Le Poligonali ESERCITAZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le Poligonali ESERCITAZIONE"

Transcript

1 Università di rescia - Corso di Toporafia Le olionali ESERCITZIONE Esercizio 1 Intersezione in avanti con misure anolari L intersezione in avanti si applica quando si conosce la posizione planimetrica di due punti e si vuole determinare la posizione di un terzo punto, misurando li anoli orizzontali formati dalla coniunente i punti noti con le direzioni che vanno al punto inconito. γ X m Y 1 m β X 13 m Y 1.5 m O θ θ θ β Fiura 1 - Schema di rilievo per intersezione in avanti Siano e i punti noti attraverso le loro coordinate e sia il punto inconito; siano e β li anoli misurati. ffinché la soluzione del problema sia univocamente determinata occorre che sia noto da quale parte rispetto al semento si trovi il punto ; sia quindi per ipotesi che il punto si trovi alla sinistra di un osservatore che da uardi. Testo coordinato da rof. Giorio Vassena

2 Università di rescia - Corso di Toporafia L anolo γ si ricava per differenza: γ 00 ( + β ) Note le coordinate di e si ricava l azimut θ : arct a E quindi l azimut θ : Il lato misura: ( ) + ( ) m er trovare il lato si applica il teorema dei seni da cui senγ senβ senβ m senγ Si procede al calcolo della coordinate cartesiane partendo da quelle polari: + + sen sen m + + cos cos m Testo coordinato da rof. Giorio Vassena

3 Università di rescia - Corso di Toporafia Esercizio - Intersezione in avanti con misure di distanza γ X m Y 1 m m m X 13 m Y 1.5 m O θ θ θ β Note le coordinate di e si ricava l azimut θ : Il lato misura: arct a ( ) + ( ) m Il teorema di Carnet applicato al trianolo assume la forma: + + cos e nel caso in specie, per determinare l anolo, si scrive la: cos E si ricava l anolo: arccos Noto l anolo in, per propaare le coordinate cartesiane, si ricava l azimut: Si procede al calcolo della coordinate cartesiane partendo da quelle polari: + + sen sen m + + cos cos m Testo coordinato da rof. Giorio Vassena

4 Università di rescia - Corso di Toporafia Esercizio 3 olionale aperta vincolata ali estremi ssenati i dati seuenti si effettui la compensazione empirica della polionale e si calcolino le coordinate compensate dei vertici 1,,3,4. X Y m X m m Y m X Y m X m Y Q Q m m β γ δ d m d m d m d m d m Σd i m 1 Α 1 1 γ β O 4 δ Q Q Testo coordinato da rof. Giorio Vassena

5 Università di rescia - Corso di Toporafia Si calcolano le direzioni relative ai sementi di vincolo e Q: arct Q Q arct Q E li azimut in ciascuno dei vertici: β γ δ I Q L azimut θ Q calcolato per propaazione differisce dall omoloo calcolato a partire dalle coordinate note della quantità: I Q Q che costituisce l errore di chiusura anolare. Esso deve risultare inferiore alla tolleranza t che è espressa dalla: t ± 3 σ n ± cc dove n è il numero deli anoli misurati, che in questo caso sono 6, mentre σ è lo s.q.m. sulla misura deli anoli, pari a 10 cc L errore di chiusura anolare viene ripartito in parti uuali su ciascuno di tali anoli. ε / Si apportano le correzioni ali anoli e alle direzioni: * ε * β* γ * δ * * cc * * * * * 4 * Q * cc * β* γ * δ* * Si procede quindi al calcolo delle componenti in coordinate dei lati della polionale e Testo coordinato da rof. Giorio Vassena

6 Università di rescia - Corso di Toporafia alle coordinate: unto d senθ* [m] d cosθ* [m] X [m] Y [m] 151, , ,53-89,913 10,178 49,054 05,076-15,44 15,53 339, ,449 75, ,70 415, ,431-93, ,71 11, ,90-59, ,173 61,691 Le coordinate calcolate del punto differiscono da quelle assenate come dato. La differenza tra la posizione di calcolata e quella nota è detta errore di chiusura laterale l: 0.01m 0.04m l m L errore è ampiamente inferiore alla tolleranza l sia minore della tolleranza sulla chiusura laterale, pari a tl p di m Le correzioni unitarie valono: µ d µ d i i E le coordinate compensate:. unto (d senθ ) - d µ [m] (d cosθ ) - d µ [m] X [m] Y [m] 151, , ,55-89,907 10,176 49,060 05,073-15,35 15,49 339, ,446 75,59 464, , ,4-93, ,61 11, ,900-59, ,161 61,733 Testo coordinato da rof. Giorio Vassena

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

UNITÀ I1-3 LE INTERSEZIONI

UNITÀ I1-3 LE INTERSEZIONI UNITÀ I1-3 LE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti

Dettagli

BILATERE e TRILATERE

BILATERE e TRILATERE ILTERE e TRILTERE Chiameremo bilatera la sequenza di due lati consecutivi facenti parte di un indefinito perimetro e caratterizzati dall angolo tra essi compreso. Chiameremo trilatera la sequenza di tre

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE

COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE OMLMTI DI TOOGRFI 1. OORDIT LIMTRIH In Topografia le determinazioni planimetriche di punti vengono effettuate partendo da altri punti di coordinate note (punti trigonometrici). Il sistema di coordinate

Dettagli

DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA

DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA PROGRAMMA SVOLTO DI TOPOGRAFIA A.S. 2013-2014 CLASSE IIIB CAT ELEMENTI DI TRIGONOMETRIA E GONIOMETRIA (Unità A1-A2-A3) Unità di misura degli angoli e trasformazioni

Dettagli

RETI TOPOGRAFICHE. 1. Premessa

RETI TOPOGRAFICHE. 1. Premessa RETI TOPOGRAFICHE 1. Premessa Una rete topografica è costituita da un insieme di punti, detti vertici della rete, connessi fra di loro da un insieme di misure di distanze e di angoli azimutali e zenitali;

Dettagli

Moto parabolico. Mauro Saita Versione provvisoria, ottobre 2012.

Moto parabolico. Mauro Saita   Versione provvisoria, ottobre 2012. Moto parabolico. Mauro Saita e-mail: [email protected] Versione provvisoria, ottobre 2012. 1 Moto parabolico. Gli esercizi contrassenati con (*) sono più difficili. Problema 1.1 (Lancio di un proiettile.).

Dettagli

2) Le proprietà delle potenze: semplifica le seguenti espressioni numeriche applicando le ben note proprietà delle potenze.

2) Le proprietà delle potenze: semplifica le seguenti espressioni numeriche applicando le ben note proprietà delle potenze. Serie Estate 2017.Tecnica di calcolo Funzioni. III Media. Cerca di risolvere questi esercizi, senza l utilizzo della calcolatrice, che serve solo per controllare il tuo lavoro! Distribuisci il tuo lavoro

Dettagli

g P 200 AB B A B A arctan Y A B d sen

g P 200 AB B A B A arctan Y A B d sen INTERSEZIONE IN AVANTI MEDODI DI RIATTACCO (INT. INVERSA, ERTURA A TERRA) INTERSEZIONE IN AVANTI Elementi noti: A(X A ;Y A ) B (X B ; Y B ) Elementi misurati: A e B Incognite: P (X P ; Y P ) Calcolo ell

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

Progetto di un raccordo a raggio variabile la clotoide

Progetto di un raccordo a raggio variabile la clotoide appendice B Proetto di un raccordo a raio variabile la clotoide Paina 29 del testo B.1 Esempio dell inserimento di una clotoide nel tracciato stradale Si ipotizza di dover realizzare una curva tra i due

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

IL PRINCIPIO DELLE INTERSEZIONI

IL PRINCIPIO DELLE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti a integrazione di altre

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Topografia e cartografia digitale

Topografia e cartografia digitale Prof. Fausto Sacerdote Topografia e cartografia digitale Capitolo 4. Reti topografiche dispense del corso Modulo Professionalizzante Corso per Tecnico in Cartografia Tematica per i Sistemi Informativi

Dettagli

grandezze fisiche vettoriali vettori : coordinate polari Appunti di Fisica Prof. Calogero Contrino

grandezze fisiche vettoriali vettori : coordinate polari Appunti di Fisica Prof. Calogero Contrino 006 grandezze fisiche vettoriali vettori : coordinate polari rof. Calogero Contrino Rappresentazione di un vettore in coordinate polari Dato un vettore in forma cartesiana A = A x i + A y j (vedi fig.1),

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

RETTIFICHE E SPOSTAMENTI

RETTIFICHE E SPOSTAMENTI ˆ Ĉ ω RETTIFIHE E SPOSTETI IDIE oncetti generali RETTIFIHE onfine bilatero con un confine rettilineo uscente dal vertice onfine bilatero con un confine rettilineo uscente da un punto in posizione nota

Dettagli

Il problema di Pothenot-Snellius

Il problema di Pothenot-Snellius Il problema di othenot-snellius impostazione alternativa a quella proposta nel testo) Le intersezioni dirette in avanti e laterale) richiedono un semplice e rapido lavoro di calcolo, ma sono spesso complicate

Dettagli

determina il valore del parametro corrispondente alla retta del fascio che individua sugli assi cartesiani un triangolo di area pari a 4.

determina il valore del parametro corrispondente alla retta del fascio che individua sugli assi cartesiani un triangolo di area pari a 4. Compito di Matematica / Classe 3Dsa / 20-dicembre-17 / Alunno: ES. 1. Studia i fasci di rette dati dalle equazioni: α: kx + y + k 1 = 0, con k R; β: h + 1 x + 1 h y + h 1 = 0, con h R e determina l equazione

Dettagli

La circonferenza e i poligoni inscritti e circoscritti

La circonferenza e i poligoni inscritti e circoscritti Liceo Scientifico Isacco Newton - Roma Le lezioni multimediali di GeoGebra Italia efinizioni Luogo Geometrico Insieme di tutti e soli punti del piano che godono di una certa proprietà, detta proprieà caratteristica

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

E 100 100 N 100 RILIEVI PLANIMETRICI

E 100 100 N 100 RILIEVI PLANIMETRICI 200 101 E 100 100 103 102 203 202 201 N 100 300 RILIEVI PLANIMETRICI RILIEVI TOPOGRAFICI CONTROLLO E COMPENSAZIONE RETI DI INQUADRAMENTO SCHEMI GEOMETRICI RETI DI INQUADRAMENTO TRIANGOLAZIONI Indice INTERSEZIONI

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico La parabola Giovanni Torrero Aprile 2006 1 La poarabola come luogo geometrico Definizione 1 (La parabola come luogo geometrico) La parabola è il luogo geometrico formato da tutti e soli i punti del piano

Dettagli

CALCOLI SUL PIANO DI GAUSS Esercizi tratti da Monti, Pinto, Trattamento dei dati topografici e cartografici,clup

CALCOLI SUL PIANO DI GAUSS Esercizi tratti da Monti, Pinto, Trattamento dei dati topografici e cartografici,clup CORSO DI TOOGRAFIA A - A.A. 006-007 SRCITAZIOI - 0.05.07 CALCOLI SUL IAO DI GAUSS sercizi tratti a Monti, into, Trattamento ei ati toporafici e cartorafici,clup SRCIZIO Si vuol calcolare lunhezza e azimut

Dettagli

Trigonometria. Scopo della trigonometria. Teoremi fondamentali sul triangolo rettangolo

Trigonometria. Scopo della trigonometria. Teoremi fondamentali sul triangolo rettangolo Trigonometria Scopo della trigonometria Scopo della trigonometria piana è la risoluzione di un triangolo, cioè la determinazione dei suoi sei elementi, i tre lati e i tre angoli, quando se ne conoscano

Dettagli

Svolgimento prova di esame anno 2004

Svolgimento prova di esame anno 2004 Svolgimento prova di esame anno 2004 Calcolo delle coordinate cartesiane (x,y) dei punti del rilievo rispetto a sistema di riferimento locale avente origine nella stazione 100 In prima analisi occorre

Dettagli

Lezione 3. PROBLEMI GEODETICI DELLA TOPOGRAFIA (estratto dal testo Inghilleri: Topografia) Triangolo sferico

Lezione 3. PROBLEMI GEODETICI DELLA TOPOGRAFIA (estratto dal testo Inghilleri: Topografia) Triangolo sferico Lezione 3 PROBLEMI GEODETICI DELLA TOPOGRAFIA (estratto dal testo Inghilleri: Topografia) Teorema di LEGENDRE. Il Teorema di LEGENDRE, permette di risolvere un triangolo sferico, contenuto nel campo geodetico,

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile 5//5 Calcolo dierenziale per unzioni di una variabile Derivata di una unzione De. Sia : a,br, si deinisce derivata di nel punto a,b il numero, se inito,: d dy, y,,, D, Dy d d 5//5 Derivata di una unzione

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

Esercitazione: la scelta del consumatore.

Esercitazione: la scelta del consumatore. . Esercizio., La funzione di utilità di un consumatore è ( ) u. Il rezzo del bene è, il rezzo del bene è ed il reddito del consumatore è m 8. Determinare il aniere ottimo ( *, *) er il consumatore. Soluzione.

Dettagli

APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2

APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2 PPUNTI DI LORTORIO DI TOPOGRFI MODULO PROLEMI SULLE COORDINTE CRTESINE E POLRI PROF. I.T.P. TRMONTNO NGELO PREMESS Per individuare la posizione di un punto nei piano, e per la successiva rappresentazione

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Calcolo della superficie, stima del valore di mercato e frazionamento di un lotto edificabile con demolizione dell esistente

Calcolo della superficie, stima del valore di mercato e frazionamento di un lotto edificabile con demolizione dell esistente Calcolo della superficie, stima del valore di mercato e frazionamento di un lotto edificabile con demolizione dell esistente SESSIONE ANNO 2007 SECONDA PROVA SCRITTO-GRAFICA Nella periferia di una città

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Appunti. Calcolatrice elettronica con angoli centesimali. Carta. Penna. Matita. Gomma. Squadrette. Righello. Scalimetro. Compasso

Appunti. Calcolatrice elettronica con angoli centesimali. Carta. Penna. Matita. Gomma. Squadrette. Righello. Scalimetro. Compasso Appunti. Calcolatrice elettronica con angoli centesimali Carta Penna Matita Gomma Squadrette Righello Scalimetro Compasso Goniometro centesimale Penne colorate Registratore Videocamera Ripasso: Di un triangolo

Dettagli

Principi di trigonometria sferica

Principi di trigonometria sferica Appendice B Principi di trigonometria sferica B.1 La Sfera Celeste Per determinare la posizione di un astro in cielo in un certo istante si ricorre alla proiezione di questo su un ideale Sfera Celeste

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Corso sperimentale- Sessione suppletiva - a.s. 2007-2008 Soluzione di De Rosa Nicola

Corso sperimentale- Sessione suppletiva - a.s. 2007-2008 Soluzione di De Rosa Nicola Corso sperimentale- Sessione suppletiva - a.s. 7- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tema di: MATEMATICA a. s. 7- Siano dati un cerchio di raio r ed una sua corda AB uuale

Dettagli

Simulazione seconda prova

Simulazione seconda prova Simulazione seconda prova IL TEM E dato un appezzamento di terreno, costituito da due particelle catastali adiacenti, individuate in mappa dai nn. 4-43; i vertici di queste due particelle sono indicati,

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Poligonali. Poligonali in topografia. y A. (Estratto dal testo Inghilleri - Topografia Generale Editrice UTET Torino)

Poligonali. Poligonali in topografia. y A. (Estratto dal testo Inghilleri - Topografia Generale Editrice UTET Torino) Poligonali (Estratto dal testo Inghilleri - Topografia Generale Editrice UTET Torino) Poligonali in topografia Lo schema della poligonale è un complesso di punti che viene rilevato ripetendo lo schema

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1 4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Contenuti: Capitolo 14 del libro di testo

Contenuti: Capitolo 14 del libro di testo Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4

Dettagli

Capitolo 1 - Elementi di trigonometria

Capitolo 1 - Elementi di trigonometria Capitolo 1 - Elementi di trigonometria 1.1 Unità di misura angolari Esistono quattro unità di misura principali degli angoli: sessagesimali, sessadecimali, centesimali e radianti. Negli angoli sessagesimali

Dettagli

1.1 Trasformazioni DI COORDINATE.

1.1 Trasformazioni DI COORDINATE. 1.1 Trasformazioni DI COORDINATE. Facendo passare per l'astro A il rispettivo verticale e il circolo orario otteniamo un triangolo sferico, detto triangolo di posizione. Detto triangolo ha per vertici

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

Test per una media - varianza nota

Test per una media - varianza nota Situazione Test per una media - varianza nota Popolazione N(µ,σ 2 ); varianza σ 2 nota. µ 0 numero reale fissato. Test di livello α per µ Statistica: Z n = X n µ 0 σ/ n. H 0 H 1 Rifiutiamo H 0 se p-value

Dettagli

Verifica di Fisica 3 a B Scientifico - 11 aprile 2011

Verifica di Fisica 3 a B Scientifico - 11 aprile 2011 Liceo Carducci Volterra - Prof. Francesco Daddi Verifica di Fisica 3 a B Scientifico - 11 aprile 2011 Reolamento: punteio di partenza 2/10. Per oni quesito si indichi una sola risposta. Oni risposta esatta

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono Unità idattica N 24 I poligoni 35 U.. N 24 I poligoni 01) efinizione di poligono 02) lcune proprietà dei poligoni 03) Somma degli angoli interni di un poligono 04) Somma degli angoli esterni di un poligono

Dettagli

MECCANICA APPLICATA ALLE MACCHINE LS

MECCANICA APPLICATA ALLE MACCHINE LS PROGRAMMA del CORSO TEORIA dei MECCANISMI Richiami di composizione dei meccanismi Richiami di cinematica I sistemi articolati piani (analisi e sintesi) e spaziali (cenni di analisi) Meccanismi con camme

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

ESERCIZI PRECORSO DI MATEMATICA

ESERCIZI PRECORSO DI MATEMATICA ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non

Dettagli

ESPERIENZA 6 La legge della riflessione

ESPERIENZA 6 La legge della riflessione ESPERIENZA 6 La legge della riflessione 1. Argomenti Determinare la direzione del raggio riflesso sulla superficie di uno specchio piano a diversi angoli di incidenza. Confrontare gli angoli di incidenza

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Il rilievo topografico ha lo scopo di determinare, mediante misure, la posizione completa dei punti

Il rilievo topografico ha lo scopo di determinare, mediante misure, la posizione completa dei punti CELERIMENSUR Il rilievo topografico ha lo scopo di determinare, CRITERI ORGNIZZTIVI DEI RILIEVI mediante misure, la posizione completa dei punti individuati sul terreno, calcolandone le coordinate plano

Dettagli