1 Continuità di una funzione

Documenti analoghi
La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

Funzioni continue. quando. se è continua x I.

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue

Autore: Enrico Manfucci - 22/03/2012 LA CONTINUITA

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

E' suciente mostrare che una delle seguenti ipotesi non vale:

06 - Continuitá e discontinuitá

Analisi Matematica 1 Soluzioni prova scritta n. 1

Infiniti e Infinitesimi

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Teoremi fondamentali dell'analisi Matematica versione 1

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

Teoria. Teorema di Weierstrass. Teorema dei valori intermedi. Teorema di esistenza degli zeri

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

Esercizi relativi al capitolo 4

Proprietà globali delle funzioni continue

Esempi di QUESITI sulle derivate con risoluzione

Limiti. Lezione per Studenti di Agraria Università di Bologna. (Università di Bologna) Limiti 1 / 24

massimo pasquetto 7 Marzo 2018

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010

Studio Qualitativo di Funzione

CLEAI, matematica generale: esercizi svolti #2

LIMITI E CONTINUITÀ 1 / ESERCIZI PROPOSTI

Istituzioni di matematica

Limiti di funzioni 1 / 39

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Studio qualitativo del grafico di una funzione

1 La funzione logaritmica

Funzioni Continue. se (e solo se) 0

Limiti di funzioni 1 / 41

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - II appello, 5/7/2016

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

1 Limiti e continuità per funzioni di una variabile

Lezione 3 (2/10/2014)

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni

Istituzioni di matematica

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SECONDO TEST DI ANALISI 1 per i CdL in FISICA e MATEMATICA, a.a. 2016/17 assegnato in data lim

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 16/9/2016 1

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Funzioni derivabili (V. Casarino)

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Istituzioni di Matematiche terza parte

Corso di Analisi Matematica 1 - professore Alberto Valli

STUDIO DI FUNZIONI pag. 1

Corso di Analisi Matematica Limiti di funzioni

Argomento 5 Continuità e teoremi sulle funzioni continue

15. Funzioni continue: esercizi

f(x) lim x c g(x) = lim x c f(x) lim x c g(x)

Calcolo infinitesimale

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

1 Insiemi. 1. Provare che dati due insiemi A e B risulta A B = (A \ B) (A B) (B \ A). 2. Provare che dati tre insiemi A, B e C risulta

Corso di Analisi Matematica 1 - professore Alberto Valli

I appello - 11 Gennaio 2016

CLEAI, matematica generale, primo semestre Soluzioni degli esercizi della prova scritta dell 8 settembre 2004

Funzioni implicite - Esercizi svolti

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

QUESITI DI ANALISI Derivate versione senza graci

x x ' La funzione f si dice continua in x 0 se (e solo se) 0

Scrivere lo sviluppo di Mac Laurin di ordine 3 di una generica funzione f(x), e dire quali ipotesi si devono fare su f(x) per poterlo scrivere.

Calcolo 1 (L. Fanelli - F. Pacella)

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-1/12/2014 Tipologia A

QUESITI. con risoluzione 1 LIMITI 1.1

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI

( x) ( ) = lim. x = = lim. lim. lim. lim = = + sin. lim 1 = lim + +

Matematica con elementi di statistica ESERCIZI sui limiti Corso di Laurea in Biotecnologie - anno acc. 2014/2015

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

DERIVATE E LORO APPLICAZIONE

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

Corso di Analisi Matematica 1 - professore Alberto Valli

Funzioni continue. ) della funzione calcolata in x 0, ovvero:

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Alcuni esercizi: funzioni di due variabili e superfici

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim

Questionario. Quesito 1. Esame di Stato - Liceo Scientifico. Soluzione. Definito il numero. dimostrare che risulta: ed esprimere. in termini di ed = 1

Soluzioni degli esercizi di Analisi Matematica I

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI

MATEMATICA MATEMATICA FINANZIARIA

Limiti di funzioni e continuità

6. Asintoti e continuità

2x 2. Soluzione: Il valore del limite l non puó che essere 1: infatti. Per determinare δ basta studiare la disuguaglianza. x 1. x 1 x 1.

Transcript:

I.I.S. C. Marzoli - Liceo Scientico Statale G. Galilei Palazzolo s/o Classe 5I - Anno Scolastico 05/06 - Prof. Simone Alghisi Alcuni esercizi relativi alle funzioni continue Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti tre condizioni: x 0 deve appartenere al dominio D della funzione x 0 D), quindi ha senso calcolare fx 0 ); esistono niti e coincidenti i iti l, l, l = l = l ; deve essere fx 0 ) = l. Se una funzione è continua per ogni x 0 D, allora diremo che f è continua in tutto D..) Esercizio Data la funzione ln x x ]0; + [, 0 x = 0, stabilire se essa è continua in x 0 = 0. Soluzione. La funzione è denita in D f = [0; + [. Per vericare quanto richiesto dobbiamo rifarci alla denizione di funzione continua. Anzitutto 0 D f e f0) = 0. Controlliamo i iti: l = ± ± ln x = + = 0+. Dal fatto che l = f0), deduciamo che f è continua in x 0 = 0..) Esercizio Si consideri la funzione x x ). Determinare il dominio D f e studiare la continuità della funzione. Soluzione. Il dominio della funzione data è D f = x R : x x ) 0 } = 0} [; + [. La funzione è continua nel suo dominio perchè y = fx) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f..3) Esercizio Si consideri la funzione x + x 6 x x. Determinare il dominio D f e studiare la continuità della funzione data.

Soluzione. Il dominio della funzione risulta essere D f = x R : x x 0 } = R \ ; } =] ; [ ] ; [ ]; + [. Analizziamo ora i iti della funzione quando la variabile indipendente x tente a e. x ± x + x 6 x ± x x = x + x 6 x ± x ± x x = 5 3. x )x + 3) x ± x )x + ) =. La funzione non è continua in x = poichè i iti corrispondenti sono inniti. La funzione non è continua nemmeno in x = in quanto f) non esiste sebbene i iti destro e sinistro esistano niti..4) Esercizio Si consideri la funzione x. Stabilire se essa è continua nel punto x 0 =. Soluzione. É immediato vericare che il dominio della funzione data è D f = R. Inoltre x se x, x se x <. Notiamo che f) = 0. Inoltre x x x) = 0, x ) = 0. + +x x Dal fatto che i due iti esistano niti coincidenti e siano uguali a f), possiamo dire che la funzione è continua in x 0 =..5) Esercizio Determinare il valore del parametro k R in modo tale che la funzione y = fx) denita da x + se x, 3 kx se x >, sia continua nel suo dominio. Soluzione. Il dominio della funzione è D f = R. Il punto che potrebbe portare ad una discontinuità è x 0 = il punto di raccordo tra le due funzioni). Analizziamo i iti destro e sinistro di x 0 =. x + ) =, x x 3 kx ) = 3 k. x + x + La funzione è continua in x 0 = se i due iti esistono niti coincidenti e sono uguali a f): f) = = 3 k k =.

La funzione richiesta è quindi la seguente: x + se x, 3 x se x >,.6) Esercizio Determinare i valori dei parametri a, b R in modo tale che la funzione y = fx) denita da log 3 x + ) se < x 0, a sin x + b cos x se 0 < x < π/, x se x π/, risulti essere continua nel suo dominio. Soluzione. Analizzando le tre funzioni componenti e confrantando i corrispondenti domini con gli intervalli a anco di ogni funzione permette di aermare che D f = R. I punti dubbi sono x = 0 e x = π/. Calcoliamo i iti destri e sinistri corrispondenti. log 3 + x) = 0 = f0), sin x + b cos x) = b, + +a Dall'analisi dei primi due iti deduciamo che b = 0. a sin x + b cos x) = a, x π x π x = π π ) x π + x π + = f, quindi deve essere a = π/. La funzione così ottenuta ha la seguente espressione analitica: log 3 x + ) se < x 0, π sin x se 0 < x < π/, x se x π/, Punti di discontinuità di una funzione Quando una funzione y = fx), denita in un dominio D R, non risulta essere continua in un punto x 0 D diremo che la funzione è discontinua nel punto x 0. É possibile classicare il tipo di discontiniuità della funzione nel punto x 0. Esistono tre specie di discontinuità..) Denizione Una funzione y = fx) presenta un discontinuità di prima specie se l, l, con l e l niti ma l l. 3

In tal caso chiamiamo salto della funzione il numero s = l l..) Denizione Una funzione y = fx) presenta un discontinuità di seconda specie se almeno uno dei due iti fx) oppure fx) risulta essere + o..3) Denizione Una funzione y = fx) presenta un discontinuità di terza specie detta anche einabile) se l R, ma la funzione non esiste in x 0 oppure fx 0 ) l..4) Osservazione La condizione richiesta sui iti per la discontinuità di terza specie equivale ad aermare che la funzione y = fx) ammette ite per x x 0. Infatti, una funzione ammette ite l, x x 0 se, e solo se, i iti destro e sinistro esistono coincidenti: l x x 0 = l.5) Esercizio Classicare le eventuali discontinuità della funzione e /x. Soluzione. La funzione ha come dominio D f = R \ 0}. Classichiamo il punto x 0 = 0. Esso è di accumulazione per il dominio D f. Dall'analisi dei iti e e /x = [ e ] = 0, + e /x = [ e ] = 0, si deduce che x 0 = 0 è di terza specie poichè la funzione non esiste in 0..6) Esercizio Classicare le eventuali discontinuità della funzione 5 + log x. Soluzione. La funzione ha come dominio l'insieme D f = x R : x > 0} = R \ 0}. Analizziamo i iti destro e sinistro: 5 + log x)) =, + log x) =. + +5 4

Possiamo dedurre che il punto x 0 = 0 è di seconda specie..7) Esercizio Classicare gli eventuali punti di discontinuità della funzione x < x <, x, x x. Soluzione. Le singole funzioni componenti hanno per dominio R. La funzione y = fx) ha per dominio R. I punti candidati ad essere di discontinuità sono i punti di raccordo tra le tre funzioni: x = e x =. Iniziamo con l'analizzare il punto x =. x ) = 0, x x x + x ) = x + ) = 0. x + Inoltre f ) = 0, quindi la funzione è continua in x =. x = : Concentriamoci ora sul punto x x x ) = 0, x =. + + ) x Essendo i due iti niti ma diversi possiamo aermare che la funzione non è continua in x = discontinuità di prima specie con salto s = 0 = )..8) Esercizio Studiare gli eventuali punti di discontinuità della funzione f : R R denita da ln x ) ln x se x 0, x ±e /, ) + se x = 0 o x = ±e /. Soluzione. Il dominio D f della funzione y = fx) è l'insieme D f = x R : x > 0, + ln x 0 } = R \ 0, e /, e /}. I punti che dobbiamo analizzare sono proprio quelli esclusi dal dominio D f. Iniziamo con x 0 = 0. ln x ± ln x + = ln x ) ln x ± ln x + ) =, ln x dove si è utilizzato il fatto che = ± ln x 0. Poichè i iti destro e sinistro esistono niti coincidenti e sono uguali a f0) =, possiamo aermare che la funzione è continua in x 0 = 0. Consideriamo ora x 0 = e /. ln x x e / ) ± ln x + = ln e / ) ln e /) = ln e + ln e + =. 5

Nel punto x 0 = e / è presente una discontinuità di seconda specie. Procedendo in modo analogo per x 0 = e /, si verica facilmente che anche in tale punto è presente una discontinuità di seconda specie..9) Esercizio Determinare e classicare gli eventuali punti di discontinuità della funzione x + x x. Soluzione. Il dominio della funzione data è D f = x R : x x 0 } = R \ ; }. Dal fatto che x x > 0 per x < x >, la funzione y = fx) può essere ridenita nel modo seguente: x + x x x + x + x + se x < x >, se < x <, cioè x x se x < x >, se < x <. Calcolando il ite destro e sinistro per x si ha: x + x + x = 3, x x x = 3. I iti trovati esistono niti ma diversi tra loro. Segue che x = è un punto di discontinuità di prima specie. Il salto della funzione vale /3. Calcolando ora il ite destro e sinistro della funzione per x si ha x x x = x + x = +, quindi il punto x = è un punto di discontinuità di seconda specie. 3 Teoremi relativi alle funzioni continue 3.) Teorema di Weierstrass) Se una funzione y = fx) è continua nell'intervallo chiuso e itato [a; b], allora la funzione assume, in tale intervallo, un valore massimo M ed un valore minimo m e assume, almeno una volta, tutti i valori compresi tra il massimo ed il minimo. 6

Si è soliti indicare il massimo ed il minimo di una funzione nel modo seguente: M = max x [a;b] fx), m = min x [a;b] fx), dove si è messo in risalto l'intervallo nel quale è presente il punto di massimo e il punto di minimo. 3.) Teorema di esistenza degli zeri) Se una funzione y = fx) è continua nell'intervallo chiuso e itato [a; b] e negli estremi di tale intervallo assume valori di segno opposto, allora esiste almeno un punto x 0 [a; b] in cui si ha fx 0 ) = 0. 3.3) Esercizio Vericare se è possibile applicare il Teorema di Weierstrass alla funzione 5x x 4 6 nell'intervallo I = [; 4]. Soluzione. Il dominio della funzione data è D f = x R : 5x x 4 6 0 }. Risolvendo la disequazione 5x x 4 6 0 o la disequazione equivalente x 4 5x + 6 0) mediante la sostituzione x = t, si ottiene [ D f = 3; ] [ ] ; 3. Dal fatto che in I la funzione è denita e continua, possiamo aermare che in I la funzione ammette massimo e minimo. 3.4) Esercizio Stabilire per quale valore di k R la funzione k x 4kx 0 x, 6 log x 3 < x 3, verica le ipotesi il Teorema di Weierstrass nell'intervallo I = [0; 3]. Soluzione. La funzione deve essere denita e continua in I. Per denizione della funzione essa risulta essere ben denita nell'intervallo I = [0; 3]. Vediamo se soddisfa la continuità in I. L'unico punto dubbio è x =. Controlliamo i iti destro e sinistro: k x 4kx ) = k 4k, x x x log x 3) = 3. + +6 x Poichè y = fx) deve essere continua in x = dobbiamo imporre che i due iti calcolati sopra coincidano: k 4k = 3 k 4k + 3 = 0. Risolvendo l'equazione di secondo grado si ottengono due valori per k e precisamente k = e k = 3. 3.5) Esercizio Si consideri la funzione log x + x. Dire se è possibile applicare il Teorema degli zeri alla funzione y = fx) nell'intervallo I = [ 4 ; ]. Soluzione. Poichè la funzione ha come dominio D f =]0; + [ e I D f possiamo aermare che la funzione è continua in I. Inoltre f/4) < 0 e f) > 0. Dal fatto che la funzione assume valori discordi agli estremi dell'intervallo I possiamo aermare che la funzione possiede almeno un punto x 0 I tale che fx 0 ) = 0. 7