Misura del coefficiente di viscosità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Misura del coefficiente di viscosità"

Transcript

1 Esperienza n. Misura del coefficiente di viscosità Cenni teorici I fluidi sono sistemi formati da moltissimi elementi microscopici in continuo movimento gli uni rispetto agli altri. La forma dei fluidi è in generale fissata dai recipienti che li contengono. Essi non presentano forma propria. Fanno parte dei fluidi i liquidi e i gas. I primi sono sostanzialmente incomprimibili (a densità costante) mentre i secondi possono essere compressi e dunque variare la propria densità in rapporto al volume del contenitore. Si supponga di suddividere il volume occupato dal fluido in piccoli volumi elementari di dimensioni infinitesime (tali però da contenere un elevato numero di costituenti microscopici). Su ogni elemento di volume dv agiscono per effetto degli altri elementi di volume di fluido e per effetto di agenti esterni due tipi di forze: forze di volume e forze di superficie. Le forze si volume (come la forza di gravità) agiscono su tutti i costituenti microscopici compresi entro dv e dunque sono proporzionali alla quantità di materia presente in dv. Le forze di superficie agiscono sui costituenti microscopici presenti alla superficie di dv. Queste possono essere sia forze normali, che agiscono in direzione perpendicolare alle pareti dell elemento di volume, sia forze tangenziali, che agiscono parallelamente alla superficie che delimita l elemento di volume e dunque rappresentano df sforzi di taglio. In particolare si dice pressione la grandezza scalare p = n dove df ds n è la forza che agisce perpendicolarmente sulla superficie infinitesima ds di fluido. Le dimensioni fisiche della pressione sono quelle di una forza per unità di superficie e nel sistema internazionale essa si misura in Pa (Pascal) = N m. Se un fluido è in quiete, su ogni elemento di volume agiscono solo forze di pressione (sforzi normali). Se un fluido è in movimento, oltre agli sforzi normali devono considerarsi anche gli sforzi di taglio. Infatti, gli elementi che costituiscono il fluido (molecole), pur essendo in moto relativo gli uni rispetto agli altri, sono soggetti a forze di coesione reciproche (forze intermolecolari riconducibili ad effetti elettrostatici ). Quando una parte di fluido viene messa in movimento rispetto alle altre, le forze di coesione producono una sorta di attrito interno nella forma di uno sforzo di taglio. Questo dipende dal fluido considerato. La grandezza che rappresenta l effetto dell attrito interno è chiamata viscosità. Per dare la definizione operativa di viscosità si consideri un recipiente che contenga un liquido in quiete. Si ponga sulla superficie libera del fluido una lastra galleggiante di area S e si applichi una forza costante in modulo diretta tangenzialmente rispetto alla superficie libera. Supponendo che la velocità della lastra galleggiante sia sufficientemente piccola da non creare vortici ai suoi bordi, si osserva che gli strati superficiali di liquido a contatto con la lastra (che bagnano la lastra) per effetto delle forze intermolecolari di coesione tra liquido e lastra procedono con essa. In modo analogo, gli strati di liquido più bassi, a contatto con la parete di fondo del recipiente, sempre per effetto delle forze di coesione rimangono in quiete, a contatto con la parete. Gli strati di liquido intermedi si muovono con una velocità che dipende dalla profondità, variabile tra la velocità della lastra alla superficie libera e la velocità nulla delle parti di liquido a contatto con il fondo. Si osserva inoltre che applicando una forza di trazione F T costante, la velocità di regime con cui la lastra si muove è costante. Ciò è dovuto agli effetti di attrito viscoso che si manifestano tra i vari strati di liquido e che fanno sì che la forza di trazione sia controbilanciata dalla forza di attrito F A dovuta alla Si veda ad esempio S. Nannarone, L. Pasquali, Fisica A, Capitolo Forze nella pratica

2 viscosità del fluido. Sia v la velocità limite della lastra. Gli elementi di fluido a contatto con essa procedono alla stessa velocità. Gli elementi di fluido appartenenti allo strato di liquido immediatamente sottostante si muovono con una velocità leggermente inferiore, frenando lo strato sovrastante e così via sino allo strato a contatto con il fondo che rimane in quiete. La situazione è schematizzata in figura. Y y F A v F T dy v v+dv X Fig. Dall osservazione sperimentale si ricava che FT FT v( y + dy) v( y) = dy dv = dy S S da cui, integrando, si ottiene F T S = v y dove y è il livello del liquido nel recipiente. Il coefficiente è detto coefficiente di viscosità. Esso ha le dimensioni di [M L - T - ] e si misura in kg. m s In modo similare, quando un liquido viscoso è in moto in modo stazionario all interno di un condotto a sezione cilindrica costante di raggio R, si osserva che la velocità del fluido è massima al centro e nulla alle pareti di contatto col condotto. Definendo la portata come il volume di fluido che attraversa una qualunque sezione trasversale del condotto nell unità di tempo ( Q = dv ), si ricava la cosiddetta legge di Poiseuille 4 π R Q = p 8 l Per la derivazione della legge di Poiseuille si rimanda ai testi specializzati. Si veda ad esempio C. Mencuccini, V. Silvestrini, Fisica I, Ed. Liguori, Cap.IX.

3 dove l è la lunghezza del condotto e p è la differenza di pressione agli estremi del condotto stesso. La legge di Poiseuille può essere utilizzata per la misura del coefficiente di viscosità di un fluido, in quanto il valore di tale coefficiente può essere ricavato in base ai parametri geometrici del condotto e alle differenze di pressioni ai suoi capi. Su tale legge si basa il funzionamento dei viscosimetri a flusso capillare. Nel viscosimetro di Ostwald (si veda fig.) la misura del coefficiente di viscosità ignoto di un liquido è ottenuto in termini relativi, sulla base del confronto con il coefficiente di viscosità noto di un secondo liquido, solitamente acqua. Il viscosimetro di Ostwald è costituito da un tubo piegato ad U con due rigonfiamenti. Uno dei due rami dello strumento è costituito da un tubo capillare e presenta un rigonfiamento superiore agli estremi del quale sono segnati due indici m e m. La misura del coefficiente di viscosità procede nel seguente modo. Si introduce dapprima acqua dal ramo più largo fino al raggiungimento del livello c. La si aspira quindi per mezzo di una pompetta dal tubo più sottile fino a che il liquido non raggiunge il livello m. Si misura il tempo t necessario affinché l acqua passi dall indice m all indice m per effetto della forza peso. Si ripete lo stesso procedimento con il liquido di coefficiente di viscosità incognito, misurando anche in questo caso il tempo t necessario per la discesa da m a m. Fig.

4 Durante gli intervalli di tempo t e t il volume di liquido fluito nei due casi è lo stesso. Per definizione di portata, il volume è dato dalla seguente: t 4 π R V = Q( t) = p( t) 8 l. t Per i due liquidi si ha 4 t π R V = p ( t) V 8 l 4 t π R = p ( t). 8 l Poiché i due volumi sono uguali (il medesimo volume compreso tra le due tacche m ed m ) e le geometrie dello strumento sono le stesse nei due casi si ha t t p ( t) = p ( t). Per la determinazione delle due differenze di pressioni, si noti che se un liquido contenuto in un recipiente è soggetto alla sola forza di gravità, si ha che la pressione ad una qualunque profondità d è determinata dal peso di tutta la massa di liquido sovrastante (più eventualmente il peso della massa d aria che preme sulla superficie libera del liquido). In altri termini p = mg = ρgd dove S S è la sezione del recipiente, ρ è la densità di massa del liquido. Ne consegue che la differenza di pressione presente tra due livelli (quote) del liquido d e d è data da p = ρ g( d d). Ciò detto, chiamando con h( t ) il dislivello tra le due superfici libere del liquido dopo che è trascorso il tempo t, si avrà p( t) = ρgh( t) da cui t t ρ gh ( t) = ρ gh ( t) ρ t t ρ h t = ( ) h ( t) ρ ρ h t = h t

5 dove h e h rappresentano i dislivelli medi nei due casi. Poiché le due misure sono condotte in modo identico con la stessa strumentazione, si ha che h = h. Ne consegue che ρ t =. ρt Nota dunque la viscosità di uno dei due liquidi (acqua in questo caso) è possibile risalire alla viscosità dell altro misurando i tempi necessari affinché il livello dei liquidi passi per le due tacche m ed m. Occorre poi conoscere il rapporto tra le densità dei due liquidi. Per la determinazione delle densità è possibile procedere misurando le masse di un volume noto di ciascuno dei due liquidi e quindi m ottenere la densità da ρ =. V 3 Il coefficiente di viscosità dell acqua alla temperatura di C è pari a =.5 kg m s Materiale occorrente Viscosimetro di Ostwald Bilancia Sostegno con asta Morsetto doppio Pinza metallica Propipetta in gomma o pompetta a tre vie Spruzzetta con acqua distillata Spruzzetta con alcool etilico Cronometro. Brocca in plastica per raccolta liquidi usati Cilindro graduato da 5 ml Cilindro graduato da 5 ml Fig.3

6 Procedimento esecutivo Si misura con la bilancia la massa del cilindro da 5 ml prima vuoto e successivamente con un volume noto di acqua. Si ripete la stessa operazione con il liquido incognito (l alcol etilico) usando, questa volta, il cilindro graduato da 5 ml. Note massa e volume dell acqua e del liquido incognito si possono calcolare le densità dei due liquidi ed il relativo errore. Successivamente si introduce acqua dal ramo più largo del viscosimetro con la spruzzetta fino al raggiungimento del livello c (vedi Fig. 4). Dal ramo più sottile la si aspira mediante la propipetta finché non raggiunge un livello superiore a m (vedi Fig. 5). Si toglie la propipetta in modo da consentire la discesa del liquido per effetto della forza di gravità. Per il calcolo del tempo t si fa partire il cronometro nel momento in cui il liquido passa per il livello m e lo si blocca quando passa per m. Fare almeno cinque misure del tempo t. Ripetere lo stesso procedimento con il liquido di viscosità incognita (alcol etilico). Avvertenza Le vibrazioni del tavolo su cui è appoggiato il sostegno col viscosimetro, anche se piccole, modificano il tempo di deflusso del liquido e per tanto sono fonte di errori sistematici.

7 Esempio di relazione Misura del coefficiente di viscosità Sommario In questo esperimento è stato misurato il coefficiente di viscosità dell alcol etilico mediante un viscosimetro di Ostwald. La misura è stata effettuata in termini relativi, confrontando la viscosità dell alcol etilico con quella dell acqua, il cui coefficiente di viscosità, noto, è dato da 3 =.5 kg m s. Per ottenere il coefficiente di viscosità incognito sono state misurate le densità dei due liquidi. Per le densità dei due liquidi sono stati ottenuti i valori ρ =... ±... (unità di misura) e ρ =... ±... (unità di misura), dove ρ è la densità dell acqua e ρ quella dell alcol etilico. Per la misura del coefficiente di viscosità dell alcol etilico si è ottenuto il valore =... ±... (unità di misura). Introduzione Nell'introduzione viene spiegato più in dettaglio lo scopo dell'esperimento e quali sono le sue basi di partenza, ovvero ciò che è già noto e/o che si vuole verificare. Apparato sperimentale Descrizione dell'apparato sperimentale e del suo montaggio (con schema); Descrizione degli strumenti usati e delle loro caratteristiche, con particolare riguardo per la loro risoluzione. Risultati Descrizione di come viene effettuata la misura, con particolare attenzione agli accorgimenti adottati per ridurre gli errori. Valutare quale errore è conveniente associare al valore noto del coefficiente di viscosità dell acqua (esso è un valore noto per via sperimentale). Valutare le sorgenti di errore nelle misure di densità e in quelle di intervalli temporali. Indicare le ragioni per cui le misure di densità non vengono ripetute mentre è conveniente ripetere più volte le misure di intervalli temporali per effettuare un analisi statistica. Tabella dei dati sperimentali e delle loro incertezze. Esempi: V... ±... unità di misura m... ±... unità di misura V... ±... unità di misura m... ±... unità di misura ρ... ±... unità di misura ρ... ±... unità di misura t t Numero prova n t σ σ t

8 Utilizzo della propagazione delle incertezze per la determinazione degli errori da attribuire alla misura del coefficiente di viscosità. Discussione degli errori sui risultati ottenuti. Discussione Discussione dei dati sperimentali ottenuti e dei risultati quantitativi che da essi si possono ricavare (facendo riferimento allo scopo dell'esperimento). I risultati ottenuti vanno riportati con i loro errori. Conclusioni Nelle conclusioni si verifica se gli scopi prefissati sono stati ottenuti e si riportano eventuali considerazioni critiche sui limiti dell'esperimento effettuato.

