Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,"

Transcript

1 Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare completamente la seguente funzione e tracciarne il grafico probabile:. f) = Soluzione. Classificazione. È una funzione razionale fratta, poiché la variabile indipendente compare anche al denominatore della frazione. Dominio. Poiché nella funzione compare una frazione, per determinarne il dominio bisogna porre la condizione che il denominatore sia diverso da zero, e pertanto si deve avere: , 0. Il dominio della funzione è D = R 4; 0}. Intersezioni con gli assi. Con l asse abbiamo: 3 y = = = 0 = 3 Pertanto la funzione interseca l asse nel punto di coordinate A3; 0). Con l asse y non esistono intersezioni, perché = 0 non fa parte del dominio. Segno. f) > > 0 Num. > 0 3 > 0 < 3. Den. > > 0 < 4; > 0 f) > 0 < 4; 0 < < 3;

2 2 ossia f) > 0 per ] ; 4[ ]0; 3[. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono, +, 4, = + forma indeterminata, che si risolve mettendo in evidenza 3 ) = ) = ) = + = 0 Similmente si ha: 3 ) = ) = + 4 ) = = 0. Calcolando i iti per tendente all infinito si sono ottenuti valori finiti: di conseguenza si può affermare che la funzione ammette un asintoto orizzontale di equazione, cioè l asse. Per il calcolo degli altri iti è utile fattorizzare il denominatore: 2 +4 = +4) = ) = 3 4+ ) ) = ) = 7 0 = = ) = 3 4 ) ) = ) = = + Avendo ottenuto due risultati infiniti per tendente ad un valore finito da destra e da sinistra), si può concludere che la retta di equazione = 4 è un asintoto verticale per la funzione = ) = ) ) = ) 4 = = = ) = ) ) = 3 0 ) 4 = 3 0 = Come per i due iti precedenti, si sono ottenuti due risultati infiniti per tendente ad un valore finito da destra e da sinistra), quindi si può concludere che la retta di equazione = 0 è un asintoto verticale per la funzione. Grafico probabile.

3 3 y 4 O A 2. f) = Soluzione. Classificazione. È una funzione razionale fratta, poiché la variabile indipendente compare anche al denominatore della frazione. Dominio. Poiché nella funzione compare una frazione, per determinarne il dominio bisogna porre la condizione che il denominatore sia diverso da zero, e pertanto si deve avere: Il dominio della funzione è D = R per ogni R. Intersezioni con gli assi. Con l asse y abbiamo: = 0 y = = 0

4 4 Con l asse abbiamo: y = = = 0 2 ) = 0 = 0; = ± Pertanto la funzione interseca gli assi nei punti di coordinate O0; 0), A ; 0), B; 0). Segno. f) > > 0 Num. > 0 3 > 0 3 < 0 2 ) < 0 < ; 0 < <. Den. > > 0 per ogni R ossia f) > 0 < ; 0 < < ; f) > 0 per ] ; [ ]0; [. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono, +. In particolare, poiché il dominio è R non esistono asintoti verticali = + + forma indeterminata, che si risolve con il metodo dell equivalenza asintotica quindi Similmente si ha: 3 3, per = = + 5 = = 5 = +.

5 Calcolando i iti per tendente all infinito si sono ottenuti valori infiniti: di conseguenza si può affermare che la funzione non ammette asintoto orizzontale, allora vediamo se esiste l asintoto obliquo. La funzione ammette come asintoto obliquo la retta y = m + q se esistono finiti i seguenti iti: f) m = ± e q = f) m). ± Abbiamo che = + + forma indeterminata, che si risolve con il metodo dell equivalenza asintotica quindi Similmente si ha: Dunque m = , per = = + 5 = = 5 = 5. Infine, abbiamo che ) 5 8 = = + + forma indeterminata, che si risolve con il metodo dell equivalenza asintotica quindi + 8 8, per = = = 8 + = 0. Similmente si ha: ) 5 8 = = 8 25 = 8 = 0. Dunque q = 0. Possiamo concludere che la funzione ammette come asintoto obliquo la retta y = 5. 5

6 6 Grafico probabile. y y = 5 y = f) O 3. f) = + Soluzione. Classificazione. È una funzione irrazionale fratta. Dominio. Data la natura della funzione radice con indice pari), per determinarne il dominio bisogna porre la condizione che il radicando sia maggiore o uguale a zero, quindi: + 0 Num Den. > 0 + > 0 > 0 < ; 0. + Il dominio della funzione è D =] ; [ [0; + [. Intersezioni con gli assi. Con l asse y abbiamo: = 0 = 0 y = y = =

7 Con l asse abbiamo: y = + = + = 0 + = + 0 = = + impossibile Pertanto la funzione interseca solo l asse y nel punto di coordinate 0, ). L equazione irrazionale del secondo sistema è stata risolta senza porre la condizione di esistenza della radice, poiché essa era stata già considerata al momento della determinazione del dominio della funzione. Segno. f) > 0 + > 0 + < + < + < 0 < < 0 + > 0 Num. > 0 R. 7 Den. > 0 + > 0 > + > 0 >. Ripetendo per la disequazione irrazionale le stesse considerazioni fatte per l equazione, bisogna rettificare parzialmente il risultato tenendo presente il dominio della funzione), per cui f) > 0 solo se > 0, ossia f) > 0 per ]0; + [. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali utile stabilire il comportamento della funzione, sono,, +. Per = 0 è già stato determinato l andamento, infatti la funzione è definita per = 0 e si ha f0) =. Abbiamo che: + = + = 0 = + = Pertanto la retta di equazione = è asintoto verticale sinistro per la funzione.

8 8 Inoltre, abbiamo che = + forma indeterminata che si risolve mettendo in evidenza + + ) = + + = + + Analogamente + = 0. Dunque la retta è un asintoto orizzontale per la funzione. Grafico probabile. y = = 0 O 4. f) = e Soluzione. Classificazione. È una funzione esponenziale fratta, poiché la variabile indipendente compare anche al denominatore nell esponente.

9 Dominio. Poiché nella funzione compare una frazione, per determinarne il dominio bisogna porre la condizione che il denominatore sia diverso da zero, e pertanto si deve avere: Il dominio della funzione è D =] ; [ ]; + [. Intersezioni con gli assi. Con l asse y abbiamo: = 0 = 0 y = e y = e 2 = e Con l asse abbiamo: y = e e = 0 impossibile Pertanto la funzione interseca solo l asse y nel punto di coordinate 0; ). e 9 Segno. f) > 0 e > 0 D. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono,, +. Abbiamo che: e = e 2 ) 2 = e 2 0 = e = 0 e = e 2 + ) 2 = e = e + = + + Abbiamo ottenuto un risultato infinito solo per tendente a da destra, quindi possiamo concludere che la retta = è un asintoto verticale destro per la funzione. Inoltre, abbiamo che e = e + + forma indeterminata che si risolve mettendo in evidenza ) e = e ) + e + = 2 2 = e 2 = e

10 0 e, analogamente + e = e = 2 = e 2 = e Calcolando i iti per tendente all infinito si è ottenuto un valore finito: di conseguenza si può affermare che la retta y = e è un asintoto orizzontale per la funzione. Grafico probabile. y ) ) e + y = e O 5. f) = + ln Soluzione. Classificazione. È una funzione irrazionale logaritmica e fratta. Dominio. Poiché nella funzione compaiono una frazione, una radice e un logaritmo, per determinarne il dominio bisogna porre le seguente condizioni: 0 frazione ln 0 radice > 0 logaritmo 0 ln ln > 0 0 > 0

11 Tali condizioni sono tutte contemporaneamente soddisfatte solo se, dunque il dominio della funzione è D = [; + [. Intersezioni con gli assi. Poiché la funzione non è definita per = 0, non esistono intersezioni con l asse y. Con l asse abbiamo che: y = + ln + ln = 0 + ln = 0 ln = impossibile Essendo tale sistema impossibile una radice dove esiste è sempre non negativa), concludiamo che la funzione non interseca gli assi cartesiani. Segno. f) > 0 + ln > 0 Num. > 0 + ln > 0 ln > per ogni D. Den. > 0 > 0 > 0. Poiché f è definita per, abbiamo che f) > 0 per ogni D = [; + [. Comportamento della funzione in punti particolari del dominio. Il dominio di f è [; + [. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono e +. In = la funzione è definita e abbiamo f) = + ln = + 0 =, quindi la funzione passa per A; ). In particolare, visto che dobbiamo stabilire il comportamento della funzione solo in +, non esistono asintoti verticali. + ln = + ln+ ) = , forma indeterminata. Abbiamo che + ln ln ) = = + + ln) 2. +

12 2 Poiché e grazie al ite notevole + = 0 ln) 2 + = 0 ln) γ + β = 0 per ogni γ, β > 0, dove nel nostro caso γ = 2 e β =, otteniamo + ln = ln) 2 = 0. + Calcolando il ite per tendente a + si è ottenuto un valore finito uguale a 0, di conseguenza si può affermare che la funzione ammette un asintoto orizzontale di equazione. Grafico probabile. y A y = f)

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 =

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 = Limiti e continuità Risoluzione di forme indeterminate con polinomi Ordine di infinito e confronto di infiniti Alcuni iti notevoli Funzioni continue Esercizi sui iti ( 3 + 3) = (10 + 3 32 ) = 57 ( + 2

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

0 + = + 3 x lim 1 + (log 2 x)100 = 0

0 + = + 3 x lim 1 + (log 2 x)100 = 0 (log a ) γ = 0, a, b > γ R. (log a ) γ = (log a ) γ a = +, a > β R. β a β = = β a 0 + = +. = 0 0 = 0 β = +, (log a ) γ a > β > 0, γ R. β (log a ) γ = (log a) γ = 0 + = +. β = +, a, b > γ R. (log a ) γ

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI Intervalli limitati e illimitati in R RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Saper riconoscere intervalli

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono

Dettagli

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi

Dettagli

Lezione 18 (8 gennaio) Limiti

Lezione 18 (8 gennaio) Limiti Lezione 18 (8 gennaio) Limiti Ripasso f x = ln 3 x 1 D = (1, + ) ln 3 x 1 + x 1 = ln 3 1 + 1 = ln 3 = ln(+ ) = + 0 + ln 3 x + x 1 = ln 3 + 1 = ln 3 + = ln(0+ ) = 1 Esempi di forme indeterminate x + x3

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA I LIMITI E LO STUDIO DELLE FUNZIONI GSCATULLO I Limiti e lo Studio delle Funzioni Definizione e calcolo dei iti. Definizione di Limite Possiamo dare una definizione intuitiva, grazie al lavoro

Dettagli

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado. Il piano cartesiano. Distanza tra

Dettagli

A / &

A / & CLASSE 5^ C LICEO SCIENTIFICO 5 Dicembre 24 Studio di funzioni e continuità. Determina i valori dei parametri reali p e q in modo che la funzione = e abbia come asintoto la retta =. Ricerca quindi gli

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 f : A R R A ' Funzioni Continue La funzione f si dice continua in f ( f ( se (e solo se A Ne seguono tre proprietà affinché f( sia continua in :. Devono esistere finiti il ite destro e sinistro di f( in.

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ =

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ = CLASSE 5^ C LICEO SCIENTIFICO 2 Gennaio 25 Studio di funzioni e continuità (Recupero per assenti). Determina i valori dei parametri reali a e b in modo che la funzione = passi per il punto 2;, abbia come

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 6 studio di funzione. esercizi Chi non risolve esercizi non impara la matematica. Traccia, se possibile, il grafico di una funzione che soddisfi le seguenti proprietà: a. è definita in R \ {, } b. ha come

Dettagli

Esercizi su studio di funzione

Esercizi su studio di funzione Esercizi su studio di funzione i. Studiare la seguente funzione 6 ) Dominio 6 ( ) { } ; R \ f Dom ) Intersezione con gli assi 6 6 ; 6 6 6 ; ; ) Positività 6 > < 6 6 asintoto verticale 6 6 asintoto verticale

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. .7 esercizi 5.7 esercizi Chi non risolve esercizi non impara la matematica. La relazione f: { studenti del Versari-Macrelli } { classi del Versari-Macrelli } «lo studente è iscritto alla classe» è una

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Medicina veterinaria C.L. in Tutela e Benessere Animale Università degli Studi di Teramo 1 a 0 < a < 1 a > 1 1 1 0 = 0 = 0 0 Esempio 1 1 e 1) Determinazione

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

UNITA DIDATTICA. Conoscenze. Abilità

UNITA DIDATTICA. Conoscenze. Abilità Titolo: Problemi di geometria analitica : la parabola e l iperbole Codice: B1_S Ore previste:15 Equazione della parabola e coordinate del vertice Grafico di una parabola Equazione dell iperbole equilatera

Dettagli

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano:

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo

Dettagli

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE OMINIO E IMMAGINE I UNA FUNZIONE REALE I VARIABILE REALE La prima operazione che dobbiamo fare quando ci accingiamo a studiare una funzione (per poterne poi determinare il grafico) è quella di individuare

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA CLASSIFICAZIONE DELLE FUNZIONI - TEORIA Razionali Intere Fratte 9 9 6 Intere Algebriche indice pari Fratte Irrazionali Intere Funzioni indice dispari Fratte log( 1 logaritmiche ) Goniometriche sen cos

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x.

3 LIMITI. 3.1 Operazioni in R {± } x R x + (+ ) = + x + ( ) = x + = 0 x. x R = 0. x > 0 x (+ ) = + x ( ) = x < 0 x (+ ) = x ( ) = = x. 3 LIMITI 3. Operazioni in R {± } R + (+ ) = + + ( ) = R + = 0 = 0 > 0 (+ ) = + ( ) = < 0 (+ ) = ( ) = + > 0 0 + = + 0 = < 0 0 + = 0 = + (+ ) + (+ ) = + ( ) + ( ) = (+ ) (+ ) = + (+ ) ( ) = Non è possibile

Dettagli

LIMITI. Sia c D. Sia y=f(x) funzione definita in un dominio D. Tutorial di Paola Barberis - agg Ord =limite

LIMITI. Sia c D. Sia y=f(x) funzione definita in un dominio D. Tutorial di Paola Barberis - agg Ord =limite LIMITI Ord =ite Sia =f() funzione definita in un dominio D. Sia c D c Cercare il LIMITE della funzione per c ( che tende a c) significa trovare, man mano che la TENDE a c, l ORDINATA a cui SI AVVICINA

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

Calcola il valore dei seguenti limiti precisando quando si tratta di una forma indeterminata di quale forma si tratta:

Calcola il valore dei seguenti limiti precisando quando si tratta di una forma indeterminata di quale forma si tratta: Calcola il valore dei seguenti iti precisando quando si tratta di una forma indeterminata di quale forma si tratta: 2x 2 5x 3 1. x 3 x 2 + 4 x 3 2x 2 5x 3 x 2 + 4 non e una forma indeterminata, basta sostituire

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

LICEO SCIENTIFICO STATALE G. GALILEI - SIENA

LICEO SCIENTIFICO STATALE G. GALILEI - SIENA LICEO SCIENTIFICO STATALE G. GALILEI - SIENA ANNO SCOLASTICO 2018/2019 PROGRAMMA DI MATEMATICA SVOLTO NELLA CLASSE I sez. B Prof.ssa Antonella Todaro TEORIA DEGLI INSIEMI * rappresentazioni di un insieme

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

LICEO SCIENTIFICO STATALE G. GALILEI - SIENA

LICEO SCIENTIFICO STATALE G. GALILEI - SIENA LICEO SCIENTIFICO STATALE G. GALILEI - SIENA PROGRAMMA DI MATEMATICA SVOLTO NELLA CLASSE 2 sez.e RICHIAMI DI ALGEBRA * prodotti notevoli * scomposizione di un polinomio in fattori * frazioni algebriche

Dettagli

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0.

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0. Esercizi 01/18 - Analisi I - Ingegneria Edile Architettura - Esercizio 1. Risolvere la seguente equazione: ( ) 9 15 1 ( 15 9 ) = 0. Gli esponenti esistono per 1 e 0. Per risolvere l eqauazione portiamo

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Regole, Esempi, Esercizi. 1. Se nella funzione compare una x al denominatore, bisogna porre il denominatore diverso da zero;

Regole, Esempi, Esercizi. 1. Se nella funzione compare una x al denominatore, bisogna porre il denominatore diverso da zero; Lo studio del graco di una funzione Regole, Esempi, Esercizi Ripasso delle regole principali Punto 1: Il calcolo del dominio: Per calcolare il dominio di una funzione, bisogna seguire le tre regole seguenti:

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Medicina veterinaria C.L. in Tutela e Benessere Animale Università degli Studi di Teramo 1 n = m 1 P1 5 Q 9 n > m P4 Q 3 4 4 3 4 3 n < m P 5 1 1 3 Q3 4 Esempio

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni Esame di Matematica e Abilità Informatiche - Luglio 3 Le soluzioni. Data la funzione f ( ln( a. trova il dominio di f b. scrivi, esplicitamente e per esteso, quali sono gli intervalli in cui f( risulta

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Studio del grafico di una funzione

Studio del grafico di una funzione Studio del grafico di una funzione I) Studia il grafico delle seguenti funzioni razionali fratte: ) = y [ as. v. ; as. + 4; M (0;0), m( 4;6 ) = ) [ as. v. = ± ; as. 0; F(0;0) a tg. obliqua ) 4). [ as.

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 4 Novembre 016 Trinomi di secondo grado Possiamo usare le soluzioni dell equazione di secondo grado per scomporre il trinomio

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

Sallustio Bandini. Programma di Matematica Classe 1^ B Tur a.s Prof.ssa Bruna Lopraino

Sallustio Bandini. Programma di Matematica Classe 1^ B Tur a.s Prof.ssa Bruna Lopraino Sallustio Bandini Classe 1^ B Tur a.s. 2014-2015 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli