dt pcampo S T βda β. In assenza di forze sul volume S T βda β 0 e la quantità di moto si conserva, ma solo se in include appropriatamente la quantià di moto trasportata dal campo p campo d D B ɛ rµ r c 2 d E H d ɛ rµ r S c 2 d g, dove si è definità la densità di quantità di moto del campo g ɛrµr S ed c 2 S E H è il vettore di Poynting. Quindi un onda elettromagnetica piana che trasporta un flusso di energia (mediata su di un ciclo) proporzionale alla densità di energia u e alla velocità di fase v ˆk c ɛrµ r S ˆk v ˆk u, trasporta anche una densità quantità di moto g ɛ rµ r ɛr µ r S ˆk u. c 2 c La quantità di moto trasferita (in un tempo t) ad una superficie unitaria posta perpendicolarmente al vettore d onda e che assorba tutta l onda incidente (nel vuoto, ɛ r µ r 1) p ˆk S ˆk c 2 c t I c t definisce la pressione di radiazione (per mezzi completamente assorbenti) come pressione di radiazione I c. 6

7 appendice Dimostrazione dell identità vettoriale (21). 1 2 E ( D) D ( E) E D D E + E D β 1 x x x β 2 E D δ β. Sviluppiamo i prodotti vettoriali usando il tensore di Ricci totalmente antisimmetrico +1 se βγ è una permutazione pari ɛ βγ 1 se βγ è una permutazione dispari. 0 se due indici sono uguali Ricordiamo che una permutazione è pari se ottenuta dalla disposizione fondamentale 1, β 2, γ 3 attraverso un numero pari di scambi di due indici, dispari se il numero di scambi è dispari. Le sole permutazioni pari sono dunque 123, 312, 231, ovvero quelle ottenute attraverso una rotazione ciclica degli indici a partire dalla fondamentale. Dispari quelle ottenute dalle pari attraverso lo scambio di due indici 2 ale la proprietà ɛ βγ ɛ λµ δ βλ δ γµ δ βµ δ γλ, sempre dovuta al fatto che (fissato un indice nei due tensori (in questo caso ) i restanti debbono essere entrambi diversi da (quindi diversi tra di loro) ed il prodotto è positivo (+1) se entrambe le disposizione sono o pari o dispari. Ovviamente δ β +1 se β, δ β 0 se β 2 Con l uso di questo tensore il prodotto vettoriale C A B può essere scritto per le singole componenti C ɛ βγ A β B γ dove si sottintendente una somma sugli indici ripetuti β, γ, ovvero C β γ ɛ βγa β B γ. Quindi se si vuole trovare (ad esempio) C x C 1, questo risulta C 1 ɛ 1β A β B γ ed i soli termini diversi da zero nella somma sono quelli in cui β 2 e γ 3 o β 3 e γ 2. Quindi C 1 ɛ 123 A 2 B 3 + ɛ 132 A 3 B 2 A y B z A z B y, come noto. 7

8 Si ha dunque E ( D) D ( E) D β E ɛ βγ D β ( E) γ x β D β E ɛ βγ ɛ γλµ D β E µ x β x λ D β E ɛ γβ ɛ γλµ D β E µ x β x λ D β E (δ λ δ βµ δ µ δ βλ )D β E µ x β x λ D β E D β E β + D β E x β x x β (E D β ) D β E β x β x (E D β ) D E x β x ( 1 (E D β ) + x β 2 E D 1 ) ( x 2 D E + 1 x 2 D E 1 ) x 2 E D x }{{} 1 (E D) 2 x 1 (E Dδ β ) 2 x β 1 E D D E + E D β 1 2 x x x β 2 E D δ β. q.e.d. 8

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

sullo spin isotopico

sullo spin isotopico sullo spin isotopico definizioni ed utili relazioni: τ x τ ; τ y τ i i ; τ z τ 3 ; t k τ k k,, 3. che sono chiamate matrici di Pauli. p ; n ; t z p τ z p + p ; tz n τ z n n È facile verificare che, definendo

Dettagli

Riflessione e rifrazione tra due mezzi omogenei isotropi non conduttori

Riflessione e rifrazione tra due mezzi omogenei isotropi non conduttori Riflessione e rifrazione tra due mezzi omogenei isotropi non conduttori Vogliamo descrivere i fenomeni dovuti ad un onda elettromagnetica piana (polarizzata linearmente ) monocromatica incidente su di

Dettagli

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo A) Meccanica Un cilindro di altezza h, raggio r e massa m, ruota attorno al proprio asse (disposto verticalmente) con velocita` angolare ω i. l cilindro viene appoggiato delicatamente su un secondo cilindro

Dettagli

le variazioni del campo si propagano nello spazio con velocità finita

le variazioni del campo si propagano nello spazio con velocità finita Campi elettromagnetici e circuiti II, a.a. 2013-14, Marco Bressan LEGGI FONDAMENTALI Lo studio dell interazione elettromagnetica è basato sul concetto di campo elettromagnetico le variazioni del campo

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI La materia ordinaria contiene, fra altre, particelle di due tipi, elettroni e protoni, che interagiscono scambiando fra loro particelle

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

Diffusione da elettroni legati elasticamente

Diffusione da elettroni legati elasticamente Diffusione da elettroni legati elasticamente Nell ipotesi di elettroni legati elasticamente nella materia, il moto del singolo elettrone è determinato dall equazione del moto classica r + γṙ + ω 0r F ext

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale Serie 36: Soluzioni FAM C Ferrari Esercizio Un identità utile Abbiamo F G = e quindi, applicando la regola di Leibnitz, F y G z F z G y F z G x F x G z F x G y F y G x F G = ( x F y )G z +F y x G z ( x

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 8.6.09 a.a. 08/9, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2017/18, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2017/18, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 2.6.208 (a.a. 207/8, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

Equazione d onda per il campo elettromagnetico

Equazione d onda per il campo elettromagnetico Equazione d onda per il campo elettromagnetico Leggi fondamentali dell elettromagnetismo. I campi elettrici sono prodotti da cariche elettriche e da campi magnetici variabili. Corrispondentemente l intensità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 17.05.2019 Il tensore degli stress Energia e quantità di moto dell'onda Propagazione nella materia Riflessione e

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Matrici di Dirac. Nicola Cabibbo. 23 Ottobre La dimensionalità delle matrici di Dirac

Matrici di Dirac. Nicola Cabibbo. 23 Ottobre La dimensionalità delle matrici di Dirac Matrici di Dirac Nicola Cabibbo 23 Ottobre 1999 1 La dimensionalità delle matrici di Dirac Dimostriamo che la dimensionalità N delle matrici di Dirac deve essere un multiplo di 4. Partiamo dalle relazioni

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012 Politecnico di Milano Fondamenti di Fisica Sperimentale Prof. A. Farina) a.a. 200-20-Facoltà di Ingegneria Industriale- Ingegneria Aerospaziale, Energetica e Meccanica Seconda prova in itinere - 26/06/202

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Esercizi sulla quantità di moto e momento angolare del campo elettromagnetico

Esercizi sulla quantità di moto e momento angolare del campo elettromagnetico Esercizi sulla quantità di moto e momento angolare del campo elettromagnetico. Si consideri un condensatore a facce piane e parallele (superficie A e distanza tra le armature d), la faccia inferiore (a

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 217-18 - MARCO BREAN 1 Diffusione da corpi metallici i consideri il campo monocromatico ( E, H) irraggiato dalla distribuzione di corrente impressa J o, in un

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli V Appello - 22/7/213 Soluzioni Esercizi Ex. 1 Nel vuoto, nella regione di spazio delimitata dai piani x = e

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 6 Settembre 007 Soluzioni Parte 1 1) Sia θ l angolo di inclinazione del piano. Scelto l asse x lungo la direzione di massima pendenza, e diretto

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 =

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 = Esame scritto di Elettromagnetismo del 19 Giugno 2012 - a.a. 2011-2012 proff. F. Lacava, F. Ricci, D. Trevese Elettromagnetismo 10 o 12 crediti: esercizi 1,2,3 tempo 3 h e 30 min; Recupero di un esonero:

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizio 1 Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2-24 Un onda elettromagnetica piana monocromatica di propaga nel vuoto lungo l asse x di un sistema di riferimento

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO 1) LTTROSTATICA NL VUOTO se le cariche non sono puntiformi d() = 1 ρ r. dτ 4πϵ, ( r ) r 7 3 454 6 la lezione precedente distribuzione di carica carica puntiforme (volumetto infinitesimo) ρ(r )= d(r )/dt

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Esempi di domande per scritto e orale

Esempi di domande per scritto e orale 260 A.Frangi, 208 Appendice D Esempi di domande per scritto e orale D. LE e PLV Risolvere il problema 7.6.6 Risolvere il problema 7.6.7 Nella pagina del docente relativa a Scienza delle Costruzioni allievi

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Premesse matematiche. 2.1 Gradiente

Premesse matematiche. 2.1 Gradiente Premesse matematiche 2.1 Gradiente ia f(x, y, z) : R 3 una funzione scalare delle coordinate spaziali (x, y, z). L ampiezza della funzione f(x, y, z) dipende dal punto di osservazione e risulta in genere

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/7. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

Istituzioni di Matematica II 3 luglio 2014

Istituzioni di Matematica II 3 luglio 2014 Istituzioni di Matematica II 3 luglio 14 1. i Si dica se la matrice é diagonalizzabile. A = 1 1 1 ii Si studi il carattere della forma quadratica q(, y, z = + y + z Soluzioni. i La matrice é simmetrica

Dettagli

6a_EAIEE EQUAZIONI D ONDA

6a_EAIEE EQUAZIONI D ONDA 6a_EAIEE EQUAZIONI D ONDA (ultima modifica 08//07) Equazioni d onda e loro soluzioni Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Corso di laurea in Informatica Compito di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008

Corso di laurea in Informatica Compito di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008 irma Laurea ed anno di corso Corso di laurea in Informatica Compito di isica Generale Docenti: G. Colò, M. Maugeri 17 giugno 008 Cognome: Nome: Matricola: Pos: 1) La legge di Joule mostra che la potenza

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Propagazione in mezzi omogenei

Propagazione in mezzi omogenei FONDAMNTI DI LTTROMAGNTISMO FORMULARIO FONDAMNTI DI LTTROMAGNTISMO FORMULARIO Propagaione in mei omogenei Soluione di onda piana nel DT e( r t) = e ( r ˆk vt) h( r t) = ζ ˆk e ( r ˆk vt) con ˆk versore

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento La legge di Ampere e` inconsistente

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

Alcune applicazioni del teorema di Gauss

Alcune applicazioni del teorema di Gauss Alcune applicazioni del teorema di Gauss Diamo innanzitutto la definizione di flusso del vettore v attraverso la superficie S. Per cominciare col caso più semplice, consideriamo un fluido (per esempio,

Dettagli

Appendice 3. Rotazioni

Appendice 3. Rotazioni Appendice 3. Rotazioni Indice 1 Tensori ortogonali 2 2 Rotazioni e simmetrie in uno spazio di dimensione 2 2 3 Tensori ortogonali in uno spazio di dimensione 3 4 4 Rotazioni in uno spazio di dimensione

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1996

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1996 SBarbarino - Esercizi svolti di Fisica generale II Esercizi svolti di Fisica generale II - Anno 1996 96-1) Esercizio n 1 del 24/7/1996 Una regione di spazio é sede di un campo elettrico descrivibile dalla

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 1) Meccanica: CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 Una slitta di massa m=12 Kg si muove lungo un piano inclinato di 30, lungo s =10 metri. Sapendo che il coefficiente

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

Fisica 2 per biotecnologie: Prova Scritta 11 Febbraio 2013

Fisica 2 per biotecnologie: Prova Scritta 11 Febbraio 2013 Fisica 2 per biotecnologie: Prova Scritta 11 Febbraio 2013 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti. { y + y. 2 1 x 2 y (0) = 1.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti. { y + y. 2 1 x 2 y (0) = 1. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 8/9. Prof. M. Bramanti Es. 5 6 7 Tot. Punti Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 11/1 FM1 - Fisica Matematica I Soluzioni al tutorato del 9-1-1 1. Due particelle di massa m e coordinate x, y R si muovono sotto l effetto di una forza centrale

Dettagli

Elasticità lineare per corpi affini

Elasticità lineare per corpi affini Elasticità lineare per corpi affini Indice 1 Piccole deformazioni 2 2 Dilatazione infinitesima 2 3 Rotazione infinitesima 3 4 Variazione di volume 4 5 Variazione di area 4 6 Linearizzazione della risposta

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr.

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr. FISICA GENERAE I - / CFU NP II appello di Febbraio A.A. - 5..4 Cognome Nome n. matr. Corso di Studi Docente Voto 9 crediti crediti crediti Esercizio n. Due masse puntiformi scivolano senza attrito su un

Dettagli

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R 1) In uno spazio euclideo E 3 di dimensione 3 siano A un punto, r una retta e Π un piano non ortogonale ad r.allora A) esiste ed e unica la retta s passante per A, parallela ad r e ortogonale a Π. B) esiste

Dettagli

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio 1 Calcolare la larghezza della frangia centrale della figura di interferenza

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

TEORIA DELLE PIASTRE SOTTILI

TEORIA DELLE PIASTRE SOTTILI TEORIA DELLE PIASTRE SOTTILI V. Giavotto April 0, 007 Col termine piastra sottile intendiamo un solido che ha una dimensione molto più piccola delle altre due. Chiamiamo spessore questa dimensione minore

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz DINMIC Equilibrio idrodinamico Legge di Newton: i F i = m Forze agenti: Forze di massa + Forze di superficie = Forze di inerzia Forze di massa = ρ fdxdydz f = ccelerazione del campo, ovvero forza per unità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli