Unità Didattica N 12 Le equazioni ad una incognita 1. Unità Didattica N 12 Le equazioni ad una incognita

Documenti analoghi
Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

= 1 4 = 3. Esempio 2 = 2. Esempio 3. x x. Esempio 4. x x. a. scomporre l equazione in fattori b. applicare la legge dell annullamento del prodotto.

LE EQUAZIONI DI SECONDO GRADO

DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI

EQUAZIONI BIQUADRATICHE

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie

Identità ed equazioni

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof.

CORSO ZERO DI MATEMATICA

1 Fattorizzazione di polinomi

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

U.D. N 05 La fattorizzazione dei polinomi

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

Anno 2. Equazioni di secondo grado

Precorso di Matematica

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

EQUAZIONI DI II GRADO

Equazioni di secondo grado Prof. Walter Pugliese

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 80 minuti

ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

Equazioni intere...1 Equazioni fratte...3 Equazioni irrazionali...4 Equazioni in valore assoluto...5

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

U.D. N 04 I polinomi

Equazioni di Primo grado

Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

Equazioni di grado superiore al secondo

Radicali. 2.1 Radici. Il simbolo

CENNI SUL CONCETTO DI FUNZIONE

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Equazioni di secondo grado

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.

Equazioni di primo grado

TEOREMA DEL RESTO E REGOLA DI RUFFINI

Le equazioni lineari

Equazione irrazionale

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado

I NUMERI REALI E I RADICALI I PARTE

1 Disquazioni di primo grado

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

Equazioni di secondo grado

CORSO ZERO DI MATEMATICA

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

Si definisce equazione esponenziale ogni equazione nella quale l incognita è presente nell esponente di una o più potenze.

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

INTEGRAZIONE DELLE FUNZIONI RAZIONALI. Figura 0.1. Portafortuna

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4

Prontuario degli argomenti di Algebra

U.D. N 04 I polinomi

Equazioni di 2 grado

Monomi L insieme dei monomi

Equazioni di I e II grado

UNITÀ DIDATTICA 2 LE FUNZIONI

Equazioni di secondo grado parametriche

b) Il prodo=o di un numero per zero è uguale a zero x. 0 = 0 c) Un numero mol3plicato per se stesso tre volte è uguale al suo cubo x. x.

CLASSE IV A/acc E. CLASSE IV B/acc

Esercitazione su equazioni, disequazioni e trigonometria

Esercitazioni di Matematica Generale

Introduzione alla Matematica per le Scienze Sociali - parte II

Disequazioni razionali (in una variabile)

162 Capitolo 5. Equazioni di grado superiore al secondo. c ) x x 2 7x 196; e ) x x x 2; f ) x x x

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale?

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

Appunti sulla circonferenza

Matematica per esami d idoneità o integrativi della classe 2 ITI

Esercizi di Matematica. Studio di Funzioni

Scomposizione in fattori dei polinomi

Le eguaglianze algebriche: Identità ed Equazioni

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

Dr. Erasmo Modica

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Note sull algoritmo di Gauss

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza

La funzione esponenziale e logaritmica

Equazioni differenziali Problema di Cauchy

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio:

Complementi di algebra

Disequazioni - ulteriori esercizi proposti 1

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

04 - Numeri Complessi

CORSO ZERO DI MATEMATICA

Le espressioni letterali

Appunti di matematica per le Scienze Sociali Parte 1

I sistemi lineari Prof. Walter Pugliese

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p)

1 Funzioni algebriche fratte

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Transcript:

Unità Didattica N Le equazioni ad una incognita Unità Didattica N Le equazioni ad una incognita ) Equazioni risolubili mediante la decomposizione in fattori ) Equazione biquadratica ) Equazioni irrazionali ) Equazioni reciproche: a) Equazioni reciproche di quarto grado b) Equazioni reciproche di quinto grado c) Equazioni reciproche di sesto grado e di seconda specie 5) Ulteriori considerazioni sull algebra elementare 6) Equazione algebrica 7) Teorema fondamentale dell algebra Pagina di

Unità Didattica N Le equazioni ad una incognita Equazioni risolubili mediante la decomposizione in fattori L algebra finora studiata ci consente di risolvere tutte le equazioni di primo grado e quelle di secondo grado. Esistono anche delle formule che ci consentono di risolvere tutte le equazioni di e grado. Noi non le possiamo applicare in quanto non conosciamo la teoria generale dei numeri complessi. Se P( ) è un polinomio di grado n, l uguaglianza P( ) posta allo scopo di vedere se esistono valori della che annullano il polinomio P( ), dicesi equazione algebrica di grado n ad una incognita. Per n ( n ) otteniamo l equazione di grado ( grado) che sappiamo risolvere. Per n > otteniamo una equazione che possiamo risolvere se siamo in grado di decomporre il polinomio P( ) in fattori di primo grado e di secondo grado. Infatti se risulta: P( ) A( ) B( ) C( ) allora P( ) A( ) B( ) C( ) A( ) oppure B( ) oppure C( ) Dicesi zero di un polinomio P( ) ogni valore o della variabile che annulla il polinomio. Questo significa che se P( o ) allora il numero o è uno zero del polinomio P( ) Inoltre l equazione P( ) dicesi equazione associata al polinomio P( ). Lo zero di un polinomio coincide con una delle radici dell equazione associata. Teorema delle radici razionali P a +a +a + +a +a [] un equazione algebrica di grado n Sia n n- n- o n- n C.N.S. perché il numero razionale m n ( con m o soluzione dell equazione [] è che: N ed n N * primi tra di loro ) sia una radice ) m sia divisore (positivo o negativo) del termine noto a n ) n sia divisore (positivo o negativo) del coefficiente a o del termine di grado più elevato Teorema delle radici intere Condizione necessaria ma non sufficiente perché il numero intero k sia soluzione dell equazione [] è che esso sia divisore ( positivo o negativo ) del termine noto a n. Se o è uno zero del polinomio P( ) allora possiamo scrivere: P( ) ( -o ) Q( ) dove Q( ) è un opportuno polinomio di grado n. Pagina di

Unità Didattica N Le equazioni ad una incognita I coefficienti del polinomio Q( ) si possono ottenere applicando la regola di Ruffini. 5 8 6 ESEMPI + + + ( ) ( + + 8 + ), ( ) ( ) ( )( )( ) + + 8 + + +, + ± i + ; + ± ± i Le radici dell equazione data sono:, i, i, i, 5 + i 5 + 6 + 6 8 + Le eventuali radici razionali dell equazione data vanno ricercate tra i seguenti numeri: ±, ±, ±, ± -6 6-8 5-5 - 5-5 - // - -6-6 i - - // 5 i // // +, +, ± i 6 + +, ( ) 6 + 6, ( 6)( + + 6) 6 ± + + + 6 ± i + i Pagina di

Unità Didattica N Le equazioni ad una incognita Equazione biquadratica Dicesi equazione biquadratica una equazione riconducibile alla seguente forma: a +b +c Si tratta di una equazione di grado priva dei termini di grado dispari. Essa si risolve mediante la seguente sostituzione: y ( y ) Si ottiene: ay +by+c che è una equazione di grado in y, la quale ammette due radici reali y, y se b ac. ± y, ± y, y, y, y, y Una equazione biquadratica avente il b ac ammette: ) radici reali se < y < y, cioè quando presenta due variazioni ) radici reali e radici complesse e coniugate se y < < y, cioè quando presenta una variazione ed una permanenza ) radici a due a due complesse e coniugate se y < y <, cioè quando presenta due permanenze + 5 + 6 Pongo y ( y ) Ottengo: y + 5y + 6 y 5 ± 5 5 ±, y, y, ± ± i,, ± ± i Equazioni irrazionali Una equazione si dice irrazionale quando l incognita compare sotto il segno di radice in almeno un termine del primo o del secondo membro o di entrambi. Per risolvere una equazione irrazionale bisogna elevare ad una certa potenza, una o più volte, ambo i membri dell equazione data, fino alla eliminazione di tutti i radicali presenti nell equazione stessa. Indi si risolve l equazione razionale così ottenuta. Si noti, però, che l elevazione a potenza avente indice pari può introdurre soluzioni estranee all equazione data. E opportuno quindi eseguire la verifica delle soluzioni trovate, per giudicare quali radici sono accettabili e quali no. La verifica finale può essere evitata se, prima dell elevamento ad una data potenza ad indice pari, imponiamo la condizione di realtà e la condizione di positività. Pagina di

Unità Didattica N Le equazioni ad una incognita 5 Risolviamo alcuni tipi di equazioni irrazionali. ) L equazione irrazionale contiene un solo radicale di indice due: A( ) B( ) L equazione si risolve elevando ambo i membri al quadrato: A( ) B( ) [ ] La verifica può essere eliminata se, preliminarmente, imponiamo la condizione di realtà e la condizione di positività che, nel caso nostro si traduce nella risoluzione del seguente sistema di inequazioni: A B + 5 7 ( + 5) ( 7 ) + 5 9 +, 5 +,, Verifica : + 5 7, 9, ; (R.A. ) : + 5 7, 6,, ( R.N.A. ) OSSERVAZIONE I simboli A( ), B( ) rappresentano due generici polinomi in. ) Equazione irrazionale del tipo: A( ) + B( ) C( ) Le condizioni di realtà e di positività si traducono nel seguente sistema : A B C Elevando ambo i membri al quadrato otteniamo un equazione irrazionale contenente un solo radicale di indice due. Si isola questo radicale e si eleva nuovamente al quadrato. 5 + +, 5 5 + 5 + 5 + + + + + +, + 8 + 5 + 6 9 + 9 + 5 5, (R.A.), 5 ( R.A. ) 5 + 5 per + per Il sistema è verificato per Pagina 5 di

6 Unità Didattica N Le equazioni ad una incognita ) L equazione irrazionale contiene almeno tre radicali di indice due A( ) + B( ) + C( ) + D( ) oppure A( ) + B( ) + C( ) + D( ) Si isolano due radicali e si eleva al quadrato ambo i membri. Si ottiene una equazione irrazionale contenente almeno un radicale in meno. Si procede nella razionalizzazione fino ad ottenere una equazione non contenente radicali. Se vogliamo evitare la verifica dobbiamo imporre, di volta in volta, la condizione di realtà e la condizione di positività. + 7 + - 8 7 + Condizione di realtà 7 + 7 per 8 per 6 7 + per 7 6 + + + ( + )( ) +, 6 5 6 ( + 6) 7 8 7 8 7 8 6 5 6 + + 6, 5 7 6, ( R.N.A.), 9 (R.A.) 5 ) L equazione irrazionale contiene due radicali di indice tre A + B C Eleviamo ambo i membri al cubo A + B + A B + A B, A B A + B C A B C A B C A B Se eleviamo ambo i membri al cubo otteniamo : 6 + 7 + 6 7 6 7 C A B C A B 6 + 7 + 6 7 + 6 + 7 6 7 6 + 7 + 6 7 6 8 96 9, 96 9 8, 96 9 5, 8 78, 6 ( R.A.), ( R.A.) 5) L equazione contiene tre radicali di indice tre A + B C Si eleva ambo i membri al cubo: A + B + A B + AB C AB A + B C A B, ABC C A B Si eleva ambo i membri al cubo Pagina 6 di

Unità Didattica N Le equazioni ad una incognita 7 7 A B C C A B 6) Risoluzione di altre equazioni irrazionali + + + m. c. m. +, ( ) + + + +, +, 5 ( R.N.A. ), ( R.A. ) Equazioni reciproche DEFINIZIONE ) Una equazione ad una incognita, ridotta a forma normale, si dice reciproca di prima specie quando i coefficienti dei termini estremi e di quelli dei termini equidistanti dagli estremi sono uguali ) Una equazione ad una incognita, ridotta a forma normale, si dice reciproca di seconda specie quando i coefficienti dei termini estremi e di quelli dei termini equidistanti dagli estremi sono opposti OSSERVAZIONE L equazione si dice reciproca perché, se ammette come radice il numero α, essa ammette come radice anche il numero α. Equazioni reciproche di terzo grado ) EQUAZIONI DI PRIMA SPECIE Esse assumono la seguente forma: a +b +b+a [] Una radice è. Le altre radici si ottengono risolvendo una equazione di secondo grado che si ricava dalla [] applicando la regola di Ruffini. 5 9 9+ 5 5-9 -9 +5 - -5 + -5 5-5 // 5 + 5 7 ± 89 5 5 7 ± 6 5 7 ± 8 5 5 5 Pagina 7 di

8 Unità Didattica N Le equazioni ad una incognita ) EQUAZIONI DI SECONDA SPECIE Esse assumono la seguente forma: a +b -b-a [] Una radice è. le altre due si ricavano risolvendo una equazione di secondo grado che si ottiene dalla [] applicando la regola di Ruffini. 6 9 + 9 6 6-9 +9-6 6 - +6 6-6 // 6 + 6,, ± 69 ± 5 ± 5 Equazioni reciproche di quarto grado ) Equazioni di prima specie Sono equazioni riconducibili alla seguente forma: a + b + c + b + a [] Dividiamo ambo i membri per b a : a + b + c + + a + b c + + + Pongo: + y [ a y + by + c ay + by + c a + y ] Ottengo: Si tratta di una equazione di secondo grado in y le cui radici y ed y si ricavano facilmente. Le quattro radici dell equazione [] si ottengono risolvendo le due seguenti equazioni di secondo grado in : + y (, ) + y (, ) 8 8 69 + 8 8 69 + 8 + ( y ) + 69 Pongo : + y [ + y ] Ottengo : 8 y 69, 8y 6 y 69, 8y y 85 7 ± 9 + 68 7 ± 79 7 ± 7 5 7 y, y, y 8 8 8 5 + 5 + + 5 + 5 ± 5 6 5 ±,, Pagina 8 di

Unità Didattica N Le equazioni ad una incognita 9 + 7 7 + 7 + 7 ± 89 6 8 7 ± 5 8,, ) Equazioni di seconda specie Sono equazioni riconducibili alla seguente forma: a + b b a [] In una equazione reciproca di quarto grado e di seconda specie manca il termine di secondo grado. Questa equazione si può risolvere in due maniere. PRIMO METODO Due radici sono sempre: ± Le altre due radici ed si ottengono risolvendo una equazione di secondo grado che si ottiene applicando due volte all equazione [] la regola di Ruffini. SECONDO METODO Decomponendo in fattori il primo membro dell equazione []. ( ) + b( ), a( )( ) b( ) a ( )( a + a + b), ( )( a b a) + + + +, a + b + a, + PRIMO METODO - - -7-7 + -7-7 # 7 7 + -7-7 + - - - - # +, 5 ± 5 9 5 ±,,,, Pagina 9 di

Unità Didattica N Le equazioni ad una incognita SECONDO METODO +, ( ) ( ) ( )( + ) ( ), ( )( ) +,, +,, Equazioni reciproche di quinto grado ) Equazioni di prima specie 5 Sono equazioni riconducibili alla seguente forma: a + b + c + c + b + a [5] Una radice di questa equazione è << - >>. Le altre quattro radici si ricavano risolvendo una reciproca di quarto grado che si ottiene dall equazione di partenza applicando la regola di Ruffini. 8 5 6 + 7 + 7 6 + 8 8-6 +7 + 7-6 +8 - -8 +5 - +5-8 8-5 -5 8 # 8 5 + 5 + 8 Si tratta di una equazione reciproca di quarto grado e di prima specie. Le sue radici sono : ) Equazioni di seconda specie,,, 5 5 Sono equazioni riconducibili alla seguente forma : a + b + c c b a [6] Una radice di questa equazione è <<>>. Le altre quattro radici si ricavano risolvendo una reciproca di quarto grado che si ottiene dall equazione di partenza applicando la regola di Ruffini. Pagina di

Unità Didattica N Le equazioni ad una incognita 6 5 + + 6 6 - - + + -6 +6 +5-8 +5 +6 6 +5-8 +5 +6 # 6 + 5 8 + 5 + 6,,,, 5 Equazioni reciproche di sesto grado e di seconda specie 6 5 Sono equazioni riconducibili alla seguente forma: a + b + c c b a [7] Manca sempre il termine di terzo grado. Ammettono le radici ± e le radici di una equazione reciproca di quarto grado che si ricava applicando all equazione di partenza due volte di seguito la regola di Ruffini. 6 5 6 5 + 5 56 + 5 6 6-5 +56-56 +5-6 - -6 + -97 +97 - +6 6 - +97-97 + -6 # 5 6 + 97 97 + 6 6 - +97-97 + -6 +6-5 +6-5 +6 6-5 +6-5 +6 # 6 5 + 6 5 + 6,,, 5, 6 Pagina di

Unità Didattica N Le equazioni ad una incognita OSSERVAZIONE ) Le equazioni reciproche di prima specie di grado pari superiori al quarto non si sanno risolvere ) Le equazioni reciproche di prima specie e di grado dispari si sanno risolvere solo fino al quinto grado ) Le equazioni reciproche di seconda specie e di grado dispari si sanno risolvere fino al quinto grado ) Le equazioni reciproche di seconda specie e di grado pari si sanno risolvere fino al sesto grado Ulteriori considerazioni sull algebra elementare Storicamente l algebra si sviluppa passando attraverso le seguenti fasi: ) Algebra retorica nella quale i problemi e la loro risoluzione sono espresse completamente a parole ) Algebra sincopata nella quale per qualche operazione e per alcune quantità sono usate abbreviazioni simboliche ) Algebra simbolica nella quale viene usato un completo sistema di notazioni e tutte le trasformazioni algebriche sono espresse mediante simboli (ha inizio nel XVI secolo) Equazione algebrica Si dice equazione algebrica di grado n in una incognita ogni equazione riconducibile alla seguente n n n forma: ao + a + a + + an + an [] con ai R oppure ai C L equazione [] si dice completa quando tutti i coefficienti a i (i,,, n ) sono diversi da zero, monica quando a o. Si chiama radice (o soluzione) dell equazione [] ogni numero reale o complesso α per il quale risulta: n n n a a + a a + a a + + a a + a o n n Risolvere un equazione significa trovare tutte le sue radici e questo si può fare in due modi diversi. Un modo consiste nella determinazione dei valori numerici approssimati delle radici Pagina di

Unità Didattica N Le equazioni ad una incognita quando sono dati quelli dei coefficienti e in tal caso si parla di risoluzione numerica dell equazione. L altro modo consiste nell esprimere le radici per mezzo di funzioni dei coefficienti in modo da potere agire anche quando i coefficienti non siano espressi numericamente e in tale caso si parla di risoluzione analitica del l equazione. TEOREMA FONDAMENTALE DELL ALGEBRA Ogni equazione algebrica ha almeno una radice ( reale o complessa ). COROLLARIO N Ogni polinomio n n n P a + a + a + + a + a può essere rappresentato in o un solo modo (a meno dell ordine dei fattori) come prodotto di polinomi di primo grado a coefficienti (reali o) complessi. COROLLARIO N n n Se il numero complesso a + bi è radice dell equazione [] anche il numero complesso e coniugato a bi è radice dell equazione [], cioè ogni equazione algebrica o non ammette radici complesse o ne ammette un numero pari a due a due complesse e coniugate. COROLLARIO N Ogni equazione algebrica di grado dispari ammette almeno una radice reale COROLLARIO N Ogni polinomio di grado n a coefficienti reali può essere decomposto in una sola maniera in fattori di primo grado e di secondo grado (irriducibili, cioè non ulteriormente decomponibili in fattori di primo grado a coefficienti reali) a coefficienti reali. Pagina di

Unità Didattica N Le equazioni ad una incognita COROLLARIO N 5 n n n i o i Se risulta a -α -α -α con n + n + + n n, diciamo che la radice α (α,, α ) è multipla di ordine n (oppure ha molteplicità n [ i n,, n i ]. Se, in particolare, risulta n ( n ) la radice α si dice semplice (doppia). i COROLLARIO N 6 Ogni equazione algebrica di grado n ammette n radici reali o complesse (non necessariamente distinte) COROLLARIO N 7 n a a a o + + {, } a + a o a a n a a a a o + + + {,, } a + + a o a a a + + a o TEOREMA In generale un equazione algebrica di grado maggiore o uguale al quinto non è risolubile mediante radicali. Pagina di