Corso di Fisica I : lezione del

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fisica I : lezione del"

Transcript

1 Coro di Fiica I : lezione del Elia Battitelli Introduzione: Elia Battitelli, olitamente il venerdi 8 10 (i.e. 8:30 10:00) elia.battitelli@roma1.infn.it ; laboratorio di Atrofiica IV piano VEF ; Generale: tel: ; no ricevimento ma poi vediamo. Introduzione ul metodo cientifico: induttivo (oervazioni leggi fiiche) deduttivo (leggi fiiche verifica perimentale) Unità di miura e analii adimenionale In Fiica rivete molta importanza la miura (diretta o per confronto, o indiretta, attravero miure divere) che deve neceariamente eere corredata da un errore Per convenzione i adottano delle unita di miura (e. ieri era il metro campion platino iridio del Bureau de Standard di Parigi, oggi ,7 volte la lunghezza d onda nel vuoto di una riga pettrale dell atomo di cripton) Sitema di unità di miura: grandezze fondamentali e grandezze derivate; i aume Lunghezza Maa Tempo come nel SI: mk Le leggi della fiica unicono le divere dimenioni e devono eere corrette (dimenionalmente omogenea)!

2 Eercizio 1 (ulle equazioni dimenionali) Un pendolo con attaccata una pallina di piombo di m30g, lunghezza L1 metro, ha un periodo T. Se L L 5cm e m m 50g quanto è il periodo T da pure coniderazioni dimenionali? T ara legato alla maa m, alla lunghezza l e alla forza di gravità (che è un accelerazione) (1) T K l α m β g γ Dimenionalmente i puo crivere: [T][L α ][M β ][accelerazione γ ] [L α ][M β ][L γ ][T γ ] [T ( γ+1) ][L (α+γ) ][M β ] β0 γ+10 γ 1/ α+γ0 α1/ la (1) diventa TK qrt(l/g) le la lunghezza e un quarto, il periodo dimezza T 1 (e T non dipende dalla maa)

3 Punto Materiale Sitema fiico di dimenioni piccole ripetto alla preciione con cui i vuole determinare la poizione (e. una macchina che va da milano a roma, una tella in una galaia o una galaia nell univero ) La poizione neceita di un itema di riferimento (itema carteiano con origine e ai, in 3D, il vero poitivo determina un itema levogiro) Vettori: Ad e la poizione è un vettore, divero da uno calare (e, tempo, la lunghezza) Preuppone una geometria euclidea Somma di vettori (regola del parallelogramma, far coincidere punto d applicazione alla fine del vettore) Prodotto con uno calare Verori: vettore divio per il uo modulo (è adimenionale!) Scompoizione di vettori (date rette non parallele, ogni vettore puo eere epreo tramite vettori diretti come loro che ono le componenti) Prodotto calare ( a b co(theta) oppure a_x b_x+a_y b_y). Prodotto di uno per la proiezione ortogonale di uno ull altro. Se ortogonali allora il pr. c. è nullo Prodotto vettoriale: va x b ; v a b en(theta) area parallelogramma; e paralleli il pr. ve. è nullo; perpendicolare al piano; regola mano detra ; i puo calcolare dal determinante. Molti itemi di coordinate poibili: il piu uato e il itema di coordinate carteiane: tre ai (rette orientate) a 90. i, j, k. Scompoizione di un vettore ad eempio in 3 dimenioni (fatto in fai) prop. al co(alpha, betha o gamma).

4 Eercizio (ulle operazioni tra vettori) Coniderati i vettori a(,3,1), b(3, 5,9) e c(, 6, ): a) Calcolarne il modulo b) Verificare che a e b ono perpendicolari fra loro c) Calcolare l angolo minimo fra a e c e b e c d) Calcolare a C e b c Soluzione a) a r b r c r b) Se i due vettori ono perpendicolari allora a b0. Verifichiamo: r a b r c) Per calcolare l angolo tra i due vettori partiamo dalla definizione di prodotto calare r r a c da cui r r a c coα a r r c α arcco r r arcco arcco,88rad 165 a c 14 * E coi per l altro angolo 3 β arcco 1,49rad d) uare il determinante imbolico 0 85 r r ) ) ) a c ( 6 + 6) i ( 4 + ) j + ( 1 + 6) k (0,, 6) r r b c ( 64, 1, 8) 0

5 Cinematica del punto Materiale Legge oraria: Velocità: xx(t) ; yy(t) ; zz(t) eempio moto rettilineo ull ae y: y(t)a t + b moto circolare: x(t)rco(wt), y(t)ren(wt) V è un vettore. Puntualmente è il limite (per delta t che va a zero) della velocità media oia del rapporto tra pazio percoro e tempo impiegato Vx, Vy e Vz ono le derivate del vettore poizione

6 Eercizio 3 (calcolo leggi orarie e velocità) Un pitone può correre lungo l ae x di un cilindro. Eo e collegato mendiante una biella lunga b ad un perno ul bordo di un dico di raggio R. Il dico ruota con velocita w: determinare la velocita del pitone. y A R theta x theta P O APb Nell intante iniziale A (R,0) e ull ae x Thetaw t x_ar co(w t) y_a R en(w t) x_px_a+b co(theta ) y_p0 dal teorema dei eni abbiamo: b/en(theta)r/en(theta ) en(theta ) en(theta) R/b co(theta )qrt(1 en (wt)r /b ) otituendo x_pr co wt + qrt(b R en(wt)) v_p w R en wt (w R en(wt)/qrt(b R enwt)) o Accelerazione: R(t)(x(t),y(t),z(t)) v(t)(x (t),y (t),z (t)) a(t)(x (t),y (t),z (t))

7 Problema 5 Un claico problema prevede che un primitivo P, poto nell origine degli ai carteiani, lanci una freccia f puntando direttamente, nella direzione di viione, vero una cimmia ferma u un albero. La cimmia intuice l intenzione aggreiva del primitivo e, nell itante in cui parte la freccia, i lacia cadere al uolo. L ignoranza della cinematica e fatale alla cimmia, che viene centrata al volo. Perche? Soluzione Il primitivo i trova nell origine del itema di riferimento e la cimmia, all itante iniziale, nel punto (x,h). Abbiamo due traiettorie cimmia: x x 1 y h gt x v ; freccia: y v t 0x 0 y 1 t gt Vogliamo determinare la condizione ulla velocita iniziale che fa i che la freccia colpica la cimmia, cioe che a uno teo t la cimmia e la freccia i trovino nella tea poizione. Quando la freccia raggiunge la coordinata x in cui i trova la cimmia abbiamo: x v t t x / v ox Per la coordinata y abbiamo invece: ox y cimmia 1 h ( t ) y gt v 0 y freccia ( t ) 1 t gt h x v v 0 y 0x Queto vuole dire che la freccia deve eere puntata eattamente ulla poizione iniziale della cimmia. Se la cimmia foe rimata immobile non arebbe tata colpita.

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica C.d.. Scienze oretali e Ambientali, A.A. 03/04, iica Seconda legge della dinamica: a forza riultante agente u un corpo è in relazione con la rapidità con cui quel corpo modifica la propria velocità (l

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010 CORSO DI LURE IN SCIENZE BIOLOGICHE Prova critta di FISIC 4 Gennaio 00 ) Un bambino lancia una palla di maa m = 00 gr verticalmente vero l alto con velocità v 0 = m/, a partire da una roccia alta h 0 =

Dettagli

= 20 m/s in una guida verticale circolare. v A A

= 20 m/s in una guida verticale circolare. v A A Eercizio (tratto dal Problema 4.39 del Mazzoldi Un corpo di maa m = 00 Kg entra con elocità A licia di raggio = 5 m. Calcolare: = 0 m/ in una guida erticale circolare. la elocità nei punti B e C;. la reazione

Dettagli

CINEMATICA. determinare il vettore velocità (modulo, direzione e verso) all istante Trovare inoltre la traiettoria.

CINEMATICA. determinare il vettore velocità (modulo, direzione e verso) all istante Trovare inoltre la traiettoria. . Data la legge oraria : CINEMATICA x( t) = at con a= m b= m c= 3 m y( t) bt c = + determinare il vettore velocità (modulo, direzione e vero) all itante Trovare inoltre la traiettoria. t=. y x 3 v ˆi ˆ

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

24. La sfera e la circonferenza nello spazio.

24. La sfera e la circonferenza nello spazio. 4. La fera e la circonferenza nello pazio. 1 4.1. Definizione. Diremo fera l inieme di tutti e oli i (il luogo dei) punti dello pazio che hanno la tea ditanza > (detta raggio della fera) da un fiato punto

Dettagli

Esperienza n 6: Pendolo di Kater

Esperienza n 6: Pendolo di Kater Eperienza n 6: Pendolo di Kater Sperimentatori: Marco Erculiani (N maricola 4549 v.o.) Ivan Noro (N matricola 458656 v.o.) Materiale a dipoizione: I materiali utilizzati per queta eperienza ono: Un pendolo

Dettagli

16. Onde elastiche. m s

16. Onde elastiche. m s 1 Catena di ocillatori 16. Onde elatiche Vogliamo dicutere il fenomeno della propagazione ondulatoria in un mezzo elatico. A tale copo conideriamo un inieme di punti materiali dipoti lungo una retta, ad

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli eercizi ITOLO MISURRE 8. La più leggera è la S, la più peante è la R. 0. Lo trumento funziona perché ruota pinto dal vento, miura la velocità del vento. 3 L MSS 6. 87,3 kg 0. a) 800 g b)

Dettagli

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE U.21/0 UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE 21.1. Introduzione 21.2. Conduzione 21.3. Convezione 21.4. Irraggiamento 21.5. Modalità imultanee di tramiione del calore ATTENZIONE

Dettagli

CLASSE III C LICEO SCIENTIFICO PNI (MATEMATICA E INFORMATICA)

CLASSE III C LICEO SCIENTIFICO PNI (MATEMATICA E INFORMATICA) LICEO SCIENTIFICO STATALE PRIO LEVI ONTEBELLUNA (TV) Concoro Sperimenta anche tu 6 CLASSE III C LICEO SCIENTIFICO PNI (ATEATICA E INFORATICA) STUDENTI IPEGNATI NELLA REALIZZAZIONE DELL ESPERIENTO: Giulia

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Una combinazione lineare W = a X + a Y + a 3 Z +., di variabili aleatorie indipendenti X,Y,Z, ciacuna avente una legge di ditribuzione qualiai ma con valori attei comparabili

Dettagli

Ottica. LEYBOLD Schede di fisica P Determinazione della velocità della luce con lo specchio ruotante secondo il metodo di Foucault e Michelson

Ottica. LEYBOLD Schede di fisica P Determinazione della velocità della luce con lo specchio ruotante secondo il metodo di Foucault e Michelson Ottica LEYBOLD Schede di fiica Velocità della luce Miura con il metodo di Foucault/Michelon LEYBOLD Schede di fiica Determinazione della velocità della luce con lo pecchio ruotante econdo il metodo di

Dettagli

Primo parziale di Fisica Generale T (L) INGEGNERIA EDILE (prof. M. Villa) 23/04/2012 Compito A

Primo parziale di Fisica Generale T (L) INGEGNERIA EDILE (prof. M. Villa) 23/04/2012 Compito A Eercizi: Primo parziale di Fiica Generale T (L) INGEGNERIA EDILE (prof. M. Villa) 3/04/01 Compito A 1. La poizione di un punto materiale è individuata dal vettore: (m) con t epreo in econdi. Determinare

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1 Modello monodimenionale per le correnti in moto turbolento vario 1. Decompoizione dei campi di moto turbolento vario Prima di affrontare la definizione del modello per le correnti in moto turbolento vario,

Dettagli

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi Coro di Laurea in Ingegneria Energetica FIICA GENERALE -A (9 ettebre 0) Prof. Roberto pighi ) Uain Bolt, pritita ondiale, partecipa ad una gara di 00 etri. Partendo ovviaente da fero, decide di accelerare

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Problema n. 2. Soluzione

Problema n. 2. Soluzione Problema n. Un auto da cora A iaia u un piano orizzontale con elocità cotante = 69 km/ i 11 km/ j ripetto ad un oeratore olidale al uolo Ox. Qual è la elocità dell auto A miurata da un oeratore olidale

Dettagli

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera ESERCIZI SULLE SUPERFICI Calcolare le curvature principali, la curvatura media e la curvatura Gauiana della fera α u; v = r in u co v ; r in u in v ; r co u Dato il paraboloide ellittico α u; v = u; v;

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercizi sul Moto Circolare Uniforme

Esercizi sul Moto Circolare Uniforme Eercizi ul Moto Circolare Uniforme 1.Un oroloio ha tre lancette: quella delle ore luna 1 cm, quella dei minuti luna 1.4 cm e quella dei econdi luna 1.6 cm. Conidera il punto etremo di oni lancetta. Calcola

Dettagli

INCOGNITA distanza OP = spostamento lungo il piano fino al punto P, dove si ferma : v(p) = 0

INCOGNITA distanza OP = spostamento lungo il piano fino al punto P, dove si ferma : v(p) = 0 FBB peo FBμB forza = vb0b = PIAOICLIATOaldi.doc PIAO ICLIATO CO ATTRITO ( Salita e Dicea ) All itante t=0 un corpo di aa =1 lanciato vero l alto luno un piano inclinato di un anolo = 0 ripetto al piano

Dettagli

= 0 B = 0 perché la corrente

= 0 B = 0 perché la corrente Fiica Generale - Modulo Fiica Eercitazione 4 ngegneria Getionale-normatica CALCOLO DEL CAMPO LEGGE D AMPÈRE Da. Un conduttore cilindrico cavo, di raggio eterno a. cm e raggio interno b.6 cm, è percoro

Dettagli

1miliardo 2. Esegui le seguenti equivalenze dopo aver espresso le grandezze in notazione scientifica. 105m

1miliardo 2. Esegui le seguenti equivalenze dopo aver espresso le grandezze in notazione scientifica. 105m Le grandezze fiiche: notazione cientifica, ordine di grandezza, equivalenze, formule invere 1. Determina la notazione cientifica dei eguenti numeri: 0, 0,00005 99 10 00 86400 0,00005 0,00 10 15 1 900 10

Dettagli

PROBLEMI RISOLTI DI CINEMATICA

PROBLEMI RISOLTI DI CINEMATICA Prof Giovanni Ianne PROBLEMI RISOLTI DI CINEMATICA Un aereo parte alle ore 4:0 e arriva a detinazione alle ore 5:5 coprendo una ditanza di 500 K Calcolare la velocità edia dell aereo in K/h e traforarla

Dettagli

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso.

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso. Tenione Ø Le funi ono dipoitivi che permettono di tramettere l azione di una forza applicata in un dato punto ad un punto divero. Ø La fune viene coniderata inetenibile e priva di maa ed il modulo della

Dettagli

Lezione 1

Lezione 1 Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

E ora si parte. Concetti fondamentali per la

E ora si parte. Concetti fondamentali per la E ora si parte LA FISICA Oggetto di studio -> fenomeni naturali nella loro varietà Scopo -> trovare, se esistono, delle regole comuni a fenomeni così vari Strumento -> introduzione di concetti che possano

Dettagli

1. Teorema di reciprocità

1. Teorema di reciprocità 1. Teorema di reciprocità Conideriamo un mezzo in cui ono preenti le orgenti (J 1, M 1 ) che producono un campo (E 1, H 1 ) e le orgenti (J 2, M 2 ) che producono un campo (E 2, H 2 ). Determineremo una

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Fisica Generale L - Prof. M. Villa

Fisica Generale L - Prof. M. Villa Fiica Generale L - Prof. M. Villa CdL in Ingegneria Edile Sede di Ravenna I parziale - 0 Maggio 008 Compito Eercizio 1: La poizione di un punto materiale è individuata dal vettore poizione () co( ) ˆ in(

Dettagli

Meccanica. LEYBOLD Schede di fisica P Determinazione della costante gravitazionale con la bilancia di torsione gravitazionale di Cavendish

Meccanica. LEYBOLD Schede di fisica P Determinazione della costante gravitazionale con la bilancia di torsione gravitazionale di Cavendish Meccanica LEYBOLD chede di fiica Metodi di miura Determinazione della cotante gravitazionale LEYBOLD chede di fiica P P Determinazione della cotante gravitazionale con la bilancia di torione gravitazionale

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

ESPERIMENTO 2: ATTRITO

ESPERIMENTO 2: ATTRITO ESPERIMETO 2: ATTRITO Scopo dell eperimento: tudiare l attrito tatico, dinamico e volvente. MATERIALE A DISPOSIZIOE: 1 coppia di blocchetti 1 dinamometro di preciione da 5 1 dinamometro di preciione da

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2007/2008, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2007/2008, Fisica 1 Energia: Univerità Politenia delle Marhe, aoltà di Agraria C.d.. Sienze oretali e Ambientali, A.A. 007/008, iia quel bambino ha tanta energia il gioatore è rimato enza energia alla fine della partita energia

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Meccanica. Lavoro di una forza, energia cinetica e potenziale, conservazione dell energia, rendimento

Meccanica. Lavoro di una forza, energia cinetica e potenziale, conservazione dell energia, rendimento Meccanica Cineatica del punto ateriale Dinaica Velocità, accelerazione, oto rettilineo unifore, oto uniforeente accelerato, oto circolare unifore orza, principi della dinaica, decrizione di diveri tipi

Dettagli

FISICA GENERALE I A.A Luglio 2013 Cognome Nome n. matricola

FISICA GENERALE I A.A Luglio 2013 Cognome Nome n. matricola ISI GENELE I.. 0-03 6 Luglio 03 ognome Nome n. matricola oro di Studi Docente Voto: 9 crediti 0 crediti crediti Eercizio n. Una piattaforma circolare ruota attorno ad un ae verticale paante per i proprio

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

FISICA TECNICA AMBIENTALE

FISICA TECNICA AMBIENTALE COSO DI LUE IN SCIENZE DELL CHITETTU FISIC TECNIC MIENTLE Tramiione del calore: La conduzione I parte Prof. Gianfranco Caruo.. 03/04 Il Calore Il Calore è una forma di energia in tranito: ad eempio un

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2008/2009, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2008/2009, Fisica 1 Dr. Adrian MANESCU Tel. 071-0 4603, a.manescu@alisf1.univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html http://www.isf.univpm.it/isf/students.htm Dipartimento SAIFET Sezione di Scienze Fisiche

Dettagli

Primo parziale di Fisica Generale T (L) INGEGNERIA EDILE (prof. M. Villa) 30/04/2013 Compito A

Primo parziale di Fisica Generale T (L) INGEGNERIA EDILE (prof. M. Villa) 30/04/2013 Compito A Primo parziale di Fiica Generale T (L) (prof. M. Villa) 30/04/013 Compito Eercizi: 1. La poizione di un punto materiale è individuata dal vettore poizione 3 rt () 3ti ˆ tj ˆ tk ˆ, con r in metri e t in

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corico Clae: 2B Materia: FISICA Inegnante: Nicola Moriello Teto utilizzato: Caforio, Ferilli Fiica! Le regole del gioco ed. Le Monnier 1) Prograa volto durante l anno colatico ARGOMENTO

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Q Flusso di calore (Joule m -2 s -1 )

Q Flusso di calore (Joule m -2 s -1 ) Conduzione Convezione Meccanimo Colliioni molecolari Diffuione molecolare Equazione generale ka ha T dt dx ( T ) Radiazione Evaporazione Fotoni Cambiamento di fae Fluo di calore (Joule m -2-1 ) Calore

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Esercizi di Algebra Lineare Superfici rigate

Esercizi di Algebra Lineare Superfici rigate Esercizi di Algebra Lineare Superfici rigate Anna M. Bigatti 29 ottobre 2012 Definizione 1. Una superficie rigata è una superficie tale che per ogni suo punto passa una retta interamente contenuta nella

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Novità nella norma per la protezione contro i fulmini, CEI EN (CEI 81-10): 2013 Parte 1: Principi generali

Novità nella norma per la protezione contro i fulmini, CEI EN (CEI 81-10): 2013 Parte 1: Principi generali Novità nella norma per la protezione contro i fulmini, CEI EN 62305 (CEI 81-10): 2013 Parte 1: Principi generali 16.01.2013 / 8024_I_1 CEI EN 62305-1 Introduzione Interconneione tra le varie parti della

Dettagli

Sistemi di coordinate

Sistemi di coordinate Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55. acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante

Dettagli

1. INTRODUZIONE. visto dal satellite. Figura 1

1. INTRODUZIONE. visto dal satellite. Figura 1 44/5 LA NOTTE ORBITALE (Eclii olari nello pazio Giancarlo Lucarelli, alvatore Troii Dipartimento di cienze Applicate Univerità degli tudi Parthenope di Napoli Via A. Acton, 38 8133 Napoli e-mail: giancarlo.lucarelli@uniparthenope.it

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Scheda I a. [a] = Facoltà di FARMACIA. v= x = barrare!

Scheda I a. [a] = Facoltà di FARMACIA. v= x = barrare! Facoltà di FARMACIA Scheda I a a.a. 2009 2010 ESE del FISICA Cognome nome matricola a.a. di immatricolazione firma N Quanto vale la accelerazione di gravità? Si scriva l espressione della velocità e dello

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina

Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina Quesito 1. Si considerino il riferimento fisso {O, e i } e quello mobile {O (t), e i (t)}; sia Γ(t) la matrice

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Esercizi sul Calcolo Vettoriale 10/10/2014

Esercizi sul Calcolo Vettoriale 10/10/2014 Esercizi sul Calcolo Vettoriale 10/10/2014 Problema 1. Fissata una terna cartesiana eortogonale e dati due vettori a=11 î 7 ĵ +9 k, b=14 î+5 ĵ k determinare modulo, direzione e verso sia della somma a+

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 '

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 ' Sistemi di due particelle Problema dei due corpi: studio del moto relativo di due corpi supposti puntiformi sotto l azione della forza di interazione mutua. Esempio: moto (relativo) di due corpi celesti

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli