8 Valore assoluto. 8.1 Definizione e proprietà

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "8 Valore assoluto. 8.1 Definizione e proprietà"

Transcript

1 8 Valore assoluto 8. Definizione e proprietà Si dice valore assoluto o modulo di un numero reale, e si indica con, il numero stesso se questo è positivo o nullo, altrimenti il suo opposto -, in simboli: se (8.) := se < quindi il valore assoluto è una funzione da R ad R + { }, cioè una relazione che associa ad ogni numero reale uno ed un solo numero reale non negativo. Ad esempio si ha: 3 = 3 poiché 3 ; 7 = ( 7) = 7 poiché 7 < ; =. Enunciamo ora le principali proprietà del valore assoluto. Per ogni coppia di numeri reali, y, con y diverso da zero nel caso compaia al denominatore, valgono le seguenti: (8.) (8.3) = = (8.4) = (8.5) (8.6) + y + y (disuguaglianza triangolare) (8.7) y y (8.8) y = y, y = (8.9) n n = per qualsiasi esponente n intero positivo. y Si osservi infine che nelle (8.6) e (8.7) valgono le disuguaglianze strette quando i numeri e y sono discordi.

2 Il grafico nel piano cartesiano di y = è riportato nella fig. 8. (si osservi che tale grafico riassume le (8.), (8.), (8.3), (8.4), (8.5)). 4 y y = 3 O fig y y = O fig. 8. Consideriamo ora il valore assoluto di una espressione incognita e quindi di cui non si conosce il segno. Se ad esempio tale quantità incognita è, funzione della variabile reale, il suo valore assoluto si determina utilizzando la definizione (8.) e risulta esprimibile nel modo seguente:

3 se - ossia se =. ( ) = se - < ossia se < Il grafico nel piano cartesiano di y = è riportato nella fig. 8.. In generale, indicando con f ( ) una qualsiasi funzione della variabile reale, il suo valore assoluto è il seguente: f ( ) se f ( ) (8.) f ( ) =. f ( ) se f ( ) < 8. Equazioni con valore assoluto Si consideri l equazione contenente un solo valore assoluto: (8.) f() = c dove c è un numero reale noto. Per quanto riguarda la risolubilità della (8.) sono possibili i seguenti casi: - se c < la (8.) non ha soluzioni, in quanto f() è una quantità sempre positiva o nulla; - se c = la (8.) si riduce all equazione f() = ; - se c >, per la (8.), si ottengono le due equazioni: (8.) f() = c per i valori di che rendono f() positiva o nulla (8.3) - f() = c per i valori di che rendono f() positiva o nulla. e l insieme delle soluzioni della (8.) è l unione degli insiemi delle soluzioni della (8.) e della (8.3). Esempio 8. Si consideri l equazione: (8.4) - 5 =. Per prima cosa si studia il segno della quantità -5, risolvendo la disequazione: - 5 (si veda il paragrafo 7.), le cui soluzioni sono: (8.5) 5 5. Dunque per gli che soddisfano la (8.5), la (8.4) diventa: - 5 = (per la (8.)), cioè si ottiene l equazione di secondo grado spuria: - 6 = il cui insieme di soluzioni è: S = { 6, 6}

4 (visto che entrambe le soluzioni dell equazione di secondo grado verificano la condizione (8.5)). Per i valori di che non soddisfano la (8.5), e quindi che rendono negativa la quantità - 5, ossia: (8.6) 5 < < 5 la (8.4) diventa: = (per la (8.3)), da cui: - 4 = il cui insieme di soluzioni è: S = {-, } (visto che entrambe le soluzioni dell equazione di secondo grado verificano la condizione (8.5)). Dunque l insieme delle soluzioni della (8.4) è: 6,,, 6. S = S S = { } Nel caso di un equazione contenente due o più valori assoluti si procede studiando i segni di ciascuna delle quantità di cui si considera il valore assoluto, come mostra l esempio seguente. Esempio 8. Si consideri l equazione: (8.7) = 4. Facendo riferimento alla fig. 8.3 che riassume i segni di ciascuna delle quantità tra valore assoluto, si deducono i seguenti casi: caso: se < - allora + < e - <, quindi la (8.7) diventa: = 4 perciò si ottiene il sistema misto: < 4 = 3 il cui insieme di soluzioni è: S = 4 3 ; caso: se - / allora + e -, quindi la (8.7) diventa: = 4 perciò si ottiene il sistema misto: = il cui insieme di soluzioni è: S = ;

5 3 caso: se > / allora + > e - >, quindi la (8.7) diventa: = 4 pertanto si ottiene il sistema misto: > 4 = 3 il cui insieme di soluzioni è: 4 S 3 = 3. L insieme S delle soluzioni della (8.7) si ottiene dall unione degli insiemi S, S, S 3 : S = 4 4, ½ fig Disequazioni con valore assoluto Soffermiamoci sul significato geometrico del valore assoluto di un numero reale. Se si considera sull asse reale di origine O un punto P di ascissa, allora misura la distanza di P da O (si veda la fig. 8.4). O P asse reale fig. 8.4 A O B - a a asse reale fig. 8.5

6 A O B - a a asse reale fig. 8.6 Dunque la disuguaglianza: (8.8) a con a R e a (si osservi che se a < la disuguaglianza (8.8) risulta impossibile) indica, geometricamente, che il punto P di ascissa si trova a sinistra o a destra di O sull asse reale ed ha distanza da O minore o uguale ad a (nella fig. 8.5 ciò significa che il punto P appartiene al segmento AB dell asse reale). Si deduce pertanto che il valore di deve essere compreso tra -a e a, in simboli: (8.9) a - a a. Analogamente, la disuguaglianza: (8.) a con a R e a (si osservi che se a < la disuguaglianza (8.8) risulta verificata per ogni reale) indica, geometricamente, che il punto P di ascissa sull asse reale ha distanza da O maggiore di a e quindi si trova, facendo riferimento alla fig. 8.6, o a destra di B, o a sinistra di A. Si deduce pertanto che il valore di è minore o uguale a -a, oppure maggiore o uguale ad a, in simboli: (8.) a - a a. Le (8.9) e (8.) possono essere generalizzate considerando al posto della variabile reale una qualsiasi funzione di questa, che possiamo indicare con f ( ), ottenendo le seguenti equivalenze: (8.) f () a -a f () a (8.3) f () a f () -a f () a Mostriamo ora tramite gli esempi 8.3 e 8.4 l utilità delle (8.) e (8.3) nella risoluzione di disequazioni in cui compare un solo valore assoluto. Esempio 8.3 Consideriamo la disequazione: (8.4) Per la (8.) si ha: pertanto le soluzioni della (8.4) si ottengono risolvendo il seguente sistema di disequazioni: Oppure, utilizzando la simbologia degli intervalli: [ a, a]. Oppure, utilizzando la simbologia degli intervalli: ] a ] [ a + [,,.

7 e quindi: 8 6 (8.5). 8 Poiché le soluzioni dell equazione di secondo grado associata alla prima disequazione di (8.5) sono, = 4± e quelle dell equazione associata alla seconda disequazione di (8.5) sono = e = 8, (8.5) è equivalente al sistema: (8.6). 8 Quindi le due disequazioni di (8.6) risultano contemporaneamente soddisfatte dagli reali seguenti (si veda la fig. 8.7: basta considerare gli intervalli evidenziati come soluzione in entrambe le disequazioni): che costituiscono l insieme delle soluzioni di (8.4) fig. 8.7 Esempio 8.4 Consideriamo la disequazione: (8.7) Per la (8.3) si ha: oppure e quindi la (8.7) è equivalente a: 8 oppure 8 6 e quindi le sue soluzioni sono le seguenti: 4 o 8 o 4 +. Gli esempi seguenti riguardano la presenza di due o più valori assoluti nella stessa disequazione. Esempio 8.5 Consideriamo la disuguaglianza:

8 (8.8) + + >. Per risolverla studiamo il segno delle quantità di cui viene considerato il valore assoluto: +. Rappresentiamo ora graficamente il segno delle due quantità tra valore assoluto: si veda la fig fig. 8.8 Dalla rappresentazione grafica in fig. 8.8 si deduce la necessità di analizzare tre casi separatamente: il primo di questi riguarda la risoluzione di (8.8) per gli minori di -, il secondo per gli maggiori o uguali a - e minori di, infine il terzo per gli maggiori o uguali a. In ciascuno di questi casi infatti, come mostra la fig. 8.8, si conosce il segno di ognuna delle espressioni tra valore assoluto e quindi è possibile eliminare il simbolo di valore assoluto utilizzando opportunamente la (8.): caso: < < < < + > > < caso: < < < > > 3 caso: + + > > > Unendo le soluzioni ottenute nei singoli casi si ottiene che ogni reale è soluzione della (8.8). Nell esempio seguente si hanno ancora più valori assoluti, ma annidati tra loro (cioè uno dentro l altro), per cui essendo la risoluzione algebrica (simile a quella utilizzata nell esempio precedente, ma con più casi da studiare) troppo complessa, si preferisce utilizzare la via grafica.

9 Esempio 8.6 Consideriamo la disuguaglianza: (8.9) 3 4 <. Per risolverla graficamente, tracciamo i grafici delle funzioni che compaiono nei due membri della (8.9). Il grafico della funzione al secondo membro, cioè di y =, è una retta orizzontale che interseca l asse delle ordinate nel punto (,). Per disegnare il grafico della funzione al primo membro procediamo per passi successivi, disegnando i grafici dei vari valori assoluti che compaiono in (8.9). Si parte da quello più interno, cioè si traccia il grafico di y = 3 che è riportato nella fig y y = O fig. 8.9 Quindi si disegna il grafico di y = 3, che si ottiene da quello della fig. 8.9 diminuendo di due unità l ordinata di ogni suo punto (si veda la fig. 8.).

10 y y = O fig y y = O fig. 8.

11 y y = O fig. 8. Si disegna poi il grafico di y = 3 che si ottiene da quello della fig. 8. ribaltando, rispetto all asse, la parte contenente punti con ordinate negative, per definizione di valore assoluto (si veda la fig. 8.). Quindi, si passa al grafico della funzione y = 3 4 che si ottiene da quello della fig. 8. diminuendo di quattro unità l ordinata di ogni suo punto (si veda la fig. 8.). Dopodiché si disegna il grafico di y = 3 4 che si ottiene da quello della fig. 8. ribaltando, rispetto all asse, la parte contenente punti con ordinate negative: tale grafico è riportato nella fig. 8.3, insieme a quello di y =. Dalla fig. 8.3 si deducono le soluzioni di (8.9) considerando le ascisse dei punti della parte di grafico della funzione y = 3 4 sottesa dal grafico di y =. Poiché i punti in cui i due grafici si intersecano hanno coordinate: (-4,), (-,), (8,), (,), le soluzioni della (8.9) sono le seguenti: 4 < < oppure 8 < <.

12 5 4 y y = y = 3 O fig. 8.3

Disequazioni di 1 grado

Disequazioni di 1 grado Matematica Disequazioni di 1 grado Autore: Prof. Pappalardo Vincenzo docente di Matematica e Fisica 1. DEFINIZIONI Si dice disequazione di 1 grado un espressione algebrica nella quale compare il segno

Dettagli

Le disequazioni di primo grado. Prof. Walter Pugliese

Le disequazioni di primo grado. Prof. Walter Pugliese Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Disuguaglianze. Disequazioni di primo grado

Disuguaglianze. Disequazioni di primo grado Disuguaglianze Una disuguaglianza è una proposizione in cui compare uno dei predicati: maggiore di, minore di, maggiore o uguale a, minore o uguale a. Sono disuguaglianze: 4

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Equazioni e disequazioni Le equazioni Una uguaglianza tra espressioni letterali che risulta vera per ogni valore delle lettere che vi compaiono prende il nome di identità. 2a=2a (a+b)(a-b)=a 2 -b 2 Una

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

Disequazioni di II grado

Disequazioni di II grado Disequazioni di II grado Scomposizione di un trinomio di 2 grado La scomposizione del trinomio di 2 grado ax 2 + bx + c dipende dal discriminante. Se questo è positivo esistono radici reali e distinte

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente:

Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente: 355 C) LE EQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO Iniziamo da alcuni casi particolari. 1) 5 = 3 Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente:

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni DISEQUAZIONI DI PRIMO GRADO Disuguaglianze Due espressioni numeriche, di diverso valore, separate da un segno di disuguaglianza, formano una disuguaglianza numerica Esempi di disuguaglianze 6 6 Simboli

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

DISEQUAZIONI DI SECONDO GRADO

DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI DI SECONDO GRADO Esercizio - -8 - - - - - - Esercizio L equazione non ha soluzioni e quindi la parabola non interseca l asse delle ascisse - - - - - Pertanto la parabola, avendo la concavità

Dettagli

1 Identità ed equazioni

1 Identità ed equazioni 1 Identità ed equazioni Consideriamo l uguaglianza espressa dalla seguente frase: Trova un numero tale che il suo doppio sommato con se stesso sia uguale al suo triplo. x > 2x + x = 3x La relazione: 2x

Dettagli

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio:

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio: DISEQUAZIONI Prima di vedere cosa sono le disequazioni è necessario dare uno sguardo alle disuguaglianze numeriche. Al contrario delle uguaglianze numeriche, dove tra i numeri è presente il segno di uguaglianza

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) questa equazione equivale a ( ) ( ) quindi

Dettagli

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 II Lezione EQUAZIONI E SISTEMI Dr. E. Modica erasmo@galois.it www.galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA Le disequazioni goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica DISEQUAZIONI GONIOMETRICHE ELEMENTARI definizione Una disequazione di dice goniometrica se contiene

Dettagli

Non ci sono prodotti da svolgere. Eliminiamo i denominatori riducendo primo i due membri allo stesso denominatore

Non ci sono prodotti da svolgere. Eliminiamo i denominatori riducendo primo i due membri allo stesso denominatore isequazioni di I grado Si risolvono come le equazioni di grado con la sola differenza che se si cambiano di segno tutti i termini bisogna cambiare anche il verso della disequazione. Pertanto si opera nel

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3. UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..

Dettagli

DISEQUAZIONI DI II GRADO

DISEQUAZIONI DI II GRADO DIEQUAZIONI DI II GRADO Risolvere: 6 Per prima cosa dobbiamo studiare il segno del numeratore e del denominatore, cioè risolvere le due disequazioni: 6 6 : : D N Costruiamo ora uno schema in cui sono riportate

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. è un identità. Verificare un identità

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Equazioni e disequazioni con il valore assoluto

Equazioni e disequazioni con il valore assoluto Equazioni e disequazioni con il valore assoluto Definizione Il valore assoluto di un numero reale è indicato con la notazione ed è definito: Quindi è sempre positivo o nullo. Per esempio: 5 5 ; ( ) + se

Dettagli

Equazioni con valore assoluto

Equazioni con valore assoluto Equazioni del tipo A(x) =a, con a Є R Equazioni con valore assoluto 1. a

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte La Retta. Qual è l equazione della retta in forma nel piano cartesiano? L equazione della generica retta nel piano cartesiano in forma esplicita è y mx q, mentre

Dettagli

EQUAZIONI. Prendiamo in considerazione le funzioni reali in una variabile reale

EQUAZIONI. Prendiamo in considerazione le funzioni reali in una variabile reale EQUAZIONI Prendiamo in considerazione le funzioni reali in una variabile reale Una equazione è una uguaglianza tra due funzioni eventualmente verificata per particolari valori attribuiti alla variabile

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

asse fuoco vertice direttrice Fig. D3.1 Parabola.

asse fuoco vertice direttrice Fig. D3.1 Parabola. D3. Parabola D3.1 Definizione di parabola come luogo di punti Definizione: una parabola è formata dai punti equidistanti da un punto detto fuoco e da una retta detta direttrice. L equazione della parabola

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Parte I. Matematica per le Applicazioni Economiche

Parte I. Matematica per le Applicazioni Economiche Parte I Matematica per le Applicazioni Economiche Capitolo 1 Disequazioni 1.1. Definizioni Una disequazione è una disuguaglianza fra due espressioni contenenti una o più incognite. Nel caso di una sola

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado.1 Risoluzione delle disequazioni di secondo grado Una disequazione di secondo grado si presenta in una delle seguenti forme: a + b + c > 0; a + b + c 0; a + b + c < 0; a +

