Teoria dei Giochi: lezione del 27 Marzo 2017

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria dei Giochi: lezione del 27 Marzo 2017"

Transcript

1 Teoria dei Giochi: lezione del 27 Marzo 2017 Chiara Mocenni Corso di Teoria dei Giochi e Giochi Evolutivi

2 Giochi simmetrici a due giocatori Un gioco è simmetrico quando i due giocatori hanno lo stesso guadagno in condizioni analoghe. Un gioco simmetrico coinvolge dunque due giocatori con lo stesso numero di strategie e la funzione payoff di ogni strategia è indipendente dalla postazione del giocatore dalla quale viene giocata. Richiedere l equivalenza delle funzioni payoff delle strategie pure è equivalente a richiedere che la matrice dei payoff del secondo giocatore sia la trasposta della matrice dei payoff del primo, ovvero: B = A T.

3 Giochi simmetrici a due giocatori Utilizzando la funzione di payoff π(x, y) = x T Ay, si ha che: π 1 (x, y) = π(x, y) π 2 (x, y) = x T By = y T B T x = y T Ax = π(y, x). Con K = {1, 2,..., k} indichiamo l insieme delle strategie pure Con x e y indichiamo le strategie miste del primo e del secondo giocatore, dove = {x R k + : i K x i = 1}, mentre Θ = 2. L insieme di best reply β(z) è rispetto ad una strategia z ed è lo stesso per entrambi i giocatori: β(z) = {x : π(x, z) π(y, z) y }.

4 Equilibri di Nash simmetrici Una coppia di strategie (x, y) Θ = 2 costituisce un equilibrio di Nash, (x, y) Θ NE, se e solo se x β(y) e y β(x). Se x = y, l equilibrio (x, y) si dice è simmetrico. Il sottoinsieme di strategie x che sono in equilibrio con se stesse è: NE = {x : (x, x) Θ NE } Non è detto che gli equilibri di Nash di un gioco simmetrico siano simmetrici, ma ogni gioco simmetrico ha almeno un equilibrio di Nash simmetrico. Theorem Per ogni gioco simmetrico finito a due giocatori, NE.

5 Classificazione dei giochi simmetrici 2 x 2 In questa sezione analizziamo i giochi in cui i giocatori hanno solamente due strategie pure a disposizione. Considerando la matrice dei payoff di un generico gioco simmetrico 2 2: ( ) a11 a A = 12 a 21 a 22 Sottraendo a 21 dalla prima colonna e a 12 dalla seconda, otteniamo: ( ) A a11 a = a 22 a 12 Si ottiene così una matrice simmetrica e quindi un gioco totalmente simmetrico, con matrice dei payoff: ( ) A a1 0 = 0 a 2 Con a 1 = a 11 a 21 e a 2 = a 22 a 12.

6 Rappresentazione grafica La matrice ottenuta, per ogni gioco simmetrico 2 2, è identificata da un punto a = (a 1, a 2 ) R 2. Questo punto apparterrà ad uno dei quadranti del piano cartesiano, consentendoci di identificare la categoria alla quale appartiene il gioco.

7 Calcolo degli equilibri di Nash simmetrici Se x NE (x è un equilibrio di Nash simmetrico), allora x β(x). In altri termini: ovvero π(x, x) π(y, x) y, x T Ax y T Ax y. È possibile riscrivere la precedente equazione usando le sommatorie: x i [Ax] i y i [Ax] i y, (1) dove [Ax] i indica l i-esima componente del vettore Ax.

8 Teorema per gli equilibri puri Theorem Sia x una strategia pura (x = e h ). Se [Ax] h [Ax] i i h, allora x NE. Dimostrazione. Sia M = [Ax] h. Si ha che: e x i [Ax] i = x h [Ax] h = M, y i [Ax] i = y h [Ax] h + y i [Ax] i = y h M + y i [Ax] i.,i h,i h

9 ... continua Poichè M [Ax] i i h, allora: Dunque: y i [Ax] i y i M = (1 y h )M.,i h,i h k x i[ax] i = M, e k y i[ax] i M. Da cui segue che x i [Ax] i y i [Ax] i y.

10 Teorema per gli equilibri misti Theorem Sia x una strategia appartenente a int, cioè una strategia mista tale per cui x i > 0 i. Se [Ax] i = [Ax] j i, j, allora x NE. Dimostrazione. Poniamo M = [Ax] i i. Allora:: e x i [Ax] i = y i [Ax] i = x i M = M x i = M 1 = M, y i M = M y i = M 1 = M.

11 ... continua Dunque, la 6 vale sempre in maniera non stretta, ovvero: x i [Ax] i = y i [Ax] i y. Questo significa x è un equilibrio di Nash simmetrico. Inoltre, tale equilibrio è non stretto.

12 Teorema per gli equilibri puri/misti Theorem Sia x una strategia mista con un unica componente nulla (x h = 0, x i > 0 i h). Se [Ax] i = [Ax] j i h, j h, e [Ax] i [Ax] h i h allora x NE. Dimostrazione. Poniamo M = [Ax] i i h. Allora: e x i [Ax] i = x i M = M x i = M 1 = M, y i [Ax] i = y i M + y h [Ax] h = M y i + y h [Ax] h =,i h,i h = M(1 y h ) + y h [Ax] h.

13 ... continua Nella seconda equazione è stato sfruttato il fatto che y i = 1,i h Per ipotesi, si ha che M [Ax] h. Da cui: y i = 1 y h. M [Ax] h y h M y h [Ax] h y h M + M M y h [Ax] h M M(1 y h ) y h [Ax] h M M(1 y h ) + y h [Ax] h x i [Ax] i y i [Ax] i y. Dunque, poichè x soddisfa la 6 per ogni y, allora x è un equilibrio di Nash simmetrico.

Teoria dei Giochi: lezione del 15 Maggio 2017: Strategie Evolutivamente Stabili

Teoria dei Giochi: lezione del 15 Maggio 2017: Strategie Evolutivamente Stabili Teoria dei Giochi: lezione del 15 Maggio 2017: Strategie Evolutivamente Stabili Chiara Mocenni Corso di Teoria dei Giochi e Giochi Evolutivi Strategie Evolutivamente Stabili (ESS) Una strategia si dice

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 17 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html SOMMA ZERO Un gioco non cooperativo a due giocatori

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it 1 SOLUZIONI:

Dettagli

+1 i j i = j i = j 1 1 i j 2 Il problema di PL associato alla scelta della migliore strategia per te è quindi il seguente: min z

+1 i j i = j i = j 1 1 i j 2 Il problema di PL associato alla scelta della migliore strategia per te è quindi il seguente: min z Esercizio 1. Considera il seguente gioco. Tu e il tuo avversario potete scegliere un intero tra 1 e. Se il numero x che hai scelto è minore di quello y del tuo avversario, allora tu vinci un euro, a meno

Dettagli

1 Giochi a somma costante, a somma zero e antagonistici

1 Giochi a somma costante, a somma zero e antagonistici AVVERTENZA: Di seguito trovate alcuni appunti, poco ordinati e poco formali, che uso come traccia durante le lezioni. Non sono assolutamente da considerarsi sostitutivi del materiale didattico. Riferimenti:

Dettagli

Esempio 1 Si consideri il seguente gioco in forma estesa:

Esempio 1 Si consideri il seguente gioco in forma estesa: Best reply: strategie pure e miste c Fioravante Patrone Esempio Si consideri il seguente gioco in forma estesa: 5 T L R L R 4 4 B T B a) scriverne la forma strategica; b) determinarne gli equilibri di

Dettagli

Teoria dei Giochi e delle Decisioni Prova del 24 Settembre Giocatore 2 a b Giocatore 1 a 8-12 b minz. ε ε 2 1 = 1.

Teoria dei Giochi e delle Decisioni Prova del 24 Settembre Giocatore 2 a b Giocatore 1 a 8-12 b minz. ε ε 2 1 = 1. Teoria dei Giochi e delle Decisioni Prova del 24 Settembre 2009 Cognome, Nome, Numero di Matricola: Esercizio Si consideri il gioco antagonista descritto dalla seguente matrice di payoff: Giocatore 2 a

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

TEORIA DEI GIOCHI. Progetto Lauree Scientifiche : Liceo Gabriele D Annunzio di Fidenza Università degli Studi di Parma

TEORIA DEI GIOCHI. Progetto Lauree Scientifiche : Liceo Gabriele D Annunzio di Fidenza Università degli Studi di Parma Progetto Lauree Scientifiche 2010-2011: TEORIA DEI GIOCHI Liceo Gabriele D Annunzio di Fidenza Università degli Studi di Parma Docenti della scuola superiore: M. Armani, S. Di Maiolo Docenti dell università:

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Una prima distinzione nell ambito della teoria dei giochi è quella tra: Giochi cooperativi (si possono fare accordi vincolanti)

Una prima distinzione nell ambito della teoria dei giochi è quella tra: Giochi cooperativi (si possono fare accordi vincolanti) Una prima distinzione nell ambito della teoria dei giochi è quella tra: Giochi cooperativi (si possono fare accordi vincolanti) Giochi non cooperativi (non si possono fare accordi vincolanti) Ci occuperemo

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Teoria dei Giochi e Giochi Evolutivi Parte 1 - Teoria dei Giochi

Teoria dei Giochi e Giochi Evolutivi Parte 1 - Teoria dei Giochi Università degli studi di Siena Dipartimento di ingegneria dell informazione e scienze matematiche Dispense del corso di Teoria dei Giochi e Giochi Evolutivi Parte 1 - Teoria dei Giochi Dario Madeo, Chiara

Dettagli

Operazioni elementari e riduzione

Operazioni elementari e riduzione Matrici e sistemi Operazioni elementari Riduzioni di matrici L algoritmo di riduzione 2 2006 Politecnico di Torino 1 Operazioni elementari per righe Sia A M m,n. Introduciamo tre tipi di operazioni che

Dettagli

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI ESERCITZIONE MICROECONOMI (CORSO ) --009 ESEMPI DI ESERCIZI DI TEORI DEI GIOCHI Questo documento contiene alcuni esempi di esercizi di teoria dei giochi. Gli esercizi presentati non corrispondono esattamente

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

INTRODUZIONE ALLA TEORIA DEI GIOCHI

INTRODUZIONE ALLA TEORIA DEI GIOCHI Corso di Identificazione dei Modelli e Controllo Ottimo Prof. Franco Garofalo INTRODUZIONE ALLA TEORIA DEI GIOCHI A cura di Elena Napoletano elena.napoletano@unina.it Teoria dei Giochi Disciplina che studia

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Teoria dei Giochi Prova del 30 Novembre 2012

Teoria dei Giochi Prova del 30 Novembre 2012 Cognome, Nome, Corso di Laurea, email: Teoria dei Giochi Prova del 30 Novembre 2012 Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra {3,4,8,16,38}; il secondo

Dettagli

Se x y è pari vinci 1 euro (n.b. assumiamo 0 sia un numero pari);

Se x y è pari vinci 1 euro (n.b. assumiamo 0 sia un numero pari); Teoria dei Giochi Prova del Febbraio 011 Cognome, Nome, email: Esercizio 1 Considera il seguente gioco non cooperativo. I giocatori sono tre: A, B,C. Ciascun giocatore deve scegliere un numero secondo

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1 Vicenza, 27 giugno 20 TEMA. Determinare, al variare del parametro reale a, una base del nucleo e una dell immagine dell endomorfismo L a di R definito da L a (x, y, z) = (x 2y + az, 2x + 4y + z, ( a)x

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 10 maggio 2011 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2011.html Giochi a informazione incompleta Nel caso in

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 21 marzo 2017 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2017.html Teoria dei giochi evolutivi La moneta è sostituita

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Teoria dei Giochi Prova del 9 Settembre 2011. se tutti i giocatori scelgono lo stesso numero, il payoff è zero per ciascun giocatore;

Teoria dei Giochi Prova del 9 Settembre 2011. se tutti i giocatori scelgono lo stesso numero, il payoff è zero per ciascun giocatore; Teoria dei Giochi Prova del 9 Settembre 2011 Cognome, Nome, Numero di Matricola, email: Esercizio 1 Considera il seguente gioco non cooperativo. I giocatori sono n, con n dispari. Ciascun giocatore sceglie

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3)

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a. 2014-2015, lez.3) 1 Analisi Numerica 1 mod. a.a. 2014-2015, Lezione n.3

Dettagli

Modulo 10. Teoria dei giochi

Modulo 10. Teoria dei giochi Modulo 10 Teoria dei giochi Teoria dei giochi La teoria dei giochi analizza situazioni in cui gli agenti comprendono che le loro azioni influenzano le azioni degli altri agenti. Tali situazioni si definiscono

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Caso, intelligenza e decisioni razionali

Caso, intelligenza e decisioni razionali Caso, intelligenza e decisioni razionali Anna Torre San Pellegrino Terme 8 settembre 2009 UN PO DI STORIA UN PO DI STORIA La teoria dei giochi è una disciplina matematica molto recente. La sua nascita

Dettagli

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X).

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). INSIEMI Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). Sia A = {A λ : λ Λ} una famiglia di insiemi. Definiamo: unione A = A λ è l insieme U tale

Dettagli

Teoria dei giochi e comportamento strategico

Teoria dei giochi e comportamento strategico Capitolo 13 Teoria dei giochi e comportamento strategico Soluzioni dei Problemi 13.1 L equilibrio di Nash è: il Giocatore 1 sceglie Alto mentre il Giocatore 2 sceglie Sinistra. 13.2 Il Giocatore 1 ha una

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Algebra/Algebra Lineare,

Algebra/Algebra Lineare, Algebra/Algebra Lineare, 00308 Distanza di un punto da una retta, nel piano Svolgiamo ora un semplice esercizio di geometria analitica nel piano: determinare la distanza di un punto da una retta Il modo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

La definizione di Ultrafiltro e la regolarità per partizioni

La definizione di Ultrafiltro e la regolarità per partizioni La definizione di Ultrafiltro e la regolarità per partizioni Lorenzo Lami Definizione 1 (Filtro). Dato un insieme X, si dice filtro su X una collezione F di sottoinsiemi di X tali che: X F; / F; A F, B

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli