Geometria molecolare con distanze Euclidee

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria molecolare con distanze Euclidee"

Transcript

1 Laboratoro Complement d Rcerca Operatva Prof. E. Amald Geometra molecolare con dstanze Eucldee Un mportante problema legato alla conformazone molecolare è quello del Molecular Dstance Geometry Problem (MDGP). Consderando una molecola d N atom, è dato un nseme S d coppe {, } d atom e un nseme D delle relatve dstanze: D = {d {, } S}. S vuole trovare la poszone n R degl N atom n modo che le dstanze n D sano rspettate. S scrva un programma Matlab che rsolva l problema, e s trov la soluzone dell stanza seguente (con N = 4): (, ) (1,) (1,) (1,4) (,) (,4) (,4) d Fgura 1: Confgurazone ottmale per l stanza del problema. Un rfermento bblografco per questo eserczo è: J.M. Yoon, Y. Gad, Z. Wu, Mathematcal modelng of proten structure usng dstance geometry, Techncal report TR-4, DCAM, Rce Unversty, Houston,. che può essere scarcato da: Documento preparato da Leo Lbert 1

2 Laboratoro Complement d Rcerca Operatva Prof. E. Amald Soluzone Indchamo con = ( 1,, ) la poszone dell -esmo atomo per N. Sappamo che devono valere seguent vncol: {, } D ( = d ), (1) dunque possamo ottenere la soluzone cercata mnmzzando la somma de quadrat degl scart d. S consder, tuttava, che l espressone contene una norma Eucldea, che convolge una radce quadrata per evtare questo termne nonlneare convene mnmzzare la somma de quadrat degl scart quadratc d. Il problema può essere modellato con mn f(), dove f() = ( d ). {,} S S not che l MDGP è n realtà un problema d soddsfazone d vncol senza alcuna funzone obettvo; abbamo però rformulato l problema n modo esatto a un problema nonlneare senza vncol. Espando uno qualsas de termn della sommatora ( d ) s ottene l termne t = d d d d d d d d d 4 d, che per semplce spezone non può essere dmostrato convesso. Dobbamo percò assumere che l ntera funzone obettvo sa non convessa, e qund è necessaro utlzzare un approcco d ottmzzazone globale. Tra gl algortm d ottmzzazone globale, uno molto conoscuto e molto semplce da mplementare è l Multstart; s tratta d un algortmo eurstco stocastco, nel senso che non garantsce l ottmaltà globale della soluzone ma esbsce propretà d convergenza stocastca (nel senso che converge all ottmo globale con probabltà 1 n tempo nfnto). Questo caso, tuttava, è partcolare. Nella soluzone ottma del problema tutt vncol (1) sono soddsfatt, e qund l valore della funzone obettvo è zero; possamo qund valutare a ogn terazone dell algortmo d Multstart quanto samo lontan dall ottmo, e Documento preparato da Leo Lbert

3 Laboratoro Complement d Rcerca Operatva Prof. E. Amald decdere d farlo termnare quando c avvcnamo a meno d una costante ε > prefssata. S ottene qund una dmostrazone d ε-ottmaltà per questo algortmo applcato a questo partcolare problema (s not tuttava che questo non mplca che l algortmo converga n tempo fnto, dato che le normal propretà d convergenza stocastca degl algortm Multstart sono ndpent dal valore della funzone obettvo). L algortmo d Multstart è come segue. 1. Sa ε > e un qualsas punto n R N. Sa =.. Se f( ) < ε, l algortmo termna.. S trova un mnmo locale = ( 1,..., N ) a partre dal punto nzale. 4. Se f( ) < f( ) s aggorna. 5. S scegle un nuovo punto nzale R N a caso. 6. S torna al passo. Rmane adesso da mplementare l passo. Utlzzamo a tale scopo l metodo del gradente 1, che s tratta senza dubbo del pù ntutvo metodo d programmazone nonlneare per problem senza vncol (s veda l Rquadro 1 per dettagl su metod classc d programmazone lneare senza vncol). Dato un punto nzale, l algortmo del gradente produce un mnmo locale. L equazone () d aggornamento per la soluzone all terazone successva è γ f(), e qund l algortmo è come segue: (a) Sa ε > e un qualsas punto n R N. (b) Se f() < ε, l algortmo termna con mnmo locale =. (c) Con d = f() s calcola γ come n Eq. (). (d) S aggorna + γd. (e) S torna al passo. Il metodo del gradente non vene quas ma utlzzato n pratca, perché sebbene la dmostrazone d convergenza ndch un ordne d convergenza lneare (s veda l Rquadro ), l comportamento numerco spesso esbsce l fenomeno dello zg-zaggng (s veda l Rquadro 4). Scrvamo n Matlab l mplementazone dell algortmo Multstart. Abbamo bsogno d dvers fle. mdgp.m: calcola l valore della funzone obettvo relatva all stanza data al punto. 1 Conoscuto n Inglese come steepest descent. Documento preparato da Leo Lbert

4 Laboratoro Complement d Rcerca Operatva Prof. E. Amald Rquadro 1. In generale, metod d programmazone nonlneare per problem senza vncol nella forma mn f() sono de metod teratv n cu vene mantenuta una soluzone all terazone corrente, e la soluzone all terazone successva vene defnta come = γd f(), () dove D è una matrce defnta postva. In questo modo, s ha che la retta tra e ha drezone d = D f(). Dato che D è defnta postva, per ogn vettore v s ha v Dv >, e qund ( f()) D f() >, da cu ( f()) d <, e qund d è una drezone d dmnuzone per l valore della funzone obettvo. Il metodo così defnto converge a un ottmo locale. L ordne d convergenza dpe dalla scelta della matrce D. Per esempo, nel metodo d Newton s utlzza D = ( f()) 1. Nel metodo del gradente s scegle semplcemente D = I, la matrce denttà. La scelta del passo (l parametro γ) vene fatta n modo da mnmzzare l valore della funzone obettvo, ovvero γ = mn f( + sd). () s Dato che (soluzone all terazone corrente) e d sono vettor not, l problema () è una mnmzzazone n una dmensone, che d solto può essere effettuata abbastanza velocemente rspetto al resto dell algortmo (o alla peggo, approssmata). Fgura : Metod d ottmzzazone locale nonlneare per problem senza vncol. Rquadro. S consder una successone d numer real f k che convergono a f, e s assuma che f k f per ogn ntero k. L ordne d convergenza della successone è l supremo d tutt gl nter nonnegatv p tal che f k+1 f lm k f k f p = β <. Se p = 1 e β < 1, la successone ha un ordne d convergenza lneare. Se p > 1 o se p = 1 e β =, l ordne d convergenza è superlneare. Se p =, la successone ha convergenza quadratca. Fgura : Defnzone d ordne d convergenza d una successone. % mdgp.m functon ofval = mdgp() ofval = ( ((1)-(4))^ + (()-(5))^ + (()-(6))^)^ +... ( ((1)-(7))^ + (()-(8))^ + (()-(9))^)^ +... ( ((1)-(1))^ + (()-(11))^ + (()-(1))^)^ +... ( ((4)-(7))^ + ((5)-(8))^ + ((6)-(9))^)^ +... ( ((4)-(1))^ + ((5)-(11))^ + ((6)-(1))^)^ +... ( ((7)-(1))^ + ((8)-(11))^ + ((9)-(1))^)^; lnesearch.m: parametrzza la funzone f per mezzo del parametro λ; da utlzzare nella scelta del passo (). In pratca, sapo e una drezone d dscesa d, calcola Documento preparato da Leo Lbert 4

5 Laboratoro Complement d Rcerca Operatva Prof. E. Amald Rquadro. La funzone d Rosenbrock è defnta come f() = 1( 1 ) + (1 1 ), con = ( 1, ) R, e ha un ottmo globale a = (1, 1). L algortmo del gradente applcato alla funzone d Rosenbrock dal punto nzale = (, ) con tolleranza ε =.1 converge a (.99,.99) n appena 6 pass. Con altr punt nzal, tuttava, la convergenza è molto pù lenta. Ad esempo, da = (, ) e lmte sulle terazon confgurato a 5, l algortmo termna alla 5-esma terazone con una tolleranza d errore a.155 (molto pù alta d quella confgurata) e soluzone subottmale (.91,.91). Il problema è dato dal comportamento a zg-zag delle drezon a terazon successve. Nelle fgure sotto vedamo l comportamento del metodo del gradente dal punto nzale (, ) (non converge dopo 1 terazon) e dal punto nzale ( 1, ) (converge dopo 6 terazon)..5 Optmum Optmum Fgura 4: Zg-zaggng: algortmo del gradente e funzone d Rosenbrock. f( + λd) n funzone d λ. % lnesearch.m functon y = lnesearch(lambda, f,, d) Documento preparato da Leo Lbert 5

6 Laboratoro Complement d Rcerca Operatva Prof. E. Amald y = feval(f, + lambda*d); grad.m: calcola l gradente f() della funzone f al punto. % grad.m functon gradf = grad(f, ) h =.1; n = length(); fval = feval(f, ); gradf = zeros(n,1); s = ; for = 1:n s() = s() + h; gradf() = (feval(f, s) - fval) / h; s() = s() - h; % functon steepestdescent.m: trova un mnmo locale (con valore f ) della funzone f a partre da un punto nzale, dat una tolleranza d subottmaltà ε > e un lmte sulle terazon. Rtorna anche l numero delle terazon effettvamente svolte e la tolleranza effettva ( f( ) ). % steepestdescent.m functon [star, fstar, k, tolerance] =... steepestdescent(f,, epslon, materatons) OPTIONS = [ ]; termnaton = ; counter = 1; whle termnaton == d = -grad(f, ); tolerance = norm(d, ); f (tolerance < epslon) (counter > materatons) termnaton = 1; star = ; fstar = feval(f, star); k = counter; else lambda = fmnbnd( lnesearch,, 1, OPTIONS, f,, d); = + lambda*d; counter = counter + 1; % functon rnd.m: genera un vettore unformemente casuale d n component compres tra -bound e bound. Per utlzzare l codce su Octave (anzché Matlab), commentare la rga e decommentare la rga 5. functon rnd = rnd(n, bound) % nstructon when usng Matlab rnd = bound * random( Unform, -ones(n,1), ones(n, 1), n, 1); Documento preparato da Leo Lbert 6

7 Laboratoro Complement d Rcerca Operatva Prof. E. Amald % nstructon when usng Octave % rnd = bound * unform_rnd(-ones(n,1), ones(n,1)); % functon multstart.m: trova un mnmo globale (con valore f ) della funzone f (con valore ottmale ), dat una tolleranza d subottmaltà ε > e un lmte sulle terazon. Rtorna anche l numero delle terazon effettvamente svolte. S not che s lmtano le terazon e la tolleranza della mnmzzazone locale rspettvamente a 4 e.1. % multstart.m functon [star, fstar, k] = multstart(f, n, epslon, materatons) malocaltn = 4; localepslon =.1; bound = 5; = rnd(n, bound); star = ; counter = 1; termnaton = ; whle termnaton == fstar = feval(f, star); f fstar < epslon counter > materatons termnaton = 1; k = counter; else [local, flocal] = steepestdescent(f,, localepslon, malocaltn); f flocal < fstar star = local; fstar = flocal; = rnd(n, bound); counter = counter + 1; % functon Per lancare l programma sull stanza data d 4 atom, con una tolleranza d.1 e un lmte massmo d terazon d 1, s utlzza l comando: [star, fstar, k] = multstart( mdgp, 1,.1, 1) (l secondo parametro ndca l numero d varabl nel problema, che n questo caso è 4 = 1). Qualche espermento numerco mostra lmt della semplctà d questo approcco rsolutvo. Sa l algortmo d soluzone locale sa quello d soluzone globale spesso non convergono per va della tolleranza, bensì per va del numero massmo d terazon. In pratca, non è garantta né l ottmaltà locale né quella globale. Documento preparato da Leo Lbert 7

8 Laboratoro Complement d Rcerca Operatva Prof. E. Amald Esso l algortmo multstart un algortmo stocastco, non s possono replcare rsultat gà ottenut. Tarare parametr della rcerca locale può essere meno utle rspetto a quell della rcerca globale: n un approcco d questo tpo, con una fase d rcerca globale e una fase d rcerca locale, d solto s ottengono mglor rsultat nvesto tempo e rsorse nella fase globale. Se la fase globale è ben strutturata, rcerche anche approssmatve nella fase locale possono portare comunque a una buona approssmazone dell ottmo. L approssmazone mglore, ottenuta su crca 1 tentatv esegut su Octave, è la seguente: = (.4476,.7456,.4, ,.4178,.858, 1.45, 1.158,.8798,.1848, ,.185) con valore della funzone obettvo f =.1, mostrata n Fgura 5. Fgura 5: Soluzone sub-ottmale. Con Matlab sono stat ottenut rsultat numerc mglor; questo comportamento è mputable a una mglore mplementazone della funzone d lbrera fmnbnd usata nella rcerca del passo. Documento preparato da Leo Lbert 8

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007 LABORATORIO DI CALCOLO NUMERICO Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 30 gennao 2007 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere ordnat come

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006 LABORATORIO DI CALCOLO NUMERICO : Gruppo A Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 6 febbrao 2006 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto Unverstà degl Stud d Roma Tor vergata partmento d Ingegnera Cvle Corso d Gestone ed eserczo de sstem d trasporto Docente: Ing. Perlug Coppola Lucd proettat a lezone La progettazone degl orar de servz d

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd)

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd) Specfca, progetto e verfca della correttezza d algortm teratv Il metodo delle asserzon Ragonament su d un algortmo Ragonare sulla specfca d un algortmo data con pre e post-condzon serve a: (a posteror)

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI IL CALCOLO DELLE FREQUENZE VIBRAZIONALI Il calcolo della frequenze rchede l calcolo della matrce delle costant d forza, coè le dervate seconde dell energa, valutate nella geometra d equlbro. Sa la geometra

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor Algortm e Strutture d Dat (3 a Ed.) Rcerca tabù Alan Bertoss, Alberto Montresor La tecnca della rcerca locale passa attraverso una sequenza S 0, S 1,..., S m d soluzon, fno ad arrestars su un ottmo locale

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

SVM learning WM&R a.a. 2015/16

SVM learning WM&R a.a. 2015/16 SVM learnng WM&R a.a. 2015/16 R. BASILI D I PA R T I M E N T O D I I N G E G N E R I A D E L L I M P R E S A U N I V E R S I TÀ D I R O M A T O R V E R G ATA E M A I L : B A S I L I @ I N F O. U N I R

Dettagli

Apprendimento Automatico: Apprendimento Non Supervisionato

Apprendimento Automatico: Apprendimento Non Supervisionato Apprendmento Automatco: Apprendmento Non Supervsonato 1 Supervsone nell Apprendmento (aranco, rotondo, classe= ) (gallo, lungo, classe= ) (gallo, rotondo, classe= ) colore forma (gallo, lungo, classe=

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili SVM learnng WM&R a.a. 2010/11 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e Produzone Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche Element d teora bayesana della decsone Teora bayesana della decsone: caratterstche La teora bayesana della decsone è un approcco statstco fondamentale al problema del pattern recognton. Il suo obettvo

Dettagli

Esame di metodi matematici per le decisioni economiche e aziendali

Esame di metodi matematici per le decisioni economiche e aziendali UNIVERSITÀ DEGLI STUDI ROMA TRE Esame d metod matematc per le decson economche e aendal 9-02-209 Canddato (cognome e nome)......... Matrcola...... ) Data la matrce 200 00 80 200 200 250 400 300 50 50 00

Dettagli

Metodi iterativi per sistemi di equazioni lineari algebriche

Metodi iterativi per sistemi di equazioni lineari algebriche Captolo 17 Metod teratv per sstem d equazon lnear algebrche 171 Generaltà su metod teratv S fornsce la defnzone d convergnza per vettor e matrc Convergenza d vettor Una successone d vettor d n component

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata SVM learnng WM&R a.a. 2013/14 R. Basl (A. Moschtt) Dpartmento d Ingegnera dell Impresa Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2 Corso d STATISTICA Prof. Roberta Sclano Ordnaro d Statstca, Unverstà d Napol Federco II Professore supplente, Unverstà della Baslcata a.a. 0/0 Contenut: o Specfcazone del modello o Ipotes del modello classco

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

PROBLEMI DI ALLOCAZIONE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Trasporti / 1.

PROBLEMI DI ALLOCAZIONE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Trasporti / 1. PROBLEMI DI ALLOCAZIONE Una pccola ntroduzone R. Tade R. Tade PROBLEMI DI ALLOCAZIONE I problem d allocazone rchedono d mnmzzare l costo (o massmzzare l guadagno) dell'attrbuzone d rsorse che non sono

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A.

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A. Unverstà d Catana Facoltà d Ingegnera Corso d Gestone delle Rsorse Idrche Appunt sulla programmazone dnamca A. Cancellere A.A. 007-008 Introduzone La programmazone dnamca (PD) è una tecnca che consente

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Elementi di calcolo numerico

Elementi di calcolo numerico Element d calcolo numerco Molto sesso nel calcolo scentco sorge la necesstà d calcolare l valore numerco d ntegral che non ossono essere calcolat analtcamente oure occorre calcolare l valore del mnmo d

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Analisi Numerica I, a.a Docente: M.Gaviano

Analisi Numerica I, a.a Docente: M.Gaviano Eserctazone n.1 Anals Numerca I, a.a. 2004-2005 Medante MatLab 1) Costrusc le seguent matrc 0.9501 0.8913 0.2311 0.7621 0.6068 0.4565 0.4860 0.0185 0.8214 0.4447 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri Segmentazone tramte modell ad hoc Indvduazone d lnee e curve Obbettvo: Data l mmagne d output d un algortmo d rlevamento d bord, trova tutte le stanze d una certa curva (lnea o ellss) o una sua parte.

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

APPUNTI PER IL CORSO DI CALCOLO NUMERICO

APPUNTI PER IL CORSO DI CALCOLO NUMERICO APPUTI PER IL CORSO DI CALCOLO UERICO PAOLA BRIAZI & ALBERTO SORRETIO DIPARTIETO DI ATEATICA, UIVERSITÀ DI GEOVA 1. etod teratv per la soluzone d sstem lnear Jacob e Gauss-Sedel Oltre a metod drett, come

Dettagli

Dilatazione Termica dei Solidi

Dilatazione Termica dei Solidi Prof. Tortorell Leonardo Spermentazone Tortorell'e-book per la ISICA 6.05 - Dlatazone Termca de Sold 6.05.a) Descrzone Qualtatva del enomeno ra molt effett prodott nella Matera da un Aumento d Temperatura,

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Prima prova di gruppo

Prima prova di gruppo Prma prova d gruppo Es. Una metodologa d anals produce fals postv nel 3% de cas e fals negatv nell % de cas. Calcolate quale è l esto pù probable (postvo o negatvo se due anals consecutve esegute sullo

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x)

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x) Qualtà ell aattamento una funzone y=f() a un nseme msure (y n funzone ) Date N msure coppe valor elle granezze e y, legate alla relazone y=f(;a,b), nell potes che le ncertezze sulle sano trascurabl e y

Dettagli