Dettagli

1 Le equazioni con il valore assoluto

1 Le equazioni con il valore assoluto 1 Le equazioni con il valore assoluto Si definisce valore assoluto di x IR x = x x 0 x x < 0 In base a tale definizione è possibile risolvere equazioni e disequazioni in cui compaia il valore assoluto

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

Introduzione alla Matematica per le Scienze Sociali - parte II

Introduzione alla Matematica per le Scienze Sociali - parte II Introduzione alla Matematica per le Scienze Sociali - parte II Lucrezia Fanti Istituto Nazionale per l Analisi delle Politiche Pubbliche (INAPP) lucrezia.fanti@uniroma1.it Lucrezia Fanti Intro Matematica

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite Unità Didattica N 08 I sistemi di primo grado a due incognite 1 U.D. N 08 I sistemi di primo grado a due incognite 01) Coordinate cartesiane 0) I sistemi di primo grado a due incognite 03) Metodo di sostituzione

Dettagli

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie Unità Didattica N 07 Le equazioni di primo grado ad una incognita 6 U.D. N 07 Le equazioni di primo grado ad una incognita 0) Identità ed equazioni 0) Equazione di primo grado ad una incognita 0) Equazione

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

Riprendiamo il significato di valore assoluto, esso è una funzione che rende positiva la quantità che costituisce il suo argomento.

Riprendiamo il significato di valore assoluto, esso è una funzione che rende positiva la quantità che costituisce il suo argomento. Valore assoluto Riprendiamo il significato di valore assoluto, esso è una funzione che rende positiva la quantità che costituisce il suo argomento. Definizione si definisce valore assoluto la funzione

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0.

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0. Esercizi 01/18 - Analisi I - Ingegneria Edile Architettura - Esercizio 1. Risolvere la seguente equazione: ( ) 9 15 1 ( 15 9 ) = 0. Gli esponenti esistono per 1 e 0. Per risolvere l eqauazione portiamo

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

D) LE DISEQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO

D) LE DISEQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO 364 ) LE ISEQUAZIONI COL SIMBOLO I VALORE ASSOLUTO Iniziamo da alcuni casi particolari. 1) 5 < 3 Il valore assoluto di un numero è uguale (vedi pag. 354, definizione 3) alla distanza dall origine del punto

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 -

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - Esiste una corrispondenza biunivoca tra i numeri reali e i punti di una retta: Ad ogni punto P della retta

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no.

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no. Edutecnica.it Disequazioni frazionarie Disequazioni frazionarie Esercizio no. 8 7 9 8 Esercizio no. Soluzione a pag. R. 7 con 9 Soluzione a pag.5 R. Esercizio no. Soluzione a pag.5 8 8 R. [ ] Esercizio

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

INSIEMI. INSIEME = gruppo di oggetti di tipo qualsiasi detti elementi dell insieme.

INSIEMI. INSIEME = gruppo di oggetti di tipo qualsiasi detti elementi dell insieme. INSIEMI INSIEME = gruppo di oggetti di tipo qualsiasi detti elementi dell insieme. Un insieme è definito quando viene dato un criterio non ambiguo che permette di stabilire se l oggetto appartiene o no

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica

Dettagli

La parabola terza parte Sintesi

La parabola terza parte Sintesi La parabola terza parte Sintesi [ ] Qual è l equazione generale della parabola con l asse di simmetria orizzontale ( cioè parallelo all asse x )? Con quale trasformazione si ricava questa equazione da

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Matematica per esami d idoneità o integrativi della classe 2 ITI

Matematica per esami d idoneità o integrativi della classe 2 ITI UNI EN ISO 9001:008 I.I.S. PRIMO LEVI Torino ISTITUTO TECNICO - LICEO SCIENTIFICO - LICEO SCIENTIFICO Scienze Applicate LICEO SCIENTIFICO SPORTIVO Contenuti di Matematica per esami d idoneità o integrativi

Dettagli

I sistemi lineari Prof. Walter Pugliese

I sistemi lineari Prof. Walter Pugliese I sistemi lineari Prof. Walter Pugliese Le equazioni lineari in due incognite Un equazione nelle incognite x e y del tipo #$ + &' = ) dove *,,, - sono numeri reali è un equazione lineare in due incognite

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli