Integrali indefiniti, definiti e impropri - teoria
|
|
|
- Alberto Gino Marconi
- 9 anni fa
- Visualizzazioni
Transcript
1 Integrali indefiniti, definiti e impropri - teoria Primitiva Data una funzione si dice primitiva di tale f. la f. che ha per derivata, ovvero. Le primitive di una f. sono infinite e tutte uguali a meno di una costante additiva, ovvero. Significato geometrico: le infinite primitive sono la stessa f. ma traslata verso l'altro o verso il basso rispetto a. Integrale indefinito Si dice integrale indefinito di Proprietà dell integrale indefinito: E un operatore lineare, quindi l insieme di tutte le sue primitive. Integrale definito L'integrale definito di una funzione positiva in è l'area del trapezoide limitato dalle rette e dalla funzione. Simbolo: Per calcolare l'area del trapezoide bisogna costruire la successione dei plurirettangoli inscritti e la successione dei plurirettangoli circoscritti. Si ha che l'area del trapezoide è e si può dimostrare che: L'integrale definito non è sempre un'area, infatti se in si ha area negativa e se la funzione è dispari e l'intervallo di integrazione simmetrico rispetto all'origine si ha area pari a 0. La variabile di integrazione è muta, cioè non incide sul risultato, dato che nel risultato non compare (in breve, posso cambiare la con un'altra lettera e il risultato non cambia). Proprietà dell'integrale definito: Formula di Leibniz-Newton per il calcolo dell'integrale:...dove è una primitiva di... per convenzione prendo quella con Teorema della media integrale: data una funzione continua in esiste
2 Integrali impropri Integrali impropri del primo tipo almeno un punto tale che. Significato geometrico della media integrale: ci dice che se la funzione è continua l'area della regione di piano compresa tra la funzione e l'asse, data dall'integrale definito, è uguale all'area del rettangolo i cui lati misurano e. Ne esistono di due tipologie: primo tipo: intervallo di integrazione illimitato; funzione limitata Definizione: data una funzione definita e continua in l'integrale. secondo tipo: intervallo di integrazione limitato; funzione illimitata Definizione: l'integrale con definita in è il. Se la discontinuità fosse in, Ovvero, con mi sposto più a sinistra/destra della funzione per non avere più discontinuità. In ogni caso, risolvendo l'integrale e svolgendo il limite si possono avere tre casi: o l'integrale converge: limite esiste ed è finito o l'integrale diverge: il limite è (o ) o l'integrale è indeterminato: il limite non esiste In caso di convergenza si può affermare che la funzione è integrabile in senso improprio. Utilizzando gli integrali notevoli posso capire se un integrale improprio del primo tipo converge o diverge, senza calcolarlo. È integrale notevole:... e si hanno due casi: In breve, diverge sempre tranne se. Definito questo integrale notevole posso sfruttarlo in due metodi risolutivi (criteri di convergenza): 1 criterio di convergenza: Date ed definite e continue in non negative in un, se in : 1. quando diverge, allora diverge 2. quando converge, allora converge In realtà è un concetto abbastanza intuitivo: se la funzione che sta sopra l'altra è finita, quella che sta sotto sarà sicuramente finita. Se quella che sta sotto invece è sicuramente infinita, allora anche quella che sta sopra lo sarà. Questo metodo si applica raramente, poiché è difficile trovare funzioni facilmente confrontabili. 2 criterio di convergenza (confronto asintotico) Date due funzioni e definite e continue in e positive in, sia il con finito o infinito. Si hanno due casi: 1. se converge e il limite è finito, allora converge anche 2. se diverge e il limite è non nullo ( ), allora converge anche
3 Integrali impropri del secondo tipo Utilizzando gli integrali notevoli posso capire se un integrale improprio del secondo tipo converge o diverge, senza calcolarlo. È integrale notevole:... e si hanno due casi (inversi al 1 tipo): Definito questo integrale notevole posso sfruttarlo in due metodi risolutivi (criteri di convergenza): 1 criterio di convergenza: Date ed definite e continue in non negative in un, se in : 1. quando diverge, allora diverge 2. quando converge, allora converge In realtà è un concetto abbastanza intuitivo: se la funzione che sta sopra l'altra è finita, quella che sta sotto sarà sicuramente finita. Se quella che sta sotto invece è sicuramente infinita, allora anche quella che sta sopra lo sarà. Questo metodo si applica raramente, poiché è difficile trovare funzioni facilmente confrontabili. 2 criterio di convergenza (confronto asintotico) Date due funzioni e definite e continue in e positive in, sia il con finito o infinito. Si hanno due casi: 1. se converge e il limite è finito, allora converge anche 2. se diverge e il limite è non nullo ( ), allora converge anche
4 Integrale di funzioni razionali fratte Se il grado del polinomio al numeratore è calcolo l'integrale: di quello al denominatore, effettuo la divisione tra polinomi e Altrimenti, se il grado del polinomio numeratore è calcolo il e ho diversi casi: di quello al denominatore, considero il denominatore, 1) Calcolo le radici dell'equazione e ottengo 2) Scrivo: moltiplicando se necessario 3) Denominatore comune: 4) Devo fare in modo che sia uguale al coefficiente della nel numeratore, e che sia uguale al valore numerico nel numeratore, in modo da "ricostruire" il numeratore della funzione di partenza...faccio quindi un sistema 5) Trovati A e B, procedo integrando:... sicuramente il risultato conterrà 2 logaritmi 1) Calcolo la radice dell'equazione e ottengo 2) Scrivo: 3) Denominatore comune: 4) Devo fare in modo che sia uguale al coefficiente della nel numeratore, e che sia uguale al valore numerico nel numeratore, in modo da "ricostruire" il numeratore della funzione di partenza. 5) Trovati A e B, procedo integrando:.. sicuramente il primo integrale sarà un logaritmo e il secondo una Se l'integrale è nella forma: applico semplicemente la formula: Altrimenti, se l'integrale è nella forma...quindi mi riconduco al caso precedente...
5 Integrazione per parti Per applicare il metodo di integrazione per parti, necessito del prodotto di due funzioni: una qualunque, ed una che so integrare (es. derivata di qualcosa). Esempio: 1) Scrivo in una colonna la prima funzione e la sua derivata, in un'altra colonna la seconda funzione e il suo integrale 2) Moltiplico in diagonale la funzione da derivare con la funzione integrata 3) Metto il segno - e integro il prodotto della funzione integrata con la funzione derivata (linea retta) Integrazione per sostituzione 1) Scelgo una parte di esercizio da sostituire con, es. 2) Ricavo la x (vedi tabella funzioni inverse) e differenzio da tutti e due i lati 3) Riscrivo l integrale sostituendo tutto, compreso il, semplifico e integro 4) A integrale risolto, effettuo la sostituzione inversa della Funzioni inverse (ricavare )
6 Integrali impropri del primo tipo - esempi di calcolo Calcolo del valore Se mi è chiesto il calcolo del valore dell'integrale improprio: 1) Determino il CE e scrivo che "la funzione è definita e continua in con " 2) Calcolo l'integrale: procedendo come per il normale calcolo di un'area, ma con il limite. 3) Se il valore è finito l'integrale converge, se è infinito diverge, se è indeterminato l'integrale non esiste Esempio: CE: Integrale indefinito: Integrale improprio
7 Integrali impropri del secondo tipo - esempi di calcolo Calcolo del valore Se mi è chiesto il calcolo del valore dell'integrale improprio: 1) Determino il CE, valuto in quale estremo la funzione non esiste, quindi se non esiste in: a. scrivo che "la funzione è definita e continua in " b. scrivo che "la funzione è definita e continua in " 2) In base all'estremo in cui non esiste la funzione ( o ) calcolo l'integrale improprio: procedendo come per il normale calcolo di un'area, ma con il limite. 3) Se il valore è finito l'integrale converge, se è infinito diverge, se è indeterminato l'integrale non esiste Esempio: L'estremo problematico è "-1"... Integrale indefinito Integrale improprio Nota bene: se uno dei punti esclusi dal ricade all'interno di mi conviene spezzare l'integrale in, idem se il problema ricade su ambo gli estremi.
8 Esercizi: integrali impropri del primo tipo Esercizi: integrali impropri del secondo tipo
PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.
PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri
SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI
SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma
Definizione algebrica di integrale: l'integrale indefinito
Definizione algebrica di integrale: l'integrale indefinito L'integrale indefinito E' possibile definire semplicemente l'integrale dal punto di vista algebrico come operazione inversa della operazione di
Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1
Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono
Analisi Matematica 1
Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia
INTEGRALI Test di autovalutazione
INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva
R. Capone Analisi Matematica Integrali multipli
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:
INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a b c d e / +5 d ; arctan + d ; 8+ 4 5/ +e + d ; 9 +8 + + d. d ;. Verificare la convergenza del seguente
Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini
Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton
Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.
Diario del Corso Analisi Matematica I
Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
TAVOLA DEGLI INTEGRALI INDEFINITI
Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione
PROGRAMMA di Analisi Matematica A.A. 204-205, canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione Testo Consigliato: - Analisi Matematica, Teoria e Applicazioni, A. Marson, P. Baiti,
Diario del corso di Analisi Matematica 1 (a.a. 2016/17)
Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre
Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate
Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). E
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). Estremo superiore e inferiore di un insieme di numeri
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).
G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il
Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?
Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura
Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori
Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) [email protected] Programma Generale del Corso Matematica per
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.
Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
Metodi di Integrazione. Integrazione per decomposizione in somma
Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO
CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Matematica. dott. francesco giannino. a. a chiusura del corso. 1
Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo
Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica
DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione
1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari
Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore
Breve formulario di matematica
Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e
PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.
CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche
Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno
Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad
INTEGRALE INDEFINITO DI UNA FUNZIONE y=f(x)
INTEGRALE INDEFINITO DI UNA FUNZIONE y=f(x) f(x)dx= F (x) + c è l insieme delle PRIMITIVE F(x) della funzione f(x) tale che F (x)=f(x) Operazione inversa della Derivata prima. Se derivo F(X) ottengo f(x)
Calcolo Integrale. F (x) = f(x)?
3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Gli integrali definiti
Gli integrali definiti Sia f : [a, b] ℝ una funzione continua definita in un intervallo chiuso e limitato e supponiamo che 0 [, ]. Consideriamo la regione T delimitata dal grafico di f(x), dalle rette
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
APPUNTI ANALISI MATEMATICA
MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi...
9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO A. A. 2014-2015 L. Doretti 1 La nascita e lo sviluppo del calcolo integrale sono legati a due tipi
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche
C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni
1 a Prova parziale di Analisi Matematica I (A) 16/11/2007
Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
Le equazioni e i sistemi di primo grado
Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) 1. Scrivere l'equazione della retta passante per i punti P1(-3,1), P2(2,-2). Dobbiamo applicare l'equazione di una retta passante per due
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Forme differenziali lineari e loro integrazione
Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso
CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo
CONCETTO DI ASINTOTO Asintoto e' una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe' significa che non tocca, in pratica si tratta di una retta che
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica
INTRODUZIONE ALL ANALISI MATEMATICA
INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme
ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI
ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore
INTEGRALE INDEFINITO
INTEGRALE INDEFINITO La nozione di integrale indefinito è correlata a quella di primitiva di una funzione reale di una variabile reale. Siano I un intervallo di IR e f, F : I IR con F derivabile in I.
SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE
SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,
DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):
P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ
PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.
PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
Studio di una funzione razionale fratta
Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =
Sistemi di equazioni di secondo grado
1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione
G6. Integrali indefiniti
G6 Integrali indefiniti G6 Introduzione Nel capitolo G4 si è visto come calcolare la derivata di una funzione data Quando si calcola la derivata di una funzione y=f() il risultato è un altra funzione indicata
Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt.
Esercitazioni di Matematica Esercitazioni VIII -5//6 Soluzioni delle Esercitazioni VIII -5//6 A. Funzione integrale. La funzione integrale di f nell intervallo [, ] è per definizione F() = dt con [,].
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)
NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI
19 LIMITI FONDAMENTALI - II
19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Equazioni di primo grado
Equazioni di primo grado Si dicono equazioni le uguaglianze tra due espressioni algebriche che sono verificate solo per particolari valori di alcune lettere, dette incognite. In altre parole, un'uguaglianza
