ELEMENTI DI TOPOGRAFIA
|
|
|
- Natalia Bonetti
- 8 anni fa
- Visualizzazioni
Transcript
1 Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea) di Fabriano ed è suscettibile di aggiornamenti e/o modifiche. Eventuali correzioni, segnalazioni, suggerimenti, richieste o qualsiasi altra comunicazione possono essere inviate all indirizzo [email protected] Ringrazio fin d ora quanti vorranno collaborare. RILIEVO PER POLIGONAZIONE CLASSIFICAZIONE DELLE POLIGONAZIONE ANGOLI DI DIREZIONE POLIGONALI APERTE ESEMPIO 01 CONSIDERAZIONE SU ERRORI COMMESSI POLIGONALI CHIUSE ESEMPIO 02 POLIGONALI APERTE VINCOLATE AGLI ESTREMI ESEMPIO 03 APERTURA E CHIUSURA A TERRA DI POLIGONALI APERTE ESEMPIO 04 ESERCIZI SU POLIGONALI APERTE POLIGONALI CHIUSE POLIGONALI APERTE VINCOLATE AGLI ESTREMI APERTURA E CHIUSURA A TERRA DI POLIGONALI APERTE LabTopoMoreA Pagina 1 di 13
2 POLIGONALI APERTE VINCOLATE AGLI ESTREMI Lo schema geometrico di una poligonale aperta vincolata agli estremi è una spezzata aperta che unisce due punti di coordinate note. Da ciascun estremo della spezzata inoltre deve essere visibile un altro punto (di orientamento) anch esso di coordinate note. I punti visibili dagli estremi in genere sono distinti [caso di fig. a)] ma possono coincidere con uno stesso punto [caso di fig. b)]. LabTopoMoreA Pagina 2 di 13
3 Ai fini della trattazione consideriamo la poligonale ABCDEF di fig.a) che si sviluppa tra i punti A e F di coordinate [E A ; N A ], [E F ; N F ]. Dagli estremi A e F siano rispettivamente visibili i punti P e Q di coordinate [E P ;N P ], [E Q ; N Q ]. Della poligonale si misurano gli angoli: e i lati:,, Una volta calcolati gli angoli di direzione (azimut) dei lati PA e FQ : ) (*) Si calcolano gli angoli di direzione (azimut) che definiremo provvisori o non compensati (non corretti)perché calcolati con gli angoli misurati che con buona probabilità presentano errori: PA : noto AB = PA g DE = CD g BC = AB g EF = DE g CD = BC + γ 200 g FQ = EF g è da sottolineare che l azimut FQ non è corretto perché dedotto col trasporto degli angoli che sono affetti da errore. L azimut FQ calcolato accumula in sé tutti gli errori eventualmente commessi nella misura degli angoli. LabTopoMoreA Pagina 3 di 13
4 L errore di chiusura angolare si potrà determinare dalla differenza tra l azimut FQ e l azimut FQ (*) corretto calcolato direttamente con le coordinate dei punti F e Q. L errore poligonali chiuse. va confrontato con la tolleranza angolare determinata come per le NOTA: [A scopo didattico adottiamo come coefficiente 0 g,03=0, 027] Se si procede alla compensazione angolare degli azimut calcolando l errore unitario o la correzione da apportare a ciascun angolo. = /n La correzione viene eseguita in funzione della posizione dell azimut (un azimut ij calcola accumula in sé tutti gli errori eventualmente commessi nella misura degli angoli precedenti), quindi: AB = AB - BC = BC - 2 CD = CD - 3 DE = DE - 4 EF = EF - 5 e per controllo FQ = FQ - 6 Se invece dovesse risultare ci troveremmo in presenza di un errore grossolano, il calcolo dovrebbe essere abbandonato e si dovrebbero misurare nuovamente gli angoli della poligonale. NOTA: [A scopo didattico risolviamo l esercizio, specificando che: SI SVOLGE COMUNQUE L ESERCIZIO, ANCHE LE L ERRORE E MAGGIORE DELLA TOLLERANZA.] Il calcolo procede con la determinazione delle coordinate parziali provvisorie o non compensate con le stesse relazioni formulate per le poligonali chiuse: LabTopoMoreA Pagina 4 di 13
5 (E B ) A =AB * sen AB (N B ) A =AB * cos AB (E C ) B =BC * sen BC (N C ) B =BC * cos BC (E D ) C =CD * sen CD (N D ) C =CD * cos CD (E E ) D =DE * sen DE (N E ) D =DE * cos DE (E F ) E =EA * sen EF (N F ) E =EA * cos EF Se la lunghezza dei lati della spezzata fosse corretta dovrebbe risultare: ) ) In realtà, per effetto degli inevitabili errori di misura risulterà: ) ) Che rappresentano le componenti dell errore di chiusura lineare lungo gli assi coordinate. L errore di chiusura lineare complessivo risulterà quindi: Errore di chiusura lineare vale: Esso va confrontato con le formule della tolleranza lineare per verificare che sia: T L (*) La compensazione dell errore di chiusura lineare viene compiuta distribuendo gli errori tra le coordinate parziali in maniera proporzionale alla loro lunghezza così come già visto per le poligonali chiuse. Si calcolano gli errori unitari: (o errori per unità di proiezione della poligonale sugli assi coordinati) e si calcolano le coordinate parziali compensate tramite le formule ricorrenti: Si possono determinare le coordinate parziali compensate con le seguenti relazioni: (E B ) A =(E B ) A - U E * (E B ) A (N B ) A =(N B ) A - U N * (N B ) A (E C ) B =(E C ) B - U E * (E C ) B (N C ) B =(N C ) B - U N * (N C ) B (E D ) C =(E D ) C - U E * (E D ) C (N D ) C =(N D ) C - U N * (N D ) C (E E ) D =(E E ) D - U E * (E E ) D (N E ) D =(N E ) D - U N * (N E ) D (E F ) E =(E F ) E - U E * (E F ) E (N F ) E = (N F ) E - U N * (N F ) E LabTopoMoreA Pagina 5 di 13
6 Si calcolano infine le coordinate totali di tutti i vertici con le formule: E B = E A + (E B ) A E C = E B + (E C ) B E D = E C + (E D ) C E E = E D + (E E ) D N B = N A + (N B ) A N C = N B + (N C ) B N D = N C + (N D ) C N E = N D + (N E ) D Per controllo: E F = E E + (E F ) E N F = N E + (N F ) E NOTA: Se si fosse proceduto al calcolo degli angoli compensati e al successivo determinazione degli azimut così come si è visto per le poligonali chiuse avremmo ottenuto: LabTopoMoreA Pagina 6 di 13
7 ESEMPIO 03: POLIGONALE APERTA VINCOLATA La poligonale aperta ABCDEF si sviluppa tra i punti A ed F di coordinate note: E A = 109,882 m E F = 557,045 m N A = 128,536 m N F = 139,173 m. Dai punti A ed F si sono collimati rispettivamente i punti P e Q anch'essi di coordinate note: E P = - 518,505 m E Q = 1260,562 m N P = 413,552 m N Q = 238,584 m Gli elementi della poligonale sono stati rilevati in campagna con un teodolite centesimale a graduazione destrorsa dotato di distanziometro. Nel rilievo si sono raccolte le osservazioni riportate nel seguente LIBRETTO DELLE MISURE: Calcolare le coordinate compensate dei vertici B, C, D, E. LabTopoMoreA Pagina 7 di 13
8 Calcolo degli angoli: =187,6998 g -29,2754 g =158,4244 g =392,7656 g -201,0251 g =191,7405 g =284,5336 g -66,6165 g =217,9171 g = 103,0692 g -294,3172 g +400 g =208,7520 g =136,3554 g -307,4153 g +400 g =228,9401 g =179,4260 g -21,2150 g =158,2110 g Calcolo degli angoli di direzione (azimut) e : = Si calcolano gli angoli di direzione (azimut) non compensati: PA * : 127,1083 g AB = PA g =127,1083 g +158,4244 g -200 g =85,5327 g BC = AB g =85,5327 g +191,7405 g -200 g =77,2732 g CD = BC + γ 200 g =77,2732 g +217,9171 g -200 g =95,1903 g DE = CD g =95,1903 g +208,7520 g -200 g =103,9423 g EF = DE g =103,9423 g +228,9401 g -200 g =132,8824 g FQ = EF g =132,8824 g +158,2110 g -200 g =91,0934 g Calcolo l errore di chiusura angolare : = 91,0934 g -91,0634 g =0,0300 g Calcolo la tolleranza angolare: Calcolo l errore unitario: LabTopoMoreA Pagina 8 di 13
9 Calcolo degli compensati: Per controllo: Calcolo delle coordinate parziali non compensate: (E B ) A =AB * sen AB = 49,872 sen 85,5277g= 48,589 m (E C ) B =BC * sen BC = 103,413 sen 77,2332g= 96,887 m (E D ) C =CD * sen CD = 114,754 sen 95,1753g= 114,425 m (E E ) D =DE * sen DE = 121,462 sen 103,6223g= 121,232 m (E F ) E =EA * sen EF = 76,021 sen 132,8574g= 66,118 m (N B ) A =AB * cos AB = 49,872 cos 85,5277g= 11,240 m (N C ) B =BC * cos BC = 103,413 cos 77,2332g= 36,154 m (N D ) C =CD * cos CD = 114,754 cos 95,1753g= 8,688 m (N E ) D =DE * cos DE = 121,462 cos 103,6223g= -7,479 m (N F ) E =EA * cos EF = 76,021 cos 132,8574g= -37,517 m Calcolo gli errori di misura lungo gli assi: ) = 0,088 m )= 0,449 m (sviluppo della poligonale) Calcolo l errore di chiusura lineare: LabTopoMoreA Pagina 9 di 13
10 Calcolo la Tolleranza lineare: <T L Calcolo la somma dei valori assoluti delle coordinate parziali: Calcolo gli errori unitari: Calcolo le coordinate parziali compensate: (E B ) A =(E B ) A - U E * (E B ) A = 48,579 m (N B ) A =(N B ) A - U N * (N B ) A = 11,190 m (E C ) B =(E C ) B - U E * (E C ) B = 96,868 m (N C ) B =(N C ) B - U N * (N C ) B = 35,993 m (E D ) C =(E D ) C - U E * (E D ) C = 114,403 m (N D ) C =(N D ) C - U N * (N D ) C = 8,649 m (E E ) D =(E E ) D - U E * (E E ) D = 121,208 m (N E ) D =(N E ) D - U N * (N E ) D = -7,512 m (E F ) E =(E F ) E - U E * (E F ) E = 48,579 m (N F ) E = (N F ) E - U N * (N F ) E = -37,684 m Calcolo delle coordinate totali dei vertici: E A = 109,882 m E B = E A + (E B ) A = 158,461 m E C = E B + (E C ) B = 255,329 m E D = E C + (E D ) C = 369,732 m E E = E D + (E E ) D = 490,940 m per controllo: E F = E E + (E F ) E = 557,045 m N A = 128,726 m N B = N A + (N B ) A = 139,726 m N C = N B + (N C ) B = 175,719 m N D = N C + (N D ) C = 184,368 m N E = N D + (N E ) D = 176,856 m per controllo: N F = N E + (N F ) E = 139,172 m LabTopoMoreA Pagina 10 di 13
11 RAPPRESENTAZIONE GRAFICA IN SCALA 1:N LabTopoMoreA Pagina 11 di 13
12 LabTopoMoreA Pagina 12 di 13
13 LabTopoMoreA Pagina 13 di 13
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA
DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA PROGRAMMA SVOLTO DI TOPOGRAFIA A.S. 2013-2014 CLASSE IIIB CAT ELEMENTI DI TRIGONOMETRIA E GONIOMETRIA (Unità A1-A2-A3) Unità di misura degli angoli e trasformazioni
POLIGONALI APERTE ORIENTATE ESERCIZI. A 2 (X A3 = +186,54 m Y A3 = +149,65 m) A 2 (X A4 = +272,65 m Y A4 =+166,47 m)
POLIGONALI APERTE ORIENTATE ESERCIZI 1_ È stata rilevata la poligonale AA l A 2 A 3 A 4 B, collegante i due punti A e B di coordinate: A (X A = -37,29 m Y A = +59,74 m) B (X B = +321,50 m Y B = +177,78
ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1
Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna
UNITÀ I1-3 LE INTERSEZIONI
UNITÀ I1-3 LE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti
LE LIVELLAZIONI. Sono delle operazioni topografiche che consentono di misurare il dislivello tra due punti. Si possono classificare in:
LE LIVELLZIONI Sono delle operazioni topografiche che consentono di misurare il dislivello tra due punti. Si possono classificare in: TCHEOMETRIC d
DIVISIONE DELLE AREE - ESERCIZI ESERCIZIO N.1
ESERCIZIO N.2 ESERCIZIO N.1 AB=80,34 m AC=144,86 m a=63 c,7261 Il terreno va suddiviso in tre parti S 1, S 2, S 3 direttamente proporzionali ai coefficienti m 1 =2,5 m 2 =3 m 3 =4 con due dividenti uscenti
COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE
OMLMTI DI TOOGRFI 1. OORDIT LIMTRIH In Topografia le determinazioni planimetriche di punti vengono effettuate partendo da altri punti di coordinate note (punti trigonometrici). Il sistema di coordinate
E 100 100 N 100 RILIEVI PLANIMETRICI
200 101 E 100 100 103 102 203 202 201 N 100 300 RILIEVI PLANIMETRICI RILIEVI TOPOGRAFICI CONTROLLO E COMPENSAZIONE RETI DI INQUADRAMENTO SCHEMI GEOMETRICI RETI DI INQUADRAMENTO TRIANGOLAZIONI Indice INTERSEZIONI
IL PRINCIPIO DELLE INTERSEZIONI
IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti a integrazione di altre
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di
GEOMETRIA ANALITICA. Il Piano cartesiano
GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,
Il rilievo topografico ha lo scopo di determinare, mediante misure, la posizione completa dei punti
CELERIMENSUR Il rilievo topografico ha lo scopo di determinare, CRITERI ORGNIZZTIVI DEI RILIEVI mediante misure, la posizione completa dei punti individuati sul terreno, calcolandone le coordinate plano
CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá
GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l operare con le misure angolari CONOSCENZE 1. gli enti
I.S.I.S. CUCUZZA SEZ. GEOMETRI C A L T A G I R O N E PROGRAMMA DI TOPOGRAFIA
I.S.I.S. CUCUZZA SEZ. GEOMETRI C A L T A G I R O N E PROGRAMMA DI TOPOGRAFIA Svolto nella classe IV Sezione C ANNO SCOLASTICO 2005-2006 I GONIOMETRI - Premessa - Microscopio semplice e composto - Il teodolite
TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo
TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L
Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli
Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è
Svolgimento prova di esame anno 2004
Svolgimento prova di esame anno 2004 Calcolo delle coordinate cartesiane (x,y) dei punti del rilievo rispetto a sistema di riferimento locale avente origine nella stazione 100 In prima analisi occorre
Il problema di Pothenot-Snellius
Il problema di othenot-snellius impostazione alternativa a quella proposta nel testo) Le intersezioni dirette in avanti e laterale) richiedono un semplice e rapido lavoro di calcolo, ma sono spesso complicate
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
PIANO DI LAVORO PREVENTIVO a. s INDIRIZZO COSTRUZIONI AMBIENTE E TERRITORIO
ISTITUTO TECNICO PER GEOMETRI " PACINOTTI" PIANO DI LAVORO PREVENTIVO a. s. 2016-2017 INDIRIZZO COSTRUZIONI AMBIENTE E TERRITORIO Classe 4E Materia TOPOGRAFIA Docente Prof. Domenico Stumpo LIVELLO DI PARTENZA
Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log
Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano
RILIEVO DIRETTO: strumenti e metodi. dr. arch. anna christiana maiorano _03
RILIEVO DIRETTO: strumenti e metodi dr. arch. anna christiana maiorano gli strumenti per il rilevamento architettonico Nel rilevamento architettonico e urbano vengono impiegati, per compiere le diverse
CONOSCENZE 1. gli elementi e le caratteristiche
GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e saper operare con esse l conoscere gli enti fondamentali della geometria
Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno
I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,
Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
RETI TOPOGRAFICHE. 1. Premessa
RETI TOPOGRAFICHE 1. Premessa Una rete topografica è costituita da un insieme di punti, detti vertici della rete, connessi fra di loro da un insieme di misure di distanze e di angoli azimutali e zenitali;
Relazione di fisica ESPERIMENTO N 1
ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
La topografia (il cui termine derivante dal greco è composto da. topos = luogo e graphos = grafia) è la tecnica che ha per oggetto o lo
RILIEVI E MISURE Topografia e rilievi topografici Misure di angoli e distanze Sistemi di riferimento I rilievi planimetrici di dettaglio Indice. oordinate polari. Poligonali aperte. Trilaterazioni. oordinate
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI
3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:
Topografia e cartografia digitale
Prof. Fausto Sacerdote Topografia e cartografia digitale Capitolo 4. Reti topografiche dispense del corso Modulo Professionalizzante Corso per Tecnico in Cartografia Tematica per i Sistemi Informativi
e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b
8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B
Lezione 3. PROBLEMI GEODETICI DELLA TOPOGRAFIA (estratto dal testo Inghilleri: Topografia) Triangolo sferico
Lezione 3 PROBLEMI GEODETICI DELLA TOPOGRAFIA (estratto dal testo Inghilleri: Topografia) Teorema di LEGENDRE. Il Teorema di LEGENDRE, permette di risolvere un triangolo sferico, contenuto nel campo geodetico,
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2
7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)
APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2
PPUNTI DI LORTORIO DI TOPOGRFI MODULO PROLEMI SULLE COORDINTE CRTESINE E POLRI PROF. I.T.P. TRMONTNO NGELO PREMESS Per individuare la posizione di un punto nei piano, e per la successiva rappresentazione
Appunti. Calcolatrice elettronica con angoli centesimali. Carta. Penna. Matita. Gomma. Squadrette. Righello. Scalimetro. Compasso
Appunti. Calcolatrice elettronica con angoli centesimali Carta Penna Matita Gomma Squadrette Righello Scalimetro Compasso Goniometro centesimale Penne colorate Registratore Videocamera Ripasso: Di un triangolo
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
La teoria degli errori
La teoria degli errori TEORIA 1 Errori nelle misure indirette: funzioni lineari Errore medio unitario ed errore relativo 3 Errori nelle misure indirette: funzioni non lineari 4 Errori nella misura della
RIDUZIONE DELLE DISTANZE
RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari
GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá
GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE
GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE si dimostra che la linea di minor lunghezza che congiunge due punti sull ellissoide è la geodetica:
g P 200 AB B A B A arctan Y A B d sen
INTERSEZIONE IN AVANTI MEDODI DI RIATTACCO (INT. INVERSA, ERTURA A TERRA) INTERSEZIONE IN AVANTI Elementi noti: A(X A ;Y A ) B (X B ; Y B ) Elementi misurati: A e B Incognite: P (X P ; Y P ) Calcolo ell
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma
L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%
UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
ELEMENTI DI TOPOGRAFIA - ESERCIZI
ELEMENTI I TOPOGRFI ESERIZI 1. ato il quadrilatero, i cui vertici si seguono in senso antiorario, di cui si conoscono le coordinate dei vertici e rispetto a un sistema di assi ortogonali: E = 23,55 m N
Indice. Concetti generali. Concetti generali. Metodi numerici. Concetti generali. Concetti generali. Area di un triangolo e formula di camminamento
LOLO DELLE REE oncetti generali Metodi numerici oncetti generali rea di un triangolo e formula di camminamento Formula di Erone oordinate polari oordinate cartesiane Indice Metodi grafo numerici Trilaterazioni
ISTITUTO TECNICO PER GEOMETRI PACINOTTI. PIANO DI LAVORO PREVENTIVO a. s CORSO COSTRUZIONI AMBIENTE E TERRITORIO
ISTITUTO TECNICO PER GEOMETRI PACINOTTI PIANO DI LAVORO PREVENTIVO a. s. 2016-2017 CORSO COSTRUZIONI AMBIENTE E TERRITORIO Classe 3C Materia TOPOGRAFIA Docente Prof. Domenico Stumpo LIVELLO DI PARTENZA
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
LE DISEQUAZIONI LINEARI
Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
ATTIVITA ESTIVA PER ALLUNNI CON GIUDIZIO SOSPESO MATERIA: TOPOGRAFIA E FOTOGRAMMETRIA DOCENTE: Prof. TONIOLO Serena
NNO SCOLSTICO 2011-2012 CLSSE 4 G TTIVIT ESTIV PER LLUNNI CON GIUDIZIO SOSPESO MTERI: TOPOGRFI E FOTOGRMMETRI DOCENTE: Prof. TONIOLO Serena Dopo aver rivisto i contenuti degli argomenti trattati durante
Simulazione seconda prova
Simulazione seconda prova IL TEM E dato un appezzamento di terreno, costituito da due particelle catastali adiacenti, individuate in mappa dai nn. 4-43; i vertici di queste due particelle sono indicati,
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
RETTIFICHE E SPOSTAMENTI
ˆ Ĉ ω RETTIFIHE E SPOSTETI IDIE oncetti generali RETTIFIHE onfine bilatero con un confine rettilineo uscente dal vertice onfine bilatero con un confine rettilineo uscente da un punto in posizione nota
PROGRAMMA SVOLTO E COMPITI ESTIVI
Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Capitolo 2 Le misure delle grandezze fisiche
Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di
RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO
Corsi di Laurea in: - Gestione tecnica del territorio agroforestale e Sviluppo rurale - Scienze forestali e ambientali - Costruzioni rurali e Topografia RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO 4. Il
Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5
Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse
SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO:
ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico
TRIGONOMETRIA E COORDINATE
Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli
3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia
3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale
Excel. Sviluppo di una poligonale aperta non compensabile. 1. Preparazione del foglio LABORATORIO INFORMATICO
SVILUPPO DI UNA POLIGONALE APERTA Excel Sviluppo di una poligonale aperta non compensabile DI COSA CI OCCUPIAMO In questa esercitazione svilupperemo un esercizio numerico che si riferisce a una poligonale
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
COLLEGIO GEOMETRI E GEOMETRI LAUREATI DELLA PROVINCIA DI TRENTO. Corso Abilitanti Geometri 2016 TOPOGRAFIA
Trento, li 16/09/2016 Corsista (cognome/nome) Docente Walter Iseppi geometra Esercitazioni di calcolo sul MODULO 1 trattato nella sessione del 15 maggio 2016 ------------------------------------------------------------------------------------------------------------------------------------------------
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto.
Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. R V T P S U Z Colora di verde le caselle corrispondenti agli angoli piatti e di rosso quelle
M E T R O L O G I A D O F F I C I N A (Distillazione verticale)
1 M E T R O L O G I A D O F F I C I N A (Distillazione verticale) OBIETTIVI: A) Conoscenza delle caratteristiche degli strumenti di misura; B) Capacità di leggere e utilizzare calibri a corsoio e micrometri
Questionario di TEORIA DEGLI ERRORI, per la classe 3^ Geometri
Questionario di TEORIA DEGLI ERRORI, per la classe 3^ Geometri Questo questionario è impostato su 18 domande disponibili e ideate per la verifica prevista dopo la parte di corso fino ad oggi svolta. Tutte
ISTITUTO DI ISTRUZIONE SUPERIORE CRESCENZI PACINOTTI. CONSUNTIVO DELLA PROGRAMMAZIONE SVOLTA a. s
ISTITUTO DI ISTRUZIONE SUPERIORE CRESCENZI PACINOTTI CONSUNTIVO DELLA PROGRAMMAZIONE SVOLTA a. s. 2015-2016 Classe 4GEO Materia TOPOGRAFIA/COSTRUZIONI Docente Prof. Domenico Stumpo OBIETTIVI DELL APPRENDIMENTO
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Modulo 3: Unità Didattica 1: CALCOLO DEI VOLUMI
Modulo 3: SPIANAMENTI Unità Didattica 1: CALCOLO DEI VOLUMI 1.1 PREMESSA Spianare un terreno significa trasformare la superficie fisica irregolare dello stesso in una superficie piana orizzontale o inclinata,
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Elementi di Geometria euclidea
Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto
Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza
Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza
2. SIGNIFICATO FISICO DELLA DERIVATA
. SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo
SISTEMI DI RIFERIMENTO CARTOGRAFICI
SISTEMI DI RIFERIMENTO CARTOGRAFICI Nelle operazioni di restituzione i punti rilevati vengono elaborati e rappresentati nei seguenti sistemi di riferimento: 1. LOCALE (o ARBITRARIO) - Elaborazioni sul
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
Nel Sistema Internazionale l unità di misura dell angolo è il radiante
Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO MATEMATICA
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO 014-015 MATEMATICA II 1 LE DISEQUAZIONI LINEARI x x 5 7 x 4 x x x xx 5x x 4x impossibile 5x 1x x 1 x 6x x 1 x x x 5 0 1 x x 0
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
