Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Documenti analoghi
Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Densita. FLUIDI : liquidi o gas. macroscop.:

Meccanica dei Fluidi: statica e dinamica

Lezione 9. Statica dei fluidi

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Cap Fluidi

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

Stati di aggregazione della materia:

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Legge di Stevino ( d.c.)

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Meccanica dei fluidi

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

è completamente immerso in acqua. La sua

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Dinamica dei Fluidi. Moto stazionario

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

Meccanica dei Fluidi - Fluidostatica -

MODULO 3. La pressione

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

F > mg Il cubo galleggia

a) Calcolare il modulo di F.

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce)

PRESSIONE ATMOSFERICA

ELEMENTI DI STATICA DEI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Studente... Matricola...

Lezione 4 Energia potenziale e conservazione dell energia

GAIALAB:INCONTRIAMO L AMBIENTE IN LABORATORIO

EQUILIBRIO DEI FLUIDI

Idraulica e Idrologia: Lezione 12 Agenda del giorno

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

PIANO DI STUDIO D ISTITUTO

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

I D R O S T A T I C A

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

MODULO BIMESTRALE N.1:Le Grandezze in Fisica

Densità e volume specifico

Test Esame di Fisica

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

Problema (tratto dal 7.42 del Mazzoldi 2)

ANNO SCOLASTICO CLASSE II E DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

GLI STATI DI AGGREGAZIONE DELLA MATERIA

Meccanica dei FLUIDI

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

GLI STATI DI AGGREGAZIONE DELLA MATERIA

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Principio di inerzia

Compito di Fisica Generale (Meccanica) 25/01/2011

STATICA DEI FLUIDI G. ROBERTI

L energia potenziale gravitazionale di un oggetto di massa m che si trova ad un altezza h rispetto ad un livello scelto come riferimento è: E PG = mgh

Pressione nei liquidi

ATTRITO VISCOSO NEI FLUIDI

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

MASSA VOLUMICA o DENSITA

Esercitazione VI - Leggi della dinamica III

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

UNIVERSITA DI ROMA LA SAPIENZA FACOLTA DI INGEGNERIA. Anno Accademico Prova scritta dell esame di Fisica I - 12 gennaio 2009

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

ESERCIZI APPLICATIVI E DI CONTROLLO

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

Derivata materiale (Lagrangiana) e locale (Euleriana)

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

La meccanica dei fluidi

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

4. I principi della meccanica

Secondo Appello Estivo del corso di Fisica del

Proprieta meccaniche dei fluidi

Calore, lavoro e trasformazioni termodinamiche (1)

Corso di Laurea in FARMