Esercizio 4.3. Esercizio 4.4

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio 4.3. Esercizio 4.4"

Transcript

1 4 Esercizio 4.3 La rete di Figura 4.1 del testo è un latch realizzato con porte NOR. Sostituendo le porte NOR con porte NAND si ottiene la rete di Figura 4.1. Figura 4.1 Rete dell Esercizio 4.3. Nella Tabella 4.1 si può analizzare il comportamento del dispositivo in funzione degli ingressi. Si evidenzia che, nel caso di ingresso 00, la rete sequenziale ha ambedue le uscite (A e Z) a 1. S R A Z Tabella 4.1 Comportamento del latch in funzione degli ingressi. Esercizio 4.4 Seguendo la tecnica dei pallini, dalla Figura 4.1 del testo, riportata a sinistra in Figura 4.2, si ottiene il latch a destra. Successivamente, si esegue la sostituzione con porte NAND, ottenendo il latch a sinistra di Figura 4.3, la cui realizzazione in logica negativa è mostrata a destra. Rispetto al precedente latch di NOR la differenza che intercorre tra i due è la stessa che esiste tra la logica positiva e negativa; ovvero le reti hanno lo stesso funzionamento a patto di considerare gli 0 come 1 e viceversa. (Si veda anche l Esercizio 4.1)

2 Figura 4.2 Latch di soli NOR di Figura 4.1 del testo e sua trasformazione in rete di NAND. Figura 4.3 Latch di soli NAND in logica positiva, a sinistra, e in logica negativa, a destra. Esercizio 4.5 In Figura 4.4 viene presentato lo schema generale di soluzione del problema. Si tratta di definire la rete combinatoria che nel caso (a) ha come ingressi S, R e y, e la cui uscita T ha l effetto di far commutare il flip flip in modo che appaia come un SR. Questo schema, mutatis mutandis, si usa per qualunque trasformazione tra diversi tipi di flip flop. Figura 4.4 Schematizzazione del problema della creazione di un FFSR sfruttando un FFT. Lo schema è valido anche nel caso generale. Il problema del caso (a) è schematizzato in Figura 4.4. In Tabella 4.2 sono mostrati gli ingressi richiesti per le possibili transizioni dei due tipi di FF. La mappa di y in funzione di S, R e y è mostrata a sinistra in Figura 4.5, applicando il procedimento descritto al paragrafo A.5 del testo, dalla mappa di y si passa alla mappa di T, che assume la forma a destra in Figura 4.5, la cui copertura porta alla seguente espressione per T: T = Sy + Ry 24

3 y y S R T Tabella 4.2 Transizioni di stato e corrispondenti ingressi per i Flip Flop SR e T. La rete corrispondente è riportata in Figura 4.6. Figura 4.5 Mappe Esercizio 4.4a. Figura 4.6 Rete Esercizio 4.4a. Il punto (b) chiede di ricavare un FFSR da un FFD e un FFJK da un FFD. In Tabella 4.3 sono mostrate le 3 tabelle di transizione per i FF usati. Mentre in Figura 4.7 le mappe relative alle transizioni. y y S R J K D Tabella 4.3 Transizioni di stato e corrispondenti ingressi per i FFSR, FFJK e FFD Poichè per un FFD vale l equazione di stato y = D, si tratta semplicemente di imporre D = S +Ry per il caso della trasformazione FFSR FFD e D = Jy + Ky per la trasformazione FFJK FFD. Si trovano così le reti mostrate rispettivamente a sinistra e destra in Figura

4 Figura 4.7 Mappa Esercizio 4.4b (FFSR e FFJK da FFD). Figura 4.8 Reti che realizzano, a sinistra un FFSR a partire da un FFD, mentre a destra un FFJK da un FFD. Per quanto ci si riferisce alla costruzione di un FFD da un FFT, si riportano in Tabella 4.4 le transizioni di stato e in Figura 4.9 le mappe di T corrispondenti. In Figura 4.10 la rete risultante. y y T D Tabella 4.4 Transizioni di stato e corrispondenti ingressi per i FFT e FFD Figura 4.9 Mappa Esercizio 4.4c (FFD da FFT). T = y D. Esercizio 4.6 Il valore F0h corrisponde a b. Qualunque sia il tipo di FF utilizzato per realizzare il registro, si tratta di legare PR e CL a massa o a Vcc in modo da portare i singoli FF al valore richiesto all atto della messa sotto tensione (Figura 4.11). La rete a destra di Figura 4.11 genera il segnale Clear/Set quando viene asserito R. Si noti la presenza di un inverter Schmitt triggered, per generare un onda il più possibile quadra. 26

5 Figura 4.10 Rete che realizza un FFD da un FFT. Figura 4.11 A sinistra i collegamenti necessari per il caricamento in presenza di un segnale di Clear/Set; a destra la rete che genera il segnale Clear/Set. Esercizio 4.7 La rete che deve essere progettata, ha un unico ingresso (x) e una sola uscita (z) che al 5 clock presenta la parità, mentre sui precedenti presenta x. In Figura 4.12 è mostrato lo schema in questione. Figura 4.12 Schema per l Esercizio 4.7. In Figura 4.13 c è il diagramma di transizione degli stati. La notazione usata per etichettare gli archi è quella relativa al modello di Mealy. La colonna a sinistra (senza apici) individua un numero pari di 1, quella a destra un numero dispari. Supponendo di seguire lo schema a parità pari, sul 5 clock si ha z=0 se si è nello stato 4, altrimenti z=1 se si è nello stato 4, (indipendentemente da x). Si può ora ricavare la tabella di flusso e delle transizioni di stato (Tabella 4.5). Codificando gli stati come sotto si ottengono le mappe in Figura :0000 1: :1001 2: :1010 3: :1011 4: :

6 Figura 4.13 Diagramma degli stati per l Esercizio 4.7. SP x z 0 1,0 1,1 1 2,0 2,1 2 3,0 3,1 3 4,0 4,1 4 0,0 0,0 1 2,0 2,1 2 3,0 3,1 3 4,0 4,1 4 0,1 0,1 Tabella 4.5 Tabella di flusso corrispondente al diagramma di stato di Figura 4.13 Si noti che questa non è la codifica più conveniente in termini di minimizzazione della rete, ma è quella più naturale (rende comprensibile lo stato). Dalle mappe si ricavano le seguenti funzioni di stato e uscita, dalle quali può essere dedotto lo schema della rete. y 0 = y 1(y 0 x) y 1 = y 2(y 3 + y 0 ) y 2 = y 0y 3 + y 0 y 1 y 2 y 3 = y 3(y 0 y 2 + y 0 y 2 ) + y 0 y 1 y 2 y 3 z = y 0 y 1 y 2 y 3 x + x(y 0 + y 1 ). Soluzione alternativa Possiamo scomporre il problema in modo da avere Un contatore che fornisce il segnale c sul 5 clock Una rete che calcola p (parità) Una rete che presenta su z il segnale x sui clock da 0 a 3, e p clock 4. Ne deriva lo schema di Figura Il generatore di parità di Figura 4.15 ha il diagramma di stato di Figura Il diagramma rappresenta una macchina di Mealy. In ingresso c è la coppia x, c. L ingresso c è dato dall uscita di un 28

7 Figura 4.14 Mappe che rappresentano la Tabella 4.5 secondo la codifica indicata.esercizio 4.6. Figura 4.15 Schema riassuntivo della soluzione alternativa all Esercizio 4.6. semplice contatore modulo 5. Dalla copertura della mappa si ricava: p = yx + yc + yxc Figura 4.16 A sinistra è mostrato il diagramma di stato del generatore di parità dell Esercizio 4.6, sugli archi viene riportato xc/p. A destra la mappa relativa. La rete che realizza il generatore di parità è in Figura

8 Figura 4.17 Generatore di parità dell Esercizio 4.7 risultante dalla soluzione alternativa. Esercizio 4.8 La sequenza riconosciuta è Z 1 =1 solo dopo il fronte di clock che ha fatto caricare nel registro questa configurazione (il quinto fronte). Con riferimento alla notazione di Figura 4.18, se i FF commutano sul fronte di salita (a sinistra in Figura), Z è 1 durante il 1 del clock che ha caricato mentre se i flip flop commutano sul fronte di discesa (a destra in Figura), Z è 1 durante 2 del medesimo clock. Figura 4.18 Tempi di commutazione per i FF dell Esercizio 4.8. Esercizio 4.9 Il diagramma della macchina che riconosce la sequenza è rappresentato in Figura Essendo 5 gli stati da codificare, ci servono 3 bit. Ad esempio si può utilizzare la seguente codifica: A 000 B 001 C 011 D 010 E 100 dalla quale deriva la Tabella delle transizioni 4.6. Notare che la rete riconosce le finestre, ma in modo non sovrapposto. A titolo di esempio si mostra l uscita in riferimento a un flusso di dati in ingresso: x z Le corrispondenti mappe sono mostrate nella Figura 4.20, la cui copertura porta alle funzioni a destra nella stessa Figura. La rete è realizzata in Figura Per analizzare quale delle due soluzioni sia la migliore in termini di porte e FF basta semplicemente contare. La Figura 4.60 del testo risolve il problema con uno shift register, che sarà composto da 5 FF, 2 30

9 Figura 4.19 Diagramma di stato del riconoscitore della sequenza 10011, riconosciuta in ordine da sinistra a destra. Esercizio 4.9. y 1 y 2 y 3 x y 1 y 2 y 3 z Tabella 4.6 Tabella delle transizioni del riconoscitore della sequenza 10011, Esercizio 4.8. y 1 = y 2y 3 x y 2 = y 3x + y 1 x y 3 = y 3x + y 1 x z = y 1 x Figura 4.20 Mappe e funzioni relative alla Tabella di transizione 4.6 dell Esercizio 4.9. porte NOT e 2 porte AND. La soluzione presentata in Figura 4.21 utilizza 1 porta NOT, 5 porte AND, 2 porte OR e 3 FF. Dire quale delle due soluzioni sia la migliore è difficile. Un analisi di questo tipo ha però poco senso, in quanto va visto come i componenti vengano resi disponibili sul mercato. Si hanno allora delle sorprese. Per costruire lo shift register a 5 bit di Figura 4.60 occorre utilizzare il componente SN74198, un 8 bit Universale Bidirezionale Shift Register, a 28 piedini mentre per le altre 4 porte si può utilizzare, facendo qualche trasformazione, il componente SN7400, costituito da 4 porte NAND a 2 ingressi, con un totale di 14 piedini. Con 2 componenti si risolve il circuito. Per la rete in Figura 4.21 servono 2 componenti SN7474, ognuno dei quali è composto da 2 FFD Positive Edge Triggered a 14 piedini, e per le porte, basta utilizzare 2 integrati SN7400, specificati sopra (ciò presuppone però una strutturazione della rete in forma di soli NAND). Nel primo caso si è quindi utilizzato 2 componenti integrati con un totale di 42 piedini di collegamento, mentre nel secondo caso sono serviti 4 integrati per un totale di 56 piedini collegati. Specifiche 31

10 Figura 4.21 Rete logica che riconosce la sequenza Esercizio 4.9. sugli integrati, specificatamente sulla serie SN74xx si trovano su: Esercizio 4.10 La rete di Figura 4.48 è un contatore modulo 3 realizzato con FFJK. Tenuto conto del funzionamento del FFJK (Tabella 4.7), il comportamento della rete, a partire dallo stato 00 è quello di Tabella 4.8. J K y 0 0 y y Tabella 4.7 Modalità di funzionamento del flip flop JK. Clock n y 0 y 1 y 0 y Tabella 4.8 Funzionamento del contatore di Figura Con y 0 e y 1 si indicano rispettivamente l uscita del FF di sinistra e di destra di Figura Esercizio 4.11 Utilizzando per gli stati A,B,C la seguente codifica: A 00, B 01 e C 10, si ottiene la tabella delle transizioni mostrata in Figura Alla tabella delle transizioni corrispondono le mappe a destra di Figura 4.23 dalle quali si ricavano le funzioni a sinistra della stessa Figura. Infine la realizzazione della rete è mostrata in Figura

11 Figura 4.22 Tabella delle transizioni Esercizio y 0 = y 0x + y 1 x y 1 = y 0 y 1 x z = y 0 Figura 4.23 Mappe e funzioni della Tabella 4.22 dell Esercizio Figura 4.24 Rete logica dell Esercizio Esercizio 4.12 Cominciamo con la realizzazione tramite FFJK. Per semplicità consideriamo il caso n = 2. Si tratta di collegare i flip flop in modo tale che ciascun FF divida la frequenza del clock per 2 e di usare lo stato del FF come clock per il successivo. Con FFJK ciò si ottiene come in Figura Ovviamente se n > 2 si tratta di aggiungere il corrispondente numero di FF. Nel caso di flip flop D, la divisione di frequenza del primo FF (y 0 ) comporta che esso deve cambiare stato ad ogni clock, ciò impone che l ingresso sia il complemento dello stato. Dunque: D 0 = y 0 da cui deriva la rete di sinistra in Figura Per quanto riguarda il secondo FF, esso si comporterà come il precedente, ma userà come clock il segnale y 0. Ne deriva la rete a destra di Figura

12 Figura 4.25 Realizzazione del contatore dell Esercizio 4.11 con FFJK. L uscita y 0 è un segnale periodico con frequenza pari a metà di quella del clock. Il segnale y 1 ha frequenza pari a metà di quella di y 0. Figura 4.26 A sinistra la divisione di frequenza in un FFD; a destra la realizzazione del contatore dell Esercizio 4.11 con FFD. L uscita y 0 è un segnale periodico con frequenza pari a metà di quella del clock. Il segnale y 1 ha frequenza pari a metà di quella di y 0. Esercizio 4.13 Per progettare un contatore sincrono modulo N 2 n conviene partire direttamente dalla tabella di flusso, si tratta di una tabella degenere, in quanto è priva di ingressi. In Figura 4.27 vengono riportati la tabella di flusso di un generico contatore sincrono modulo N, quella di un contatore modulo 5 e la tabella delle transizioni di stato corrispondenti a quest ultima (avendo codificato gli stati in modo naturale). Sp Sf N-2 N-1 N-1 0 Sp Sf y 1 y 0 y 1 y Figura 4.27 Tabella di flusso di un contatore modulo N (a sinistra), tabella di flusso di un contatore modulo 5 (al centro) e transizione degli statio per quest ultimo (a destra). Dalla copertura delle mappe a sinistra in Figura 4.28, ricaviamo le funzioni a destra nella stessa Figura. Mentre in Figura 4.29 è mostrata la rete che realizza il contatore. 34

13 y 0 = y 1y 2 y 1 = y 2y 1 + y 1 y 2 y 2 = y 0 y 2 Figura 4.28 Mappe e funzioni che realizzano il contatore modulo 5 dell Esercizio Figura 4.29 Rete che realizza il contatore modulo 5 dell Esercizio Esercizio 4.14 Il flip flop T cambia stato quando l ingresso T è a 1. Dunque, essendo tutti gli ingressi dei flip flop permanentemente a 1 essi sono soggetti a cambiare stato ad ogni clock. Il primo FF commuta in tutti i clock, il secondo essendo collegato all uscita del primo commuta con frequenza dimezzata, il terzo con frequenza ulteriormente dimezzata. Si veda la Tabella 4.9. Si deduce che quello di Figura 4.49 è un contatore asincrono modulo 8. Esercizio 4.15 In Figura 4.30 viene riportato il diagramma di stato in cui gli stati sono già codificati. Ad esso corrisponde la Tabella 4.10 e le mappe di Figura 4.31, dalle quali si ricavano le funzioni a destra nella stessa Figura. Se si impiegano dei FFD queste espressioni corrispondono agli ingressi dei FF. Si ottiene allora la rete in Figura

14 Clock n y 3 y 2 y 1 y 3 y 2 y Tabella 4.9 Funzionamento della rete di Figura In neretto le variabili di stato corrispondenti ai FF che ricevono il clock. Figura 4.30 Diagramma di stato per l Esercizio Sui rami sono riportati i valori dell ingresso. Si noti che il passaggio tra le due modalità di conteggio avveniene solo in corrispondenza dello stato 100. y 0 y 1 y 2 x Tabella 4.10 Tabella transizione stati Esercizio Esercizio 4.16 Si faccia riferimento a un contatore sincrono realizzato con FFJK. Indicando con y 1... y n le uscite dei FF, il generico F F i esimo deve avere un ingresso pari a (y 1 y 2... y i 1 ) y i se conta in salita e pari a (y i+1 y i+2... y n ) y i se conta in discesa. La Figura 4.33 illustra la struttura dell i-esimo dispositivo. 36

15 y 0 = y 1y 2 + y 0 y 2 + y 0 y 1 x, y 1 = y 0 y 1 y 2 + y 2 y 1 y 2 = y 0 y 2 + y 1 y 2 y. Figura 4.31 Mappe dell Esercizio 4.15, dalla cui copertura si ricavano le funzioni a destra. Figura 4.32 Rete logica Esercizio Esercizio 4.18 Per risolvere l Esercizio si possono usare due contatori a caricamento parallelo. Per il numero A possiamo usare un up-counter e per B possiamo utilizzare un down-counter. Si caricano entrambi i numeri nei contatori e si inizia il conteggio. Quando si attiva il CO di B, in A avremo la somma dei due numeri. CO è il segnale che un contatore attiva quando raggiunge il valore massimo, se è un up-countero minimo se è un down-counter, serve a capire se siamo arrivati a fine conteggio. Avendo fatto proseguire il conteggio di A per B volte abbiamo eseguito la somma dei due numeri. L unica attenzione è riguardo all overflow, cioè A+B deve sempre essere inferiore al massimo valore conteggiabile dal contatore A, altrimenti si avrebbe un reset dello stesso e un mal funzionamento della rete. Il collegamento dei due contatori è in Figura Esercizio 4.19 A parte il clock, l unico segnale di comando è X. Esso deve servire a comandare il caricamento di RA e RB e ad avviare il conteggio, a cui sarà legati il trasferimento del risultato il RC al momento dovuto. 37

16 Figura 4.33 FF i esimo dell Esercizio Il segnale UD imposta la modalità di funzionamento. Con UD=1 conta in avanti mentre con UD=0 il dispositivo conta all indietro. Figura 4.34 Sommatore A+B. Esercizio Si noti che il passaggio a 1 di x fa operare i due contatori. Il passaggio a 1 di CO ferma l incremento del contatore di sinistra. I valori di A e B devono essere precaricati nei due contatori prima del passaggio a 1 di x (non mostrato in figura). Per quanto si riferisce al caricamento di RA e RB la specifica sottintende che esso deve essere fatto in parallelo. Si deve quindi immaginare l esistenza di due percorsi che portano in RA e RB i dati da caricare. Supporremo di effettuare il caricamento dei registri secondo la tecnica (sincrona) rappresentata dalle Figure 4.29 e 4.37 del testo. Facciamo l ipotesi che il comando di caricamento prevalga sullo scorrimento in modo che il clock che trova il segnale di caricamento a 1 faccia solo caricare. In conclusione si tratta di generare due opportuni segnali temporali noti, RAeB in e RC in. Il segnale RAeB in può essere anche usato per azzerare lo stato del flip flop che memorizza il riporto. RAeB in deve essere asserito solo sul clock su cui si caricano i registri (clock 0). Poichè non è specificata la durata di X, occorre generare RAeB in da X. Supponendo che i registri RA e RB operino sul fronte di discesa del clock, conviene che RAeB in duri esattamente un periodo di clock, ma tra i fronti di salita. Dunque RAeB in deve avere la temporizzazione di Figura Il segnale viene portato a 1 sul fronte di salita del clock che trova X a 1 e riportato a 0 sul fronte di salita seguente. In tal modo RA e RB vengono caricati sul fronte di discesa intermedio del clock 0. I successivi 5 impulsi di clock determinano il caricamento in RA dei bit di somma (calcolati via via). 38

17 Figura 4.35 Temporizzazione dei segnali RAeB in e RC rispetto al clock ed al segnale X. Esercizio La somma viene perciò a trovarsi in RA dal fronte intermedio del clock 5. Se anche RC opera sul fronte di discesa il trasferimento del risultato in questo registro può essere effettuato sul clock successivo (clock 6), avendo asserito RC in. In conclusione si deve progettare la rete (di Moore, operante sui fronti di salita) che genera i segnali temporizzati RAeB in e RC in, come in Figura La schematizzazione della rete è riportata in alto in Figura Figura 4.36 In alto: schema della rete per la generazione dei segnali RAeB in e RC in a partire dal segnale X e dal clock. In basso: il diagramma di stato della rete. Le uscite sono ordinatamente, RAeB in e RC in. Si tratta di un problema analogo a quello della generazione del segnale di WAIT del Paragrafo del testo. Il diagramma di stato è quello in basso in Figura Un eventuale ritorno a 1 di X prima 39

18 della conclusione dell operazione è ininfluente. Si noti che, diversamente, da quanto indicato nel testo, il trasferimento in RC avviene sul (fronte di discesa del) clock 6. In Figura 4.37 è riportato lo schema finale della soluzione. Figura 4.37 Schema finale della interconnessione tra la rete di generazione dei segnali RAeB in e RC in e lo schema di somma dell esercizio. Si noti che il segnale RAeB in viene usato anche per azzerare lo stato del flip-flop usato per tenere traccia del riporto. Esercizio 4.20 Per eseguire il trasferimento al 7 clock, basta aggiungere uno stato al diagramma di Figura

Esercizio 4.3. Esercizio 4.4

Esercizio 4.3. Esercizio 4.4 4 Esercizio 4.3 La rete di Figura 4.1 del testo è un latch realizzato con porte NOR. Sostituendo le porte NOR con porte NAND si ottiene la rete di Figura 4.1. Figura 4.1 Rete dell Esercizio 4.3. Nella

Dettagli

Le reti sequenziali sincrone memorizzano il proprio stato in dei FF-D

Le reti sequenziali sincrone memorizzano il proprio stato in dei FF-D Reti Sincrone Le reti sequenziali sincrone memorizzano il proprio stato in dei FF-D Le variabili di stato future sono quelle all ingresso dei FF-D mentre le variabili di stato presente sono le uscite dei

Dettagli

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata Corso di Laurea in Ingegneria Elettronica Mappe di Karnaugh Reti Logiche Latch e Flip-Flop Reti Sequenziali Tutorato di Calcolatori

Dettagli

RETI LOGICHE T Ingegneria Informatica. Esercitazione 3 Reti Sequenziali Sincrone

RETI LOGICHE T Ingegneria Informatica. Esercitazione 3 Reti Sequenziali Sincrone RETI LOGICHE T Ingegneria Informatica Esercitazione 3 Reti Sequenziali Sincrone Marco Lippi (marco.lippi3@unibo.it) [Lucidi realizzati da Samuele Salti] Esercizio Sintesi RSS Si vuole progettare una rete

Dettagli

Reti Logiche T. Esercizi reti sequenziali sincrone

Reti Logiche T. Esercizi reti sequenziali sincrone Reti Logiche T Esercizi reti sequenziali sincrone ESERCIZIO N. Si esegua la sintesi di una rete sequenziale sincrona caratterizzata da un unico segnale di ingresso (X) e da un unico segnale di uscita (Z),

Dettagli

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA.

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA. a Esercizio 1. Sintetizzare un circuito sequenziale sincrono in base alle specifiche temporali riportate nel seguito. Il circuito riceve in input solo il segnale di temporizzazione (CK) e produce tre uscite,

Dettagli

Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà:

Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà: I circuiti elettronici capaci di memorizzare un singolo bit sono essenzialmente di due tipi: LATCH FLIP-FLOP. Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà:

Dettagli

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND.

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND. 1 Elementi di memoria: flip-flop e registri Porte logiche elementari CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Livello fisico

Dettagli

Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso

Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso ontatori binari Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso L impulso di ingresso o impulso di conteggio può coincidere

Dettagli

Flip-flop e loro applicazioni

Flip-flop e loro applicazioni Flip-flop e loro applicazioni Reti sequenziali elementari (6) L'elemento bistabile Latch o flip-flop trasparenti Temporizzazione dei flip-flop trasparenti Architettura master-slave Flip-flop non trasparenti

Dettagli

Elettronica Sistemi Digitali 09. Flip-Flop

Elettronica Sistemi Digitali 09. Flip-Flop Elettronica Sistemi igitali 09. Flip-Flop Roberto Roncella Flip-flop e loro applicazioni Reti sequenziali elementari (6) L'elemento bistabile Latch o flip-flop trasparenti Temporizzazione dei flip-flop

Dettagli

Esercizi Risolti RETI LOGICHE T (Modulo 2)

Esercizi Risolti RETI LOGICHE T (Modulo 2) Esercizio 1 Utilizzando l approccio visto nella realizzazione dell adder binario interno alla ALU si esegua il procedimento di sintesi del componente ADDER_5 4 che sommi operandi in base 4 (es 3+3=12;

Dettagli

Progetto di Contatori sincroni. Mariagiovanna Sami Corso di reti Logiche 8 Anno

Progetto di Contatori sincroni. Mariagiovanna Sami Corso di reti Logiche 8 Anno Progetto di Contatori sincroni Mariagiovanna Sami Corso di reti Logiche 8 Anno 08 Introduzione Per le reti sequenziali esistono metodologie di progettazione generali, che partendo da una specifica a parole

Dettagli

Circuiti sequenziali

Circuiti sequenziali Circuiti sequenziali - I circuiti sequenziali sono caratterizzati dal fatto che, in un dato istante tn+1 le uscite dipendono dai livelli logici di ingresso nell'istante tn+1 ma anche dagli stati assunti

Dettagli

Introduzione. Progetto di Contatori sincroni. Contatori definizioni caratteristiche. Contatori

Introduzione. Progetto di Contatori sincroni. Contatori definizioni caratteristiche. Contatori Progetto di Contatori sincroni Definizioni caratteristiche Contatori Binari Naturali Contatori a codice e modulo liberi ad anello e ad anello incrociato iato Contatori modulo diverso da 2 n 12/12/03 Introduzione

Dettagli

Esercizi sulle Reti Sequenziali Sincronizzate

Esercizi sulle Reti Sequenziali Sincronizzate Esercizi sulle Reti Sequenziali Sincronizzate Corso di Laurea di Ing. Gestionale e di Ing. delle Telecomunicazioni A.A. 27-28 1. Disegnare il grafo di stato di una RSS di Moore avente tre ingressi A, B,

Dettagli

LSS Reti Logiche: circuiti sequenziali

LSS Reti Logiche: circuiti sequenziali LSS 2016-17 Reti Logiche: circuiti sequenziali Piero Vicini A.A. 2017-2018 Circuiti combinatori vs sequenziali L output di un circuito combinatorio e solo funzione del valore combinatorio degli ingressi

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Esercitazione 2 I Flip Flop 1. ual è la differenza tra un latch asincrono e un Flip Flop? a. Il latch è abilitato da un segnale di clock b. Il latch ha gli ingressi asincroni perché questi ultimi controllano

Dettagli

I CONTATORI. Definizioni

I CONTATORI. Definizioni I CONTATORI Definizioni. I contatori sono dispositivi costituiti da uno o più flip-flop collegati fra loro in modo da effettuare il conteggio di impulsi applicati in ingresso. In pratica, i flip-flop,

Dettagli

Circuiti sequenziali. Circuiti sequenziali e applicazioni

Circuiti sequenziali. Circuiti sequenziali e applicazioni Circuiti sequenziali Circuiti sequenziali e applicazioni Circuiti sequenziali Prima di poter parlare delle memorie è utile dare un accenno ai circuiti sequenziali. Per circuiti sequenziali intendiamo tutti

Dettagli

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per:

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: INTRODUZIONE AI CONTATORI Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: o Conteggio di eventi o Divisione di frequenza o Temporizzazioni Principi

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali Reti Logiche Prof. B. Buttarazzi A.A. 29/2 Reti Sequenziali Sommario Analisi di Reti Sequenziali Sintesi di Reti Sequenziali Esercizi 3/6/2 Corso di Reti Logiche 29/ 2 Analisi di Reti Sequenziali Passare

Dettagli

Soluzioni. Prego di inviare le segnalazioni a questo indirizzo: Giacomo Bucci

Soluzioni. Prego di inviare le segnalazioni a questo indirizzo: Giacomo Bucci Soluzioni Questo documento contiene le soluzioni alla quasi totalità degli esercizi proposti nel libro Architettura e organizzazione dei calcolatori elettronici - Fondamenti, Mc-Graw Hill 2004. Le soluzioni

Dettagli

Livello logico digitale

Livello logico digitale Livello logico digitale circuiti combinatori di base e circuiti sequenziali Half Adder - Semisommatore Ingresso 2 bit, uscita 2 bit A+ B= ------ C S C=AB S=AB + AB=A B A B In Out HA A B C S S HA A C S

Dettagli

Reti Logiche T. Esercizi reti sequenziali asincrone

Reti Logiche T. Esercizi reti sequenziali asincrone Reti Logiche T Esercizi reti sequenziali asincrone ESERCIZIO N. 1 Una rete sequenziale asincrona è caratterizzata da due segnali d ingresso A e C e da un segnale di uscita Z. I segnali d ingresso non possono

Dettagli

SCHEDA N D05_02A Data: 28/01/2005. ESERCIZIO N 2 7 punti. ESERCIZIO N 3 6 punti. ESERCIZIO N 4 7 punti. ESERCIZIO N 1 8 punti.

SCHEDA N D05_02A Data: 28/01/2005. ESERCIZIO N 2 7 punti. ESERCIZIO N 3 6 punti. ESERCIZIO N 4 7 punti. ESERCIZIO N 1 8 punti. SCHEDA N D05_02A Data: 2/01/2005 Nome Valutazione: ESERCIZIO N 2 7 punti Determinare la caratteristica di trasferimento a vuoto della seguente porta. Si assuma V CC 5 V. Determinare la corrente di uscita

Dettagli

NOME e COGNOME (stampatello): Compito A. Esercizio 1 (8 punti) Minimizzare l automa in tabella e disegnare l automa minimo.

NOME e COGNOME (stampatello): Compito A. Esercizio 1 (8 punti) Minimizzare l automa in tabella e disegnare l automa minimo. NOME e COGNOME (stampatello): Compito A Esercizio 1 (8 punti) Minimizzare l automa in tabella e disegnare l automa minimo. 0 1 S1 S7/01 S2/11 S2 S2/10 S3/11 S3 S0 S2/01 S4 S0 S5/01 S5 S6/10 S4/11 S6 S5/10

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici RETI SEQUENZIALI : ESERCIZI Massimiliano Giacomin 1 Implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente il suo stato secondo una regola

Dettagli

Prefazione del Prof. Filippo Sorbello... VII. Prefazione del Prof. Mauro Olivieri... Prefazione degli autori...

Prefazione del Prof. Filippo Sorbello... VII. Prefazione del Prof. Mauro Olivieri... Prefazione degli autori... Indice Prefazione del Prof. Filippo Sorbello........................... VII Prefazione del Prof. Mauro Olivieri............................ Prefazione degli autori.........................................

Dettagli

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie apitolo 6 Reti asincrone Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie Reti sequenziali asincrone (comportamento) Elaborazione asincrona - Ogni nuovo ingresso determina: una

Dettagli

PROGETTO E VERIFICA DI UNA RETE LOGICA SEQUENZIALE ASINCRONA CON PORTE LOGICHE. REALIZZAZIONE DELLA STESSA CON LATCH SR E D, ECON FLIP-FLOP JK.

PROGETTO E VERIFICA DI UNA RETE LOGICA SEQUENZIALE ASINCRONA CON PORTE LOGICHE. REALIZZAZIONE DELLA STESSA CON LATCH SR E D, ECON FLIP-FLOP JK. PROGETTO E VERIICA DI UNA RETE LOGICA SEQUENZIALE ASINCRONA CON PORTE LOGICHE. REALIZZAZIONE DELLA STESSA CON LATCH SR E D, ECON LIP-LOP JK. Definizione della funzione logica Ci proponiamo la realizzazione

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6. Prof. Rosario Cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6. Prof. Rosario Cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it http://digilander.libero.it/rosario.cerbone a.a. 2008-2009 Circuiti Sequenziali In questa

Dettagli

Appello di Progettazione di Sistemi Digitali 16 Settembre Docenti: Proff. Gorla e Massini

Appello di Progettazione di Sistemi Digitali 16 Settembre Docenti: Proff. Gorla e Massini Appello di Progettazione di Sistemi Digitali 16 Settembre 2013 - Docenti: Proff. Gorla e Massini Esercizio 1 (3 punti): Convertire in base 4 con rappresentazione in virgola fissa il numero decimale 214,1362

Dettagli

Q1 D. CK Qn CK Q1. E3x - Presentazione della lezione E3

Q1 D. CK Qn CK Q1. E3x - Presentazione della lezione E3 E3x - Presentazione della lezione E3 1/1- Obiettivi» ivisori di frequenza e contatori asincroni» Contatori sincroni» Shift register e convertitori SIPO e PISO» Concetto elementare di macchina a stati finiti

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

I Indice. Prefazione. Capitolo 1 Introduzione 1

I Indice. Prefazione. Capitolo 1 Introduzione 1 I Indice Prefazione xi Capitolo 1 Introduzione 1 Capitolo 2 Algebra di Boole e di commutazione 7 2.1 Algebra di Boole.......................... 7 2.1.1 Proprietà dell algebra.................... 9 2.2

Dettagli

COMPITO A. Esercizio 1 (17 punti)

COMPITO A. Esercizio 1 (17 punti) Esercizio (7 punti) COMPITO A Si hanno a disposizione due registri sorgente S e S da 6 bit che contengono reali memorizzati in rappresentazione a virgola mobile normalizzata : il primo bit (b ) rappresenta

Dettagli

Esame di Architettura degli Elaboratori I Canali E-O e P-Z 10 Settembre 2002

Esame di Architettura degli Elaboratori I Canali E-O e P-Z 10 Settembre 2002 Esame di Architettura degli Elaboratori I Canali E-O e P-Z 10 Settembre 2002 Compito A Esercizio 1 (15 punti) Nella rete logica mostrata in figura la porta 3 è difettosa e produce il valore logico 1 all

Dettagli

I REGISTRI. Reti autonome e contatori

I REGISTRI. Reti autonome e contatori I REGISTRI Il flip-flop Fc carica il valore di F a ogni impulso c. Si può allora dotare la rete di un nuovo ingresso A, che "abilita" (A=1) il caricamento di F, o blocca (A=0) il flip-flop sul suo stato

Dettagli

ESAME DI ARCHITETTURA I COMPITO A

ESAME DI ARCHITETTURA I COMPITO A ESAME DI ARCHITETTURA I COMPITO A Esercizio (6 punti) Si consideri l automa di Mealy specificato dalla seguente tabella: S S/ S S S2/ S3/ S2 S2/ S3/ S3 S/ S/ S4 S/ S S5 S2/ S3/ ) Disegnare l automa. 2)

Dettagli

COMPITO A Esercizio 1 (13 punti) Dato il seguente automa:

COMPITO A Esercizio 1 (13 punti) Dato il seguente automa: COMPITO A Esercizio 1 (13 punti) Dato il seguente automa: 1/0 q8 1/0 q3 q1 1/0 q4 1/0 q7 1/1 q2 1/1 q6 1/1 1/1 q5 - minimizzare l automa usando la tabella triangolare - disegnare l automa minimo - progettare

Dettagli

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita LOGICA SEQUENZIALE Logica combinatoria Un blocco di logica puramente combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono funzione (booleana) degli ingressi in un certo

Dettagli

(competenze digitali) CIRCUITI SEQUENZIALI

(competenze digitali) CIRCUITI SEQUENZIALI LICEO Scientifico LICEO Scientifico Tecnologico LICEO delle Scienze Umane ITIS (Meccanica, Meccatronica e Energia- Elettronica ed Elettrotecnica Informatica e Telecomunicazioni) ITIS Serale (Meccanica,

Dettagli

Prova d esame di Reti Logiche T 09 Gennaio 2015 COGNOME:.. NOME:.. MATRICOLA:

Prova d esame di Reti Logiche T 09 Gennaio 2015 COGNOME:.. NOME:.. MATRICOLA: Prova d esame di Reti Logiche T 09 Gennaio 2015 COGNOME:.. NOME:.. MATRICOLA: Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,..) eccetto la calcolatrice,

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

LATCH E FLIP-FLOP PREMESSA

LATCH E FLIP-FLOP PREMESSA LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi

Dettagli

Macchine sequenziali

Macchine sequenziali Macchine sequenziali Dal circuito combinatorio al sequenziale (effetto di una retroazione) x z x j Y i, Rete Comb. Y i-, z h Y i,k M Y i-,k abilitazione a memorizzare M memorizza lo stato La nozione di

Dettagli

Corso di Calcolatori Elettronici I Flip-flop

Corso di Calcolatori Elettronici I Flip-flop Corso di Calcolatori Elettronici I Flip-flop Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso di Laurea in Ingegneria Informatica

Dettagli

Tutorato di Calcolatori Elettronici. Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica

Tutorato di Calcolatori Elettronici. Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica Tutorato di Ing. Roberto Casula Ing. Rita Delussu casula.roberto103@hotmail.it rita.delussu2016@gmail.com Corso di laurea in Ingegneria Biomedica Elettrica, Elettronica e Informatica Progettare un riconoscitore

Dettagli

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno Gli elementi di memoria: i bistabili I registri Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08 08 Circuiti sequenziali Nei circuiti sequenziali il valore delle uscite in un dato istante dipende

Dettagli

Domande di Reti Logiche compito del 10/01/2017

Domande di Reti Logiche compito del 10/01/2017 Barrare una sola risposta per ogni domanda Il punteggio finale è -1 (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve Una sintesi

Dettagli

AXO Architettura dei Calcolatori e Sistemi Operativi. reti sequenziali

AXO Architettura dei Calcolatori e Sistemi Operativi. reti sequenziali AXO Architettura dei Calcolatori e Sistemi Operativi reti sequenziali Sommario Circuiti sequenziali e elementi di memoria Bistabile SR asincrono Temporizzazione e clock Bistabili D e SR sincroni Flip-flop

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Elementi di memoria Sommario Elementi di memoria LATCH FLIP-FLOP 25/06/2010 Corso di Reti Logiche 2009/10 2 Elementi di memoria I circuiti elettronici

Dettagli

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Reti Sequenziali Asincrone Sommario: Definizione Condizioni di pilotaggio

Dettagli

Esercitazioni di Reti Logiche. Lezione 5

Esercitazioni di Reti Logiche. Lezione 5 Esercitazioni di Reti Logiche Lezione 5 Circuiti Sequenziali Zeynep KIZILTAN zeynep@cs.unibo.it Argomenti Circuiti sequenziali Flip-flop D, JK Analisi dei circuiti sequenziali Progettazione dei circuiti

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Flip flop: tempificazione latch ed edge-triggered

Flip flop: tempificazione latch ed edge-triggered Corso di Calcolatori Elettronici I A.A. 2010-2011 Flip flop: tempificazione latch ed edge-triggered Lezione 23-26 Università degli Studi di Napoli Federico II Facoltà di Ingegneria I flip flop - 1 Generalità

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino di assino orso di alcolatori Elettronici I Elementi di memoria e registri Anno Accademico 27/28 Francesco Tortorella Elementi di memoria Nella realizzazione di un sistema digitale è necessario utilizzare

Dettagli

Reti sequenziali notevoli: registri, registri a scorrimento, contatori ing. Alessandro Cilardo

Reti sequenziali notevoli: registri, registri a scorrimento, contatori ing. Alessandro Cilardo Corso di Calcolatori Elettronici I A.A. 2012-2013 Reti sequenziali notevoli: registri, registri a scorrimento, contatori ing. Alessandro Cilardo Accademia Aeronautica di Pozzuoli Corso Pegaso V GArn Elettronici

Dettagli

Reti combinatorie. Reti combinatorie (segue)

Reti combinatorie. Reti combinatorie (segue) Reti combinatorie Sommatore Sottrattore Reti sequenziali Generatore di sequenze Riconoscitore di sequenze Reti combinatorie PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà

Dettagli

Reti combinatorie (segue) Reti combinatorie. Lezione 2. Architettura degli Elaboratori A. Sperduti 1

Reti combinatorie (segue) Reti combinatorie. Lezione 2. Architettura degli Elaboratori A. Sperduti 1 Reti combinatorie Reti sequenziali Sommatore Sottrattore Generatore di sequenze Riconoscitore di sequenze PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà eseguire, in un

Dettagli

Modelli per le macchine digitali

Modelli per le macchine digitali Reti sequenziali Modelli per le macchine digitali Ingressi Uscite i(t 0 ) i(t n ) MACCHINA DIGITALE u(t 0 ) u(t n ) TEMPO In generale l uscita di una macchina in un certo istante temporale dipenderà dalla

Dettagli

Sintesi di Reti sequenziali Sincrone

Sintesi di Reti sequenziali Sincrone Sintesi di Reti sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Una macchina sequenziale è definita dalla quintupla I è l insieme finito dei simboli d ingresso U è l insieme finito dei simboli

Dettagli

Elementi di memoria. Ing. Ivan Blunno 21 aprile 2005

Elementi di memoria. Ing. Ivan Blunno 21 aprile 2005 Elementi di memoria Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verrà introdotta una particolare categoria di circuiti digitali: i circuiti sequenziali o circuiti con memoria. A differenza

Dettagli

Esercizio 1 Domanda 1

Esercizio 1 Domanda 1 Esercizio 1 Domanda 1 R, P D 0, 1 0 0, 0 0 0, 0 0 A B C 1, 0 0 1, 0 1 F 0, 0 1 1, 0 0 E 0, 1 1 D -, 0 1 Esercizio 1 Domanda 2 S n R=0 R=1 A A, 10 -,- B C, 00 A, 00 C A, 00 D, 01 D E, 11 -,- E F, 01 A,

Dettagli

LATCH E FLIP-FLOP PREMESSA

LATCH E FLIP-FLOP PREMESSA LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi

Dettagli

Corso di Calcolatori Elettronici I Elementi di memoria ing. Alessandro Cilardo

Corso di Calcolatori Elettronici I Elementi di memoria ing. Alessandro Cilardo orso di alcolatori Elettronici I Elementi di memoria ing. Alessandro ilardo orso di Laurea in Ingegneria Biomedica Reti logiche con memoria In molte situazioni è necessario progettare reti logiche sequenziali,

Dettagli

ESERCIZIO N. 1 - PAGINA 1

ESERCIZIO N. 1 - PAGINA 1 ESERCIZIO N. - PAGINA Si desidera progettare la macchina sequenziale asincrona M che genera il segnale ACK, avendo come ingressi i segnali R ed R2. Si assuma che i segnali R ed R2 non cambino mai contemporaneamente.

Dettagli

CORSO BASE DI ELETTRONICA (competenze digitali)

CORSO BASE DI ELETTRONICA (competenze digitali) LICEO Scientifico LICEO Scientifico Tecnologico LICEO delle Scienze Umane ITIS (Meccanica, Meccatronica e Energia- Elettronica ed Elettrotecnica Informatica e Telecomunicazioni) ITIS Serale (Meccanica,

Dettagli

Domande di Reti Logiche compito dell 11/1/2016

Domande di Reti Logiche compito dell 11/1/2016 Barrare una sola risposta per ogni domanda Il punteggio finale è -1 (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve Se prendo un

Dettagli

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali Porte logiche di base Cenni circuiti, reti combinatorie, reti sequenziali NOT AND A R A B R OR A R B Quindi NAND o NOR sono complete circuiti con solo porte NAND o solo porte NOR. Reti combinatorie Rete

Dettagli

I Bistabili. Maurizio Palesi. Maurizio Palesi 1

I Bistabili. Maurizio Palesi. Maurizio Palesi 1 I Bistabili Maurizio Palesi Maurizio Palesi 1 Sistemi digitali Si possono distinguere due classi di sistemi digitali Sistemi combinatori Il valore delle uscite al generico istante t* dipende solo dal valore

Dettagli

Esercitazione del 26/03/ Soluzioni

Esercitazione del 26/03/ Soluzioni Esercitazione del 26/03/2009 - oluzioni 1. Bistabile asincrono C (detto anche R) C C ~ Tabella delle transizioni o stato prossimo: C * 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 X 1 1 1 X Configurazioni

Dettagli

a) Si scriva la tabella ingressi-uscite e per ogni mintermine individuato si scriva la forma algebrica corrispondente:

a) Si scriva la tabella ingressi-uscite e per ogni mintermine individuato si scriva la forma algebrica corrispondente: ARCHITETTURA DEI CALCOLATORI E SISTEMI OPERATIVI - ESERCIZI DI LOGICA. 30 OTTOBRE 2015 ESERCIZIO N. 1 LOGICA COMBINATORIA Si progetti in prima forma canonica (SoP) una rete combinatoria avente 4 ingressi

Dettagli

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche Calcolatori Elettronici T Complementi ed Esercizi di Reti Logiche Introduzione Reti Logiche: sintesi mediante approccio formale Specifiche del Problema Grafo degli Stati Tabella di Flusso Tabella delle

Dettagli

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1. PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei

Dettagli

Architetture 1 AA Canale EO Andrea Sterbini 26 Gennaio Parte 1

Architetture 1 AA Canale EO Andrea Sterbini 26 Gennaio Parte 1 Esercizio 1 (5 punti) Architetture 1 AA 2003-2004 Canale EO Andrea Sterbini 26 Gennaio 2004 Parte 1 Si dimostri senza usare l'induzione perfetta l'identità: x y x y x y z=x z x y x y z Esercizio 2 (10

Dettagli

Esercizi Logica Digitale,Circuiti e Bus

Esercizi Logica Digitale,Circuiti e Bus Esercizi Logica Digitale,Circuiti e Bus Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 214/214 1 2 Esercizio 1 Si consideri la funzione booleana di 3 variabili G(a,b, c) espressa dall equazione seguente:

Dettagli

Esercizio 1 (12 punti) Minimizzare il numero di stati dell automa qui rappresentato. Disegnare l automa minimo. S 7

Esercizio 1 (12 punti) Minimizzare il numero di stati dell automa qui rappresentato. Disegnare l automa minimo. S 7 Compito A Esercizio 1 (12 punti) Minimizzare il numero di stati dell automa qui rappresentato. Disegnare l automa minimo. S 3 1/1 0/0 S 6 S 7 S 1 S 2 S 4 S 5 0/0 1/1 Esercizio 2 (15 punti) Progettare un

Dettagli

Compito A (Per il canale Velardi P-Z) Orale: 26 febbraio aula alfa ore 10, portare la prova Circuimaker

Compito A (Per il canale Velardi P-Z) Orale: 26 febbraio aula alfa ore 10, portare la prova Circuimaker Compito A (Per il canale Velardi P-Z) Orale: 26 febbraio aula alfa ore 10, portare la prova Circuimaker Esercizio 1 Il pendolino Roma/Milano compie il seguente percorso: parte da Roma, arriva a Firenze

Dettagli

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A UNIVERSITÀ EGLI STUI I PARMA FACOLTÀ I INGEGNERIA Corso di Reti Logiche A anno accademico 2007-2008 prof. Stefano CASELLI prof. William FORNACIARI Appello dell 8 Gennaio 2008 Bozza soluzioni del 07.01.2008

Dettagli

RETI LOGICHE T Analisi, sintesi e composizione di Reti Sequenziali Sincrone

RETI LOGICHE T Analisi, sintesi e composizione di Reti Sequenziali Sincrone RETI LOGICHE T Analisi, sintesi e composizione di Reti Sequenziali Sincrone Soluzione del campito scritto dell 8 settembre 204 7//204 tullio salmon cinotti Analisi di RSS Testo e quesiti - Prima parte

Dettagli

Appunti sull interconnessione tra registri

Appunti sull interconnessione tra registri Appunti sull interconnessione tra registri a cura di A. Massini revisione di Daniele Gorla Registri Una cella di memoria in grado di contenere tutti i k bit una parola (una parola va considerata come un

Dettagli

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A

UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI INGEGNERIA Corso di Reti Logiche A anno accademico 2007-2008 prof. Stefano CASELLI prof. William FORNACIARI Appello dell 11 Febbraio 2008 Bozza soluzioni del

Dettagli

Sintesi Sequenziale Sincrona

Sintesi Sequenziale Sincrona Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone senza processo di ottimizzazione Sintesi comportamentale e architettura generale Diagramma degli stati Tabella degli stati

Dettagli

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione).

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione). CIRCUITI DIGITALI Un circuito elettronico viene classificato come circuito digitale quando è possibile definire il suo comportamento per mezzo di due soli stati fisici di una sua grandezza caratteristica.

Dettagli

FONDAMENTI DI INFORMATICA Lezione n. 7. Esercizi di progetto di circuiti sequenziali

FONDAMENTI DI INFORMATICA Lezione n. 7. Esercizi di progetto di circuiti sequenziali FONDAMENTI DI INFORMATICA Lezione n. 7 Esercizi di progetto di circuiti sequenziali 1 / 17 RIEPILOGO TEORICO CIRCUITI SEQUENZIALI: le uscite dipendono non solo dagli ingressi, ma anche dallo stato interno

Dettagli

Esercizio 1.A Aritmetica binaria (nel presentare le soluzione mostrare, almeno nei passaggi piú significativi, i calcoli eseguiti) (3 punti)

Esercizio 1.A Aritmetica binaria (nel presentare le soluzione mostrare, almeno nei passaggi piú significativi, i calcoli eseguiti) (3 punti) Cognome e Nome: Matr.: Architettura degli Elaboratori Inf A 14 febbraio 2013 Esercizio 1.A Aritmetica binaria (nel presentare le soluzione mostrare, almeno nei passaggi piú significativi, i calcoli eseguiti)

Dettagli

Sequential Logic. 2 storage mechanisms positive feedback charge-based. Inputs. Outputs COMBINATIONAL LOGIC. Current State. Next state.

Sequential Logic. 2 storage mechanisms positive feedback charge-based. Inputs. Outputs COMBINATIONAL LOGIC. Current State. Next state. Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state CLK 2 storage mechanisms positive feedback charge-based ES-TLC 5/6 - F. ella Corte V o i i 2 2 5 5 V V o o V V 5 V

Dettagli

Problema 1. In un sistema di comunicazione digitale vengono trasferiti messaggi costituiti da al più N max. ) con un ulteriore bit (b k

Problema 1. In un sistema di comunicazione digitale vengono trasferiti messaggi costituiti da al più N max. ) con un ulteriore bit (b k Problema In un sistema di comunicazione digitale vengono trasferiti messaggi costituiti da al più N max simboli, ciascuno rappresentato mediante k bit. Poiché in tali messaggi intervengono sovente stringhe

Dettagli

Circuiti sincroni circuiti sequenziali:bistabili e latch

Circuiti sincroni circuiti sequenziali:bistabili e latch Architettura degli Elaboratori e delle Reti Lezione 8 Circuiti sincroni circuiti sequenziali:bistabili e latch Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli

Dettagli

Esercizi assortiti di Architetture

Esercizi assortiti di Architetture Esercizi assortiti di Architetture Guido Sciavicco There are just 10 kinds of people: those who understand binary code, and those who don t. 1 Circuiti Combinatori 1. Si semplifichi la seguente espressione

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n. 8 Alberto Broggi Gianni Conte A.A. 2005-2006 Fondamenti di Informatica B DESCRIZIONE LIVELLO REGISTRO REGISTER TRANSFER LEVEL (RTL) I MODULI BASE RTL STRUTTURE DI

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso 16. Linguaggio a contatti (Ladder Diagram) piroddi@elet.polimi.it Introduzione Il linguaggio a contatti (o diagramma a scala, dall inglese ladder diagram, LD)

Dettagli

Metronomo. Progettare l hardware del metronomo, utilizzando come base dei tempi un modulo generatore di clock a 10 MHz. Fig. 1. Fig. 2.

Metronomo. Progettare l hardware del metronomo, utilizzando come base dei tempi un modulo generatore di clock a 10 MHz. Fig. 1. Fig. 2. Metronomo Un metronomo elettronico (Fig. 1) accetta in ingresso tre cifre decimali codificate in BCD per la programmazione del numero di da 16 a 299, e produce in, come, un treno di 8 impulsi spaziati

Dettagli

Prova d esame di Reti Logiche T 11Settembre 2015 COGNOME:.. NOME:.. MATRICOLA:

Prova d esame di Reti Logiche T 11Settembre 2015 COGNOME:.. NOME:.. MATRICOLA: Prova d esame di Reti Logiche T 11Settembre 2015 COGNOME:.. NOME:.. MATRICOLA: Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,..) eccetto la calcolatrice,

Dettagli

Esercizi vari con soluzione

Esercizi vari con soluzione Esercii vari con soluione Esercii RC. Eserciio Data la seguente mappa: x 3 x 2 x x - - - - - -. indicare e classificare tutti gli implicanti principali; 2. trovare tutte le possibili liste di copertura

Dettagli

SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI. 27 Febbraio 2001

SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI. 27 Febbraio 2001 SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI 27 Febbraio 200 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (VO: 7 punti - NO: 8 punti) Si consideri la rete combinatoria

Dettagli