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5 Fluidi 1 Stati di aggregazione della materia 2 Densità (II) n La densità assoluta è definita dal rapporto tra la massa M di una sostanza omogenea ed il suo volume V: d = M / V n Nel sistema internazionale

Dettagli

ESPERIENZA DELLA BURETTA

ESPERIENZA DELLA BURETTA ESPERIENZA DELLA BURETTA SCOPO: Misura del coefficiente di viscosità di un fluido Alcune considerazioni teoriche: consideriamo un fluido incomprimibile, cioè a densità costante in ogni suo punto, e viscoso

Dettagli

Esperienza del viscosimetro a caduta

Esperienza del viscosimetro a caduta Esperienza del viscosimetro a caduta Parte del corso di fisica per CTF dr. Gabriele Sirri [email protected] http://ishtar.df.unibo.it/uni/bo/farmacia/all/navarria/stuff/homepage.htm Esperienza del viscosimetro

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Lo scopo dell esperimento L esperimento serve a verificare il principio di conservazione dell energia meccanica, secondo

Dettagli

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi Modulo B Unità 3 Equilibrio dei fluidi Pagina Solidi, liquidi, aeriformi I solidi hanno forma e volume propri, i liquidi hanno volume proprio e forma del recipiente che li contiene, gli aeriformi hanno

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1 Meccanica dei Fluidi Fisica con Elementi di Matematica 1 Alcuni concetti di base: Vi sono fenomeni fisici per i quali una descrizione in termini di forza, massa ed accelerazione non è la più adeguata.

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 1 Misure e grandezze 3 Sommario 1. Le origini della chimica 2. Il metodo scientifico 3. Il Sistema Internazionale di unità di

Dettagli

Calcolo idraulico. 8.1 Definizione di idraulica. 8.2 Proprietà dell acqua

Calcolo idraulico. 8.1 Definizione di idraulica. 8.2 Proprietà dell acqua 8 Calcolo idraulico 8.1 Definizione di idraulica è quella parte della meccanica dei mezzi continui che studia le leggi che regolano la statica o il moto dei fluidi. Generalmente si distingue in idrostatica

Dettagli

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t PORTATA DI UN CONDOTTO Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. A vt V A v t Q = = = A v t t 1 MOTO STAZIONARIO Un moto si dice stazionario quando le principali

Dettagli

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria?

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria? Esercizi 1) Il modulo della differenza dei due vettori indicati nella figura vale a) 10 b) 3 d) 2 1 1 2) Siano dati due vettori di modulo pari a 3 e 6. Se l angolo tra di essi è di π/3 rad, il loro prodotto

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi prime - Fisica Poiché la disciplina Fisica è parte dell Asse Scientifico Tecnologico, essa concorre, attraverso lo studio dei

Dettagli

MISURE DI VISCOSITA CON IL METODO DI STOKES

MISURE DI VISCOSITA CON IL METODO DI STOKES MISURE DI VISCOSITA CON IL METODO DI STOKES INTRODUZIONE La viscosità di un fluido rappresenta l attrito dinamico nel fluido. Nel caso di moto in regime laminare, la forza di attrito è direttamente proporzionale

Dettagli

V in A? V in B? V in C?

V in A? V in B? V in C? V in A? V in B? V in C? K + U 0 K + U K + U i i f f 1 e se c è attrito? (forze dissipative) L NC K + U F d att K + U F att d N Riassunto Grandezze vettoriali e scalari Le grandezze del moto Le cause del

Dettagli

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe ombino - Ing. Demetrio Zema Lezione n. 6: Teorema di ernoulli moto in condotta dei liquidi

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

Le forze. La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi.

Le forze. La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi. LE FORZE Le forze La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi. Esistono due tipi di forze: forze di contatto che si manifestano solo quando i corpi vengono a contatto

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO

SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO I Titolo dell esperienza N 2 DETERMINAZIONE DEL VOLUME E DELLA DENSITÀ DI UN CORPO SOLIDO IRREGOLARE Autori Prof.sse Fabbri Fiamma,

Dettagli

Calibrazione di una molla come sensore di forze

Calibrazione di una molla come sensore di forze Calibrazione di una molla come sensore di forze Materiale occorrente: un supporto metallico, una molla, un cestello, bulloni di uguale massa, una bilancia, una riga millimetrata, carta millimetrata. Esecuzione

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Affonda o galleggia?

Affonda o galleggia? ffonda o galleggia? llo stesso livello! Cominciamo con questa osservazione: se mettiamo un liquido in un recipiente formato da più tubi comunicanti vediamo che il liquido si dispone in tutti i tubi allo

Dettagli

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI 14/01/2014 2 Una porzione di materia costituita da una sostanza la cui composizione chimica non varia da un punto all altro si dice costituita

Dettagli

FISICA: Le Forze. Giancarlo Zancanella (2014)

FISICA: Le Forze. Giancarlo Zancanella (2014) FISICA: Le Forze Giancarlo Zancanella (2014) 1 Cos è una forza 2 Il Principio D inerzia Un corpo mantiene inalterato il suo stato di quiete o di moto fino a quando non si gli applica una forza che ne cambia

Dettagli

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot Bilanci macroscopici Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot 7A 7B 7C 7D 7E 7F Esercizio 1 Due recipienti, le cui basi si trovano su uno stesso piano, sono messi in comunicazione

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Solidi, liquidi e gas 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene)

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del SCHEDA PER IL RECUPERO DI FISICA DEL PRIMO PERIODO anno scolastico 2014-15 STATICA DEI FLUIDI Pressione Leggi il libro di testo (vol. 1) al cap. 11, prova a rispondere alle domande della scheda di verifica

Dettagli

LE PROPRIETA DELLA MATERIA

LE PROPRIETA DELLA MATERIA LE PROPRIETA DELLA MATERIA Gli aspetti macroscopico, microscopico e particellare della materia La materia è tutto ciò che possiede una massa e occupa un volume, cioè una porzione di spazio Un campione

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I VERIFICA DELLE LEGGI DEL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Scopo dell esperienza Analisi del moto

Dettagli

Lezione 9 Statica dei fluidi. Densità e pressione. Legge di Stevin. Conseguenze della legge di Stevin.

Lezione 9 Statica dei fluidi. Densità e pressione. Legge di Stevin. Conseguenze della legge di Stevin. Lezione 9 Statica dei fluidi. Densità e pressione. Legge di Stevin. Conseguenze della legge di Stevin. Caratteristiche comuni a liquidi e gas Un fluido è genericamente un liquido o un gas. Caratteristiche

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

CALCOLO DELLA RESISTENZA DI UN PROFILO

CALCOLO DELLA RESISTENZA DI UN PROFILO CACOO DEA RESISTENZA DI UN PROFIO A cura di: Andrea Fogante Davide Gambarara Emanuel Gomez Antonio Grande Ivan Josipovic Anwar Koshakji allievi aerospaziali del anno, corso di Fluidodinamica I 1 Prefazione

Dettagli

Magnete in caduta in un tubo metallico

Magnete in caduta in un tubo metallico Magnete in caduta in un tubo metallico Progetto Lauree Scientifiche 2009 Laboratorio di Fisica Dipartimento di Fisica Università di Genova in collaborazione con il Liceo Leonardo da Vinci Genova - 25 novembre

Dettagli

Equilibrio dei Fluidi

Equilibrio dei Fluidi FISICA Equilibrio dei Fluidi Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica L equilibrio dei Fluidi Studia le leggi che regolano lo stato dei liquidi in quiete Nell idrostatica tutte

Dettagli

Lettura La seconda legge di Newton. Parte prima

Lettura La seconda legge di Newton. Parte prima La seconda legge di Newton. Parte prima Le cose che devi già conoscere per svolgere l attività La natura vettoriale delle forze e delle accelerazioni. Essere in grado di sommare più vettori. Le definizioni

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

Anno Scolastico Classe 1^BS

Anno Scolastico Classe 1^BS Anno Scolastico 2015-16 Classe 1^BS DISCIPLINA FISICA DOCENTE ZENOBI ANTONELLA Libro di testo in adozione: Fisica! Pensare l Universo, autori Caforio-Ferilli, ed. Le Monnier Introduzione alla fisica Introduzione

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

Meccanica dei Fluidi 1

Meccanica dei Fluidi 1 Meccanica dei Fluidi 1 Solidi, liquidi e gas In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido fluido: insieme di molecole sistemate casualmente e legate

Dettagli

4. LE FORZE E LA LORO MISURA

4. LE FORZE E LA LORO MISURA 4. LE FORZE E LA LORO MISURA 4.1 - Le forze e i loro effetti Tante azioni che facciamo o vediamo non sono altro che il risultato di una o più forze. Le forze non si vedono e ci accorgiamo della loro presenza

Dettagli

1. Misura di lunghezze. Dr. Paola Romano - Università del Sannio

1. Misura di lunghezze. Dr. Paola Romano - Università del Sannio 1. Misura di lunghezze Misure di lunghezze:calibro (1) Il calibro a nonio o ventesimale è costituito da un'asta graduata (6) con un'estremità piegata a becco e da un corsoio (3), recante anch'esso un becco.

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli [email protected] Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti Capitolo 5. Primo principio della Termodinamica nei sistemi aperti 5.1. I sistemi aperti I sistemi aperti sono quei sistemi termodinamici nei quali, oltre allo scambio di lavoro e calore è possibile lo

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo FISICA Serie : Dinamica del punto materiale V I liceo Esercizio Legge di Hooke Una molla è sottomessa ad una deformazione. I dati riportati nel grafico qui sotto mostrano l intensità della forza applicata

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

SCHEDA PER IL DOCENTE DESCRIZIONE DELL ITINERARIO DI LABORATORIO

SCHEDA PER IL DOCENTE DESCRIZIONE DELL ITINERARIO DI LABORATORIO SCHEDA PER IL DOCENTE DESCRIZIONE DELL ITINERARIO DI LABORATORIO I Titolo della scheda Un itinerario di Laboratorio: LA DENSITÀ Esperienze di laboratorio per la misura della densità di una sostanza solida

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei

Dettagli

( pi + σ ) nds = 0 (3)

( pi + σ ) nds = 0 (3) OLUZIONE IMULAZIONE EAME 0 DICEMBRE 05 I Parte Domanda (5 punti) Un fluido incomprimibile viene pompato in tubo orizzontale di lunghezza L e diametro D. La differenza di pressione agli estremi del tubo

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

Cenni sulle proprietà elastiche dei solidi

Cenni sulle proprietà elastiche dei solidi Cenni sulle proprietà elastiche dei solidi La nozione di corpo rigido deriva dal fatto che i corpi solidi sono caratterizzati dall avere una forma ed un volume non facilmente modificabili. Nella realtà

Dettagli

Questo è un esempio di relazione di laboratorio

Questo è un esempio di relazione di laboratorio Questo è un esempio di relazione di laboratorio RELATORE: prof. Paolo Gini STUDIO DELLA LEGGE GENERALE DELLA DINAMICA Obiettivi L obiettivo di questo esperimento è la verifica della validità della Legge

Dettagli

Meccanica dei Fluidi - Fluidostatica -

Meccanica dei Fluidi - Fluidostatica - Meccanica dei Fluidi - Fluidostatica - STATI DI AGGREGAZIONE DELLA MATERIA Stato Solido: La sostanza ha volume e forma ben definiti. Stato Liquido: La sostanza ha volume ben definito, ma assume la forma

Dettagli

LA 1 a LEGGE DI VOLTA E GAY LUSSAC O DELLE ISOBARICHE

LA 1 a LEGGE DI VOLTA E GAY LUSSAC O DELLE ISOBARICHE 1 LA 1 a LEGGE DI VOLTA E GAY LUSSAC O DELLE ISOBARICHE L energia si presenta in diverse forme e una delle più importanti è il calore. I fenomeni naturali sono quasi sempre accompagnati da sviluppo o assorbimento

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata.

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. LEGGE DI HOOKE Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. 2. Individuare la costante di rigidità della molla k. 3. Applicare ai

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004 ORSO DI LURE IN SIENZE IOLOGIHE Prova di FISI del 9 novembre 004 1) Una particella di massa m= 0.5 kg viene lanciata dalla base di un piano inclinato O con velocità iniziale v o = 4 m/s, parallela al piano.

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli

ELEMENTI DI STATICA DEI FLUIDI

ELEMENTI DI STATICA DEI FLUIDI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti ELEMENTI DI STATICA DEI FLUIDI 4.1 GENERALITÀ In generale si parla di materia allo stato fluido quando le forze di coesione

Dettagli

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT Lezione 6 Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. Classificazione delle Forze Distinguiamo tra: Forze attive Forze passive Forze attive Le 4 forze fondamentali:

Dettagli

da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri

da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri 7.17. SEDIMENTAZIONE da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri Se si vogliono studiare le proprietà fisiche e chimiche dei componenti subcellulari (membrane, nuclei, mitocondri, ecc.)

Dettagli