Test sul calcolo della probabilità



Documenti analoghi
8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

Somma logica di eventi

Probabilità e statistica

(concetto classico di probabilità)

PROBABILITA' E VARIABILI CASUALI

Esercizi di Probabilità e Statistica

Calcolo delle probabilità

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Esercizi sul calcolo delle probabilità

ESERCIZI EVENTI E VARIABILI ALEATORIE

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Calcolo delle Probabilità

1 Probabilità condizionata

Ulteriori problemi di fisica e matematica

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

Matematica Applicata. Probabilità e statistica

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi di Probabilità e Statistica

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Calcolo combinatorio

Esercizi di Calcolo delle Probabilita (I)

Probabilità discreta

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Cenni sul calcolo combinatorio

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Tabella 7. Dado truccato

Il prodotto di tre numeri in progressione aritmetica è 16640, il più piccolo è 20. Calcolare i tre numeri.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Elementi di calcolo delle probabilità

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

ESERCIZI DI CALCOLO COMBINATORIO

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Teoria della probabilità Assiomi e teoremi

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

Esercitazioni di Statistica

Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012

matematica probabilmente

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

STATISTICA MEDICA Prof. Tarcisio Niglio oppure su Facebook Anno Accademico

COMPITO n Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

PROBABILITA CONDIZIONALE

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Kangourou Italia Gara del 22 marzo 2011 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

PROBABILITA CONDIZIONALE

Esercizio 1. Svolgimento

TEOREMI SULLA PROBABILITÀ

STATISTICA E PROBABILITá

Calcolare la probabilità dei seguenti eventi: P(fare ambo con i numeri 7 ed 17 con le prime due estrazioni):

Calcolo delle probabilità

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Capitolo 4 Probabilità

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

Esercizi di calcolo combinatorio

INdAM QUESITI A RISPOSTA MULTIPLA

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Superiore.

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

Introduzione alla probabilità

COEFFICIENTI BINOMIALI

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Cosa dobbiamo già conoscere?

STATISTICA Lezioni ed esercizi

Tasso di interesse e capitalizzazione

metodi matematici per l ingegneria prove scritte d esame 1 Indice

ESERCIZIO 1 ESERCIZIO 2

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

SIMULAZIONE TEST INVALSI

LA STATISTICA NEI TEST DI AMMISSIONE ALL UNIVERSITÀ

Lezione 10. La Statistica Inferenziale

COMPITO DI SCIENZE NATURALI 23 gennaio Modulo di probabilità e statistica

IL CALCOLO COMBINATORIO

3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R.

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

Qual è la probabilità che il giocatore A vinca almeno due volte? Qual è la probabilità che il giocatore B vinca esattamente tre volte?

Esercizi di probabilità discreta

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

6 (bac 2005, matematica 3 periodi) * 7. (bac 2000, matematica 5 periodi problema obbligatorio 4)

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

Parliamo un po di più di bridge. La filosofia del gioco. Nico Andriola

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

TEORIA DELLA PROBABILITÀ I

CARTE. Regolamento Belote. Regole del gioco: Determinazione del seme di briscola (Belote classico):

Introduzione al pensiero probabilistico Il problema delle parti

7. LA PROBABILITA' Dice foto di Matsuyuki

Transcript:

Test sul calcolo della probabilità

2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è incerto 0 se E è certo b) 0 se E è certo c) se E è incerto 2. La probabilità p(e) di un evento E è sempre: a) 0 p E b) 0 p(e )< c) 0 p(e ) 0< p(e ) 3. Qual è la probabilità di estrarre un numero dispari da un'urna contenente i numeri da 2 a 8? a) /2 9/7 b) 8/8 e) 8/7 c) 0/7 4. Calcolare la probabilità che lanciando un dado si ottenga un numero non inferiore a 3. a) /2 3/4 b) /3 c) 2/3 5. Estraendo una carta a caso da un mazzo di 40 carte, 0 per ciascun seme, qual è la probabilità che esca una figura? a) 3/4 2/28 b) 3/0 c) /4 6. Per due eventi qualunque A e B si può dire sicuramente che: a) p( A B)= p( A)+ p(b) p A B p A p B b) p( A B) p( A)+ p(b) c) p A B = p A p B 7. Se due eventi sono indipendenti, allora: a) p A B = p A p B b) p A B p A p B c) p A B p A p B p( A) p( A B)= p(b) 8. Lanciando due dadi non truccati qual è la probabilità di ottenere come somma dei risultati un quadrato perfetto? a) 5/36 7/27 b) 7/36 c) 27/36 9. Lanciando una moneta, dopo 4 lanci in cui si è verificato TESTA, qual'è la probabilità che si ottenga nuovamente TESTA? a) /2 3/32 b) /2 5 c)

Test sul calcolo della probabilità 3 0. Quale è la probabilità di ottenere 5 volte TESTA in 5 lanci di una moneta? a) 5/32 /8 b) /32 c) 3/32. Estraendo una carta da un mazzo di 40 con 4 segni, qual è la probabilità di estrarre un RE sapendo che è stata estratta una figura? a) /2 2/40 b) /4 c) /3 2. Se p(e) è la probabilità che accada un evento, quale delle seguenti affermazioni è sicuramente falsa? a) p(e)=- p(e)=0, b) p(e)= c) p(e)=0 3. Quanto vale la probabilità di ottenere 3 volte 4 in 3 lanci consecutivi di un dado non truccato? a) /6 2 /6 4 b) -/6 3 c) /6 3 4. In un test di 5 domande con ognuna tre possibili risposte A,B,C, rispondendo a caso, qual è la probabilità di non riuscire a dare nessuna risposta esatta? a) p(0)= 5 b) p(0)=( 3) =( 2 5 p(0)=( 3) 5 3) +( 2 5 3) e) p(0)=0 5 c) p(0)=( 3) ( 2 5 3) 5. Se gli eventi A e B sono indipendenti, allora: a) p(a/b)<p(a) b) p(a/b)>p(b) c) p(a/b)=p(a) p(a/b)=p(b) 6. Se gli eventi A e B sono incompatibili e p(a)=0,2 e p(b)=0,7, allora p A B vale: a) 0,4 b) 0 c) 0,9 7. Estraendo una carta da un mazzo da 40 qual è la probabilità di estrarre una carta di spade sapendo che è stata estratta una figura? a) 0,75 0,75 b) 0, c) 0,25 8. Sapendo che p( A)= 4, p(b)=2 3 e che p( A B)= 9, quanto vale p A B? 2 a) /2 b) 2/2 c) 4/2 9/2

4 Test sul calcolo della probabilità 9. In un campione di 20 studenti di una Università, 20 studiano economia, 30 studiano ingegneria, 20 studiano scienze, 30 medicina ed il resto studiano lettere. Scegliendo a caso uno studente, qual è la probabilità che lo studente studia lettere? a) 2/2 b) 3/2 c) 4/2 6/2 20. Con riferimento ai dati del precedente test. Scegliendo a caso uno studente, qual è la probabilità che lo studente non studia lettere? a) 3/6 6/2 b) 4/6 c) 5/6 2. Con riferimento ai dati precedente test n.9. Scegliendo a caso uno studente, qual è la probabilità che lo studente studi economia o medicina? a) 3/2 6/2 b) 4/2 c) 5/2 22. Indicare l'unica proposizione falsa: a) p(e E 2 )= p (E )+ p( E 2 ) p ( E E 2 ) b) p( E /E 2 )= p( E E 2 )/ p (E 2 ) c) p( E) 2 + p(e) 2 = 2 p (E) p( E) p(e ) 2 + p( E) 2 = p(e E) 23. Calcolare la probabilità di ottenere 6 come somma dei risultati del lancio di due dadi: a) 3/36 6/36 b) 4/36 c) 5/36 24. Calcolare la probabilità di ottenere 7 come somma dei risultati del lancio di due dadi: a) 4/6 /6 b) 3/6 c) 2/6 25. Qual è, tra quelli indicati, il risultato più probabile della somma dei numeri del lancio di due dadi? a) 5 2 b) 6 c) 7 26. Qual è, tra quelli indicati, il risultato più probabile del prodotto dei numeri del lancio di due dadi? a) 3 2 b) 9 c) 0 27. Calcolare la probabilità che lanciando due dadi si ottenga la somma di 8 sapendo che sono usciti due numeri dispari: a) /9 4/9 b) 2/9 c) 3/9

Test sul calcolo della probabilità 5 28. Calcolare la probabilità che lanciando due dadi si ottenga la somma di 6 sapendo che sono usciti due numeri pari: a) 0 2/36 b) c) 3/9 29. Calcolare la probabilità che lanciando due dadi si ottenga il prodotto di 6 sapendo che sono usciti due numeri dispari: a) 0 2/36 b) c) /36 30. Calcolare la probabilità che lanciando due dadi si ottenga il prodotto di 6 sapendo che sono usciti un numero pari ed un numero dispari indipendentemente dall'ordine: a) /9 4/9 b) 2/9 c) 3/9 3. Calcolare la probabilità che nell'estrazione del gioco della tombola i primi due numeri siano pari: a) 0,254 0,243 b) 0,25 c) 0,247 32. Calcolare la probabilità che nell'estrazione del gioco della tombola il primo numero sia pari ed il secondo sia dispari: a) 44/90 45/78 b) 45/90 c) 44/78 33. Calcolare la probabilità che nell'estrazione del gioco della tombola il primo numero sia dispari e il secondo sia pari: a) 44/89 45/78 b) 45/90 c) 44/78 34. Calcolare la probabilità che nell'estrazione del gioco della tombola i primi due numeri siano uno pari ed uno dispari indipendentemente dall'ordine: a) 45/89 45/78 b) 45/90 c) 44/78 35. Una università ha imposto agli studenti di scrivere la loro tesi di laurea in lingua straniera. Una indagine ha fornito i seguenti dati relativi alla scelta sulle tre sole possibili scelte (Inglese, Francese, Spagnolo): degli 80 studenti iscritti in Ingegneria 30 hanno scelto Inglese e 20 il Francese; dei 50 studenti iscritti in Biologia 0 hanno scelto il Francese e 20 lo Spagnolo e infine su un totale di 20 iscritti in Economia 50 hanno scritto la loro tesi in Inglese e 30 in Spagnolo. Scegliendo una tesi a caso qual è la probabilità che sia una tesi di Ingegneria ed in lingua spagnola? a) 0,04 b) 0,08 c) 0,2 0,6

6 Test sul calcolo della probabilità e) 0,2 36. Scegliendo una tesi a caso qual è la probabilità che sia una tesi di Biologia in lingua inglese? a) 0,04 0,6 b) 0,08 e) 0,2 c) 0,2 37. Scegliendo una tesi a caso qual è la probabilità che sia una tesi di Economia in lingua francese? a) 0,04 0,6 b) 0,08 e) 0,2 c) 0,2 38. Scegliendo una tesi a caso qual è la probabilità che sia una tesi in lingua inglese? a) 0,2 0,40 b) 0,28 e) 0,52 c) 0,32 39. Scegliendo una tesi a caso qual è la probabilità che sia una tesi in lingua francese? a) 0,2 0,40 b) 0,28 e) 0,52 c) 0,32 40. Scegliendo una tesi a caso qual è la probabilità che sia un tesi in lingua spagnola? a) 0,2 0,40 b) 0,28 e) 0,52 c) 0,32 4. Di due eventi A e B cosa è possibile affermare con certezza: a) p A p B = p( A B) p ( A)+ p (B) b) p A p B =0 c) p A B = p A p B 42. Nel lancio di due dadi. Si indichi con E l evento al lancio del primo esce un numero minore di 3 e con E 2 l evento al lancio del secondo esce un numero uguale o superiore a 4. Calcolare la probabilità dell evento unione di E E 2. a) /3 b) 2/3 c) 4/5 5/6 43. Da un mazzo di 40 carte (0 cuori, 0 quadri, 0 fiori, 0 picche) se ne estraggono tre; qual è la probabilità che siano tutte e tre di fiori, supponendo di non rimettere la carta estratta nel mazzo? (Medicina) a) 3/247 b) 9/800 c) 25/482 7/0 e) /247 44. Un'urna contiene 00 paline numerate da a 00. La probabilità che estraendo una pallina essa rechi un numero divisibile per 6 è: (Medicina) a) 3/20 c) 33/00 b) 4/25 7/00

Test sul calcolo della probabilità 7 e) 8/25 45. Qual è la probabilità che lanciando 6 volte una moneta escano esattamente 4 teste? (Medicina) a) 5/32 /6 b) /64 e) 5/64 c) 5/6 46. Nel lancio di un dado con sei facce sia E l'evento: esce un numero maggiore di 2.La probabilità dell'evento E ( complementare di E ) è: (Medicina): a) 3/4 /3 b) 2/3 e) /2 c) -2/3 47. Nel gioco dei dadi, lanciando contemporaneamente due dadi, qual è la probabilità che si abbiano due facce con somma complessiva 8? (Odontoiatria) a) 5/36 /2 b) /8 e) 7/36 c) /4 48. Una moneta è lanciata quattro volte. Qual è la probabilità di ottenere due croci sapendo la prima volta si è ottenuto croce? (Odontoiatria) a) 5/6 /4 b) /2 e) 3/6 c) 3/8 49. Se p( A B)= p ( A) e p(b A)= p(b), quanto vale p A B? a) p A B = p( A B)= p( A) p (B A) b) p A B = p A P B c) p A = p B 50. Nel gioco dei dadi, lanciando contemporaneamente due dadi, qual è la probabilità che si abbiano due facce con somma complessiva 7? (Odontoiatria) a) 5/6 /2 b) /6 e) 7/36 c) /4 5. Si ha un urna contenente 8 palline bianche. Qual è il numero minimo di palline rosse che bisognerebbe aggiungere perché, estraendo due palline contemporaneamente, la probabilità che esse siano una bianca e una rossa sia 6/45? (Veterinaria) a) 2 b) 3 c) 5 8 e) 0 52. Una coppia vuole avere due figli dello stesso sesso: quanti figli deve avere per essere sicura che almeno due siano dello stesso sesso? (Veterinaria) a) 3 non si può stabilire b) 4 e) più di 4 c) 2 53. Da un mazzo di 40 carte (0 cuori, 0 quadri, 0 fiori, 0 picche) se ne estraggono tre; qual è la

8 Test sul calcolo della probabilità probabilità che siano tre assi fra i quattro presenti, supponendo di non rimettere la carta estratta nel mazzo? (Veterinaria) a) 3/800 4/3705 b) 3/0 e) /2470 c) /20 54. Una moneta è lanciata quattro volte. Qual è la probabilità p di ottenere quattro croci sapendo che le prime due volte si è ottenuto croce? (Veterinaria) a) 3/8 p</4 b) /2 e) /4 c) /2<p<3/4 55. La probabilità che lanciando contemporaneamente 3 dadi escano un 2 e due 3 è: (Veterinaria) a) /72 /8 b) /26 e) /54 c) /27 56. Un'urna contiene 2 paline, alcune bianche e altre rosse. È possibile che vi siano anche palline verdi ma non è sicuro. Sapendo che la probabilità di estrarre a caso dall'urna una pallina bianca oppure rossa sono rispettivamente 3/4 e /4, indicare se vi sono anche palline verdi e, in caso affermativo, il loro numero. (Veterinaria) a) non vi sono palline verdi b) c) 3 4 e) 2 57. Un urna contiene 2 palline, alcune bianche e altre rosse. È possibile che vi siano anche palline verdi ma non è sicuro. Sapendo che le probabilità di estrarre a caso dall urna una pallina bianca o rossa sono 2/3 e /4 rispettivamente, indica se vi sono anche palline verdi e, in caso affermativo, il loro numero. (Veterinaria) a) 2 b) c) 3 non vi sono palline verdi e) 4 58. Se si lancia un dado 5 volte con quale probabilità il 2 esce esattamente 3 volte? (Veterinaria) a) 2 53 c) 6 5 6 3 b) 5 2 6 5 e) 2 2 52 6 2 59. Due dadi vengono lanciati contemporaneamente; qual è la probabilità di ottenere un punteggio pari? (Scienze Motorie) a) 50% 75% b) 33% e) 25% c) 00% 60. Un test di esame sul calcolo della probabilità è composto da 5 quesiti con due possibili risposte. Sapendo che per superare la prova è necessario rispondere esattamente ad almeno 4 quesiti, qual è la probabilità che rispondendo a caso si supera l'esame?

Test sul calcolo della probabilità 9 a) 3/6 b) 2/6 c) /6 /32 e) 5/32 6. Da un mazzo di 40 carte (0 cuori, 0 quadri, 0 fiori, 0 picche) se ne estraggono tre; qual è la probabilità che siano tre figure fra le dodici presenti, supponendo di non rimettere la carta estratta nel mazzo? (Odontoiatria) a) /494 b) 33/600 c) 36/235 9/0 e) 33/494 62. La probabilità che lanciando contemporaneamente tre monete esse presentino la stessa faccia è: (Odontoiatria) a) 2/3 ¾ b) 2/8 e) /8 c) 3/8 63. In una gara al piattello partecipano 3 concorrenti: A, B, C. Il concorrente A ha la probabilità di fare centro pari a 0,4, il concorrente B paria a 0,5 e C pari a 0,6. Qual è la probabilità che almeno uno dei tre concorrenti colpisca il bersaglio? a) p=0,6 0,5 0,4 b) p= 0,6 0,5 0,4 c) p= 0,6 0,5 0,4 p= 0,6 0,5 0,4 e) p=0,6 0,5 0,4 0,6 0,5 0,4 64. Luca arriva in ritardo davanti alla scuola una volta su tre e quando arriva puntuale si attarda al bar con gli amici una volta su quattro. Qual è la probabilità che Luca entri puntualmente in classe? (Odontoiatria) a) /2 b) /6 c) 3/4 3/8 e) 2/9 65. Qual è la probabilità che estraendo una lettera dalla parola probabilità sia una vocale? a) 3/ /5 b) 4/ e) /6 c) 5/ 66. Qual è la probabilità che estraendo una lettera dalla parola probabilità sia una consonante? a) 3/ /5 b) 4/ e) /6 c) 6/ 67. Qual è la probabilità che estraendo una lettera dalla parola probabilità sia stata estratta la vocale a sapendo che è stata estratta una vocale? a) 3/ /5 b) 3/0 e) /6 c) 2/5 68. Nel gioco della roulette i numeri vanno da 0 a 36, metà pari, metà dispari e lo zero. Qual è la probabilità che esca un numero pari? a) p 0,5 b) p 0,25

0 Test sul calcolo della probabilità c) p< 0,5 p< 0,5 e) non si può calcolare 69. Qual è la probabilità che al gioco della roulette escano due numeri pari consecutivi? a) 37 c) 36 37 36 b) 36 37 36 36 e) 37 37 70. In una moneta truccata la probabilità che esca testa è 4/3 della probabilità che esca croce. Qual è la probabilità di testa e la probabilità di croce? a) (4/3; /3) (4/7;3/7) b) (7/4; 3/4 ) e) non si può calcolare. c) (3/7; 4/7) 7. In una moneta truccata la probabilità che esca testa è 4/3 della probabilità che esca croce. Qual è la probabilità che in due lanci consecutivi non esca testa in nessuno dei due lanci? a) ( 7) ( 3 4 7) b) ( 4 7) ( 7) 3 c) ( 4 7 7) 4 ( 3 7 7) 3 e) ( 7) ( 4 4 7 ) 72. In un quadrato di lato l=2 è inscritta una circonferenza ideale di spessore trascurabile. Qual è la probabilità che scegliendo un punto a caso all'interno del quadrato esso non appartenga al cerchio? a) π 4 b) 4 π c) π 2 3 4 π e) 3 4 π 73. Con riferimento ai dati del precedente test. Qual è la probabilità che il punto appartenga al cerchio? a) π π π 2 b) 8 e) 4 3 π π 4 c) 4 74. Una macchina ha prodotto 7500 pezzi e 50 pezzi difettosi. Qual è la probabilità che il prossimo pezzo sia difettoso? a) 6,6% c) 0,06% b) 0,6% /66

Test sul calcolo della probabilità e) non si può calcolare 75. L'intera produzione di un farmaco è stata confezionata da due macchine confezionatrici. La prima ha confezionato 2.000 confezioni e 20 confezioni difettose la seconda ha confezionato 3.000 confezioni e 40 confezioni difettose. Le confezioni corrette sono state mischiate a quelle difettose. Qual è la probabilità che estraendo una confezione essa sia corretta? 200 a) 500 300 00 50 500 0 52 b) c) 200 2000 400 3000 00 0 50 5 e) 00 0 50 52 76. Qual è la probabilità che estraendo una confezione essa sia difettosa? a) 60 60 5000 5060 b) 20 60 e) 2000 4940 c) 40 3000 77. In una classe di 30 studenti 6 sono femmine. Il 25 % delle studentesse possiede il motorino e i 3/7 degli studenti maschi non lo possiede. Calcolare la probabilità che estraendo un qualunque studente sia maschio. a) 2/3 b) 3/5 c) 7/5 8/5 e) non si può calcolare 78. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia femmina. a) 2/3 8/5 b) 3/5 e) non si può calcolare c) 7/5 79. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia maschio e possiede il motorino. a) 2/5 5/5 b) 3/5 e) 6/5 c) 4/5 80. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia maschio e non possiede il motorino. a) 2/5 5/5 b) 3/5 e) 6/5 c) 4/5 8. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia femmina e possiede il motorino. a) 2/5 c) 4/5 b) 3/5 5/5

2 Test sul calcolo della probabilità e) 6/5 82. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia femmina e non possiede il motorino. a) 2/5 b) 3/5 c) 4/5 5/5 e) 6/5 83. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente possegga il motorino. a) 2/5 5/5 b) 3/5 e) 6/5 c) 4/5 84. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente non possegga il motorino. a) /5 4/5 b) 2/5 e) nessuna delle precedenti c) 3/5 85. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia femmina sapendo che possiede il motorino. a) /5 4/5 b) 2/5 e) nessuna delle precedenti c) 3/5 86. Sulla base dei dati del test n.77, calcolare la probabilità che estraendo un qualunque studente sia maschio sapendo che possiede il motorino. a) /5 4/5 b) 2/5 e) nessuna delle precedenti c) 3/5 87. Siano due eventi A e B rappresentati in figura, con p(a)=2/5 e p(b)=/5. Quanto vale la probabilità p= A B? A B a) b) 4/5 c) 3/5 2/5 e) /5 88. Due urne identiche contengono rispettivamente 7 palline bianche e 8 palline rosse e, 8 palline bianche e 7 palline rosse. Estraendo una pallina da ciascun urna la probabilità p che le palline siano dello stesso colore è: a) p=6/30 b) p=4/30 c) p=3/225 p=2/225 89. Due urne identiche contengono rispettivamente 7 palline bianche e 8 palline rosse e, 8 palline bianche e 7 palline rosse. Estraendo una pallina da ciascun urna la probabilità p che le palline siano di colore differente è:

Test sul calcolo della probabilità 3 a) p=6/30 b) p=4/30 c) p=3/225 p=2/225 90. Lanciando 4 volte un dado non truccato qual è la probabilità che si ottenga 2 volte il numero 4.? a) /36 25/296 b) 25/36 c) 25/26 9. In un incrocio si verificano 2 incidenti ogni 250 passaggi. Con quale probabilità si possono verificare 0 incidenti in.000 transiti? a) /000 /8 e b) /e 8 c) 8/e 92. Qual è la probabilità che giocando a tombola estraendo il secondo numero esso sia un numero pari sapendo che il primo numero estratto è 5? a) 45/90 44/89 b) 44/90 c) 45/89 93. Qual è la probabilità che giocando a tombola estraendo il secondo numero esso sia un numero pari sapendo che il primo numero estratto è 6? a) 45/90 44/89 b) 44/90 c) 45/89 94. Qual è la probabilità che estraendo una cifra dal numero 4767543 essa sia pari. a) 2/7 5/7 b) 3/7 c) 4/7 95. Un circuito è costituto da tre interruttori p, p 2, p 3. Se l'interruttore è chiuso passa corrente, se l'interruttore è aperto non fa circolare corrente come mostrato in figura. p p 2 p 3 Ognuno degli interruttori ha la seguente probabilità di essere aperto p =/4 p 2 =2/3, p 3 =3/4. Calcolare la probabilità che circoli corrente nel circuito. a) 4 2 3 3 3 c) 4 4 3 4 b) 2 3 4 4 2 3 3 4 96. Un circuito è costituto da due interruttori p, p 2. Se l'interruttore è chiuso passa corrente, se l'interruttore è aperto non fa circolare corrente come mostrato in figura. p p 2

4 Test sul calcolo della probabilità Ognuno degli interruttori ha la seguente probabilità di essere aperto p =/4 e p 2 =2/3. Calcolare la probabilità che circoli corrente nel circuito. a) /6 b) 3/6 c) 5/6 97. Se p(e) è la probabilità che accada un evento, quale delle seguenti affermazioni è sicuramente falsa? a) p(e)> p(e)=0, b) p(e)= c) p(e)=0 98. Se p(e)= è la probabilità che accada un evento, quale delle seguenti affermazioni è sicuramente falsa? a) E è un evento incerto E ed E sono incompatibili b) E è un evento certo c) E è un evento impossibile 99. Due eventi si definiscono partizione quando: a) la loro unione dà l'insieme universo b) la loro intersezione non è vuota c) la loro intersezione è vuota la loro unione dà l'insieme universo e la loro intersezione è vuota e) la loro unione dà l'insieme universo e la loro intersezione non è vuota 00. Data la partizione di un insieme. Qual è la probabilità dell'unione di tutti gli elementi della partizione? a) 0 0,75 b) 0,25 e) c) 0,5

5