INTERSEZIONE ALL INDIETRO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTERSEZIONE ALL INDIETRO"

Transcript

1 ISTITUTO ISTUZIONE SUEIOE Morea Vivarelli sede Morea Fabriano LabTopoMorea ilievo classico per INTESEZIONI INTESEZIONE LL INDIETO [roblema di Snellius othenot] Soluzione grafica Metodo di Collins Docente: prof. Ing. Fabio nderlini

2 È una procedura che permette di ottenere le coordinate di un punto incognito, riferendolo a tre punti noti, B, C, e misurando solo angoli (due attraverso tre letture al C.O. L, L B, L C. Essa prevede lo stazionamento del goniometro solo sul punto incognito, dal quale però, devono essere visibili almeno tre punti, B, C di coordinate note, per consentire la misura dei due angoli orizzontali α e β compresi tra le tre direzioni che escono da e che passano per, B, C. DTI MISUE (X ;Y B (X B ;Y B C (X C ;Y C α, β INCOGNITE (X p ;Y LabTopoMorea - prof.ing. Fabio nderlini 2

3 SCHEM: er capire dove sta il punto incognito vedere letture C.O.: - Se L <L B <L C il punto incognito sta alla destra di un Osservatore che da guarda verso C. L B L C L LabTopoMorea - prof.ing. Fabio nderlini 3

4 SCHEM: er capire dove sta il punto incognito vedere letture C.O.: - Se L >L B >L C il punto incognito sta alla sinistra di un Osservatore che da guarda verso C. L L B L C LabTopoMorea - prof.ing. Fabio nderlini 4

5 FSE 01: ESENTE GFICMENTE I TE UNTI NOTI E COLLEGLI IN UN SISTEM DI IFEIMENTO CTESINO IN SCL OOTUN. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 5

6 FSE 02: DISEGNE IL SEGMENTO CONGIUNGENTE I UNTI ESTEMI. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 6

7 FSE 03: DISEGNE CON UN GONIOMETO TENDO D C IN L NGOLO β (in senso antiorario con α su C verso «zero» E IN C L NGOLO α (in senso orario dallo «zero» su C verso valore di α IMNGONO INDIVIDUTE LEE DIEZIONI H E CK. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 7

8 FSE 04: CONGIUNGEE LE DUE DIEZIONI H E CK INDIVIDUNDO IL UNTO (unto di Collins TCCIE I UNTI MEDI DI E C. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 8

9 FSE 05_a: TCCIE L SSE (erpendicolare per il punto medio DEL SEGMENTO. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 9

10 FSE 05_b: TCCIE L SSE (erpendicolare per il punto medio DEL SEGMENTO C. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 10

11 FSE 06: CONGIUNGEE GLI SSI (dei segmenti e C NEL UNTO O. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 11

12 FSE 07: TCCIE L CICONFEENZ CON CENTO IN O E GGIO. =O=O=OC. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 12

13 FSE 09: TCCIE IL SEGMENTO CONGIUNGENTE I UNTI E B. =O=O=OC. Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 13

14 FSE 10: OLUNGE IL SEGMENTO B FINO D INCONTE L CICONFEENZ NEL UNTO INCOGNITO CECTO. =O=O=OC. UNTO INCOGNITO Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 14

15 FSE 11: MISUE GFICMENTE LE COODINTE DI (con righello esprimendo le misure in metri e moltiplicarle per la scala di rappresentazione grafica n. X = X grafica * n Y = Y grafica * n COODINTE GFICHE UNTO INCOGNITO Nota: in OSSO gli elementi nuovi inseriti nella fase di lavoro. SCL 1:n LabTopoMorea - prof.ing. Fabio nderlini 15

16 SOLUZIONE NLITIC: Dal triangolo C (noti C, C=β e C=α calcolare le coordinate polari di rispetto al punto noto (o punto noto C e poi calcolare le coordinate totali di. Coordinate polari di rispetto C = senα sen( α + β θ = θ C β Coordinate parziali di rispetto ( X ( Y = senθ = cosθ Coordinate totali di X Y = X = Y + ( X + ( Y LabTopoMorea - prof.ing. Fabio nderlini 16

17 SOLUZIONE NLITIC: Calcolare l angolo di direzione θ B =θ e l angolo δ= zimut θ θ θ ± π = zimut θ B =θ θ X B X = θ = arctg( Y Y B + B K ngolo δ δ = θ B θ LabTopoMorea - prof.ing. Fabio nderlini 17

18 SOLUZIONE NLITIC: Nel triangolo (noti, =δ e =α calcolare le coordinate polari di rispetto al punto noto e poi le coordinate totali di. Coordinate polari di rispetto = sen( α + δ senα θ X X B = arctg( Y Y + Coordinate parziali di rispetto ( X ( Y B K = senθ = cosθ Coordinate totali di X Y = X = Y + ( X + ( Y LabTopoMorea - prof.ing. Fabio nderlini 18

19 SOLUZIONE NLITIC OSSEVZIONE: Le coordinate di possono essere calcolate anche partendo da [procurandosi e θ ] oppure da C [procurandosi C e θ C ]. Dalla figura: Coordinate polari di rispetto = senα senδ θ θ + ( π α δ = Coordinate parziali di rispetto ( X ( Y = senθ = cosθ Coordinate totali di X Y = X = Y + ( X + ( Y LabTopoMorea - prof.ing. Fabio nderlini 19

20 SOLUZIONE GFIC DI CSSINI (si veda sito labtopomorea LabTopoMorea - prof.ing. Fabio nderlini 20

21 SOLUZIONE GFIC DI CSSINI (si veda sito labtopomorea OSSEVZIONE: Quando le due circonferenze sono molto vicine si possono commettere grandi errori nella determinazione della posizione di. LabTopoMorea - prof.ing. Fabio nderlini 21

22 CSI DI INDETEMINZIONE Quando la somma degli angoli α+β+ω è uguale all angolo piatto 200 g (180 il problema è indeterminato (ammette infinite soluzioni il punto coincide con B e i punti BC stanno su una circonferenza può essere qualsiasi punto della stessa circonferenza Quando la somma degli angoli α+β+ω si discosta di poco (10-20 dall angolo piatto 200 g (180 allora il problema è determinato (esiste soluzione. Tuttavia in questo caso, piccoli errori nella misura degli angoli α e β provocano grandi errori nelle coordinate di. LabTopoMorea - prof.ing. Fabio nderlini 22

23 INTESEZIONE LL INDIETO MULTIL È una procedura iperdeterminata per la quale, oltre ai tre punti noti, B, C, è necessario vedere da un 4 punto D di coordinate note, e misurare l angolo corrispondente (γ. Di fatto essa corrisponde a più intersezioni inverse semplici eseguite con misure, in parte, diverse, dunque confrontabili e compensabili con i metodi rigorosi delle osservazioni condizionate. Tuttavia, è anche possibile procedere a compensazioni empiriche. LabTopoMorea - prof.ing. Fabio nderlini 23

UNITÀ I1-3 LE INTERSEZIONI

UNITÀ I1-3 LE INTERSEZIONI UNITÀ I1-3 LE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti

Dettagli

IL PRINCIPIO DELLE INTERSEZIONI

IL PRINCIPIO DELLE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti a integrazione di altre

Dettagli

Le Poligonali ESERCITAZIONE

Le Poligonali ESERCITAZIONE Università di rescia - Corso di Toporafia Le olionali ESERCITZIONE Esercizio 1 Intersezione in avanti con misure anolari L intersezione in avanti si applica quando si conosce la posizione planimetrica

Dettagli

Il problema di Pothenot-Snellius

Il problema di Pothenot-Snellius Il problema di othenot-snellius impostazione alternativa a quella proposta nel testo) Le intersezioni dirette in avanti e laterale) richiedono un semplice e rapido lavoro di calcolo, ma sono spesso complicate

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE PER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda PARTE PRIMA Disegno del rilievo Unità Didattica:

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

g P 200 AB B A B A arctan Y A B d sen

g P 200 AB B A B A arctan Y A B d sen INTERSEZIONE IN AVANTI MEDODI DI RIATTACCO (INT. INVERSA, ERTURA A TERRA) INTERSEZIONE IN AVANTI Elementi noti: A(X A ;Y A ) B (X B ; Y B ) Elementi misurati: A e B Incognite: P (X P ; Y P ) Calcolo ell

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

I.I.S. "Morea-Vivarelli"

I.I.S. Morea-Vivarelli I.I.S. "Morea-Vivarelli" FABRIANO Sez. Geometri: Progetto Cinque corso di TOPOGRAFIA & FOTOGRAMMETRIA a.s.2012/2013 prof. FABIO ANDERLINI classe IVa A Geometri PERCORSO ESTIVO PER STUDENTI CON DEBITO FORMATIVO

Dettagli

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x. QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI INTRODUZIONE Problema: Esiste la radice quadrata di un numero reale x negativo? ( 4) =? Nell insieme dei numeri reali R il problema non

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Esercizi svolti di geometria analitica

Esercizi svolti di geometria analitica Giulio Donato Broccoli Esercizi svolti di geometria analitica Circa 300 esercizi e nozioni teoriche di base Giulio D. Broccoli Editore Proprietà letteraria riservata Ogni riproduzione, con qualsiasi mezzo

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE

COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE OMLMTI DI TOOGRFI 1. OORDIT LIMTRIH In Topografia le determinazioni planimetriche di punti vengono effettuate partendo da altri punti di coordinate note (punti trigonometrici). Il sistema di coordinate

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

TECNICHE DI GESTIONE,CONDUZIONE DI MACCHINE ED IMPIANTI

TECNICHE DI GESTIONE,CONDUZIONE DI MACCHINE ED IMPIANTI TECNICHE DI GESTIONE,CONDUZIONE DI MACCHINE ED IMPIANTI APPUNTI -CLASSI QUARTE Gli appunti sono da integrare con gli argomenti e/o esercizi svolti nelle lezioni. MODULO 1- RICHIAMI DI GEOMETRIA FIGURE

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Teoria generale delle coniche 1 / 17

Teoria generale delle coniche 1 / 17 Teoria generale delle coniche 1 / 17 Introduzione 2 / 17 Una conica in R 2 è il luogo di punti γ definito da un equazione di secondo grado in x,y, cioè γ : a 11 x 2 + 2a 12 xy+a 22 y 2 + 2a 13 x+2a 23

Dettagli

I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA

I.I.S. Morea-Vivarelli -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA Classe II a Agrario Modulo A UNITÀ 1 ANGOLI E FUNZIONI GONIOMETRICHE AMODULO PROVE Questionario Vero/Falso

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

ESERCIZI. Risolvere il quadrilatero e determinare le coordinate dei due vertici C e D.

ESERCIZI. Risolvere il quadrilatero e determinare le coordinate dei due vertici C e D. 1 Dato il quadrilatero ABCD, i cui vertici si seguono in senso antiorario, di cui si conoscono le coordinate dei vertici A e C rispetto a un sistema di assi ortogonali: x A = - 23,55 m x C = 84,80 m y

Dettagli

La circonferenza e i poligoni inscritti e circoscritti

La circonferenza e i poligoni inscritti e circoscritti Liceo Scientifico Isacco Newton - Roma Le lezioni multimediali di GeoGebra Italia efinizioni Luogo Geometrico Insieme di tutti e soli punti del piano che godono di una certa proprietà, detta proprieà caratteristica

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA

DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA PROGRAMMA SVOLTO DI TOPOGRAFIA A.S. 2013-2014 CLASSE IIIB CAT ELEMENTI DI TRIGONOMETRIA E GONIOMETRIA (Unità A1-A2-A3) Unità di misura degli angoli e trasformazioni

Dettagli

PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2

PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 www.matefilia.it PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovano ai lati opposti di un grattacielo, a livello del suolo. La cima dell edificio dista 1600 metri dal primo

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Goniometria e Trigonometria

Goniometria e Trigonometria Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica

Dettagli

2) Le proprietà delle potenze: semplifica le seguenti espressioni numeriche applicando le ben note proprietà delle potenze.

2) Le proprietà delle potenze: semplifica le seguenti espressioni numeriche applicando le ben note proprietà delle potenze. Serie Estate 2017.Tecnica di calcolo Funzioni. III Media. Cerca di risolvere questi esercizi, senza l utilizzo della calcolatrice, che serve solo per controllare il tuo lavoro! Distribuisci il tuo lavoro

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

GONIOMETRIA E TRIGONOMETRIA

GONIOMETRIA E TRIGONOMETRIA Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti

Dettagli

Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno

Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno Circonferenza Domande, problemi, esercizi 1) Scrivi un equazione per la circonferenza del disegno 2) Scrivi un equazione per la circonferenza del disegno Circonferenza: esercizi e domande pagina 1 3) Scrivi

Dettagli

Goniometria per il TOL - Guida e formulario

Goniometria per il TOL - Guida e formulario Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

PREREQUISITI ASPETTI TEORICI

PREREQUISITI ASPETTI TEORICI .- 1 - PREREQUISITI ASPETTI TEORICI LA SFERA CELESTE ED I SUOI ELEMENTI VOLTA E SFERA CELESTE LE PRINCIPALI COORDINATE ASTRONOMICHE COORDINATE ORIZZONTALI E COORDINATE EQUATORIALI pag. 2 pag. 3 CORRISPONDENZA

Dettagli

RETI TOPOGRAFICHE. 1. Premessa

RETI TOPOGRAFICHE. 1. Premessa RETI TOPOGRAFICHE 1. Premessa Una rete topografica è costituita da un insieme di punti, detti vertici della rete, connessi fra di loro da un insieme di misure di distanze e di angoli azimutali e zenitali;

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) Nella circonferenza goniometrica,

Dettagli

Soluzione verifica scritta dell 8/10/2013

Soluzione verifica scritta dell 8/10/2013 Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi

Dettagli

LA CIRCONFERENZA. Preparazione. Esercizi

LA CIRCONFERENZA. Preparazione. Esercizi IN CLASSE LA CIRCONFERENZA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

ESPERIENZA 6 La legge della riflessione

ESPERIENZA 6 La legge della riflessione ESPERIENZA 6 La legge della riflessione 1. Argomenti Determinare la direzione del raggio riflesso sulla superficie di uno specchio piano a diversi angoli di incidenza. Confrontare gli angoli di incidenza

Dettagli

Le coniche retta generatrice

Le coniche retta generatrice Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono

Dettagli

Triangoli rettangoli. Problema

Triangoli rettangoli. Problema Triangoli rettangoli 1. a) Sposta il vertice C 1, fino a quando stimi che l angolo nel vertice C 1 sia 90. b) Allo stesso modo sposta i vertici da C 2 fino a C 9 fino a quando stimi che l angolo sia 90.

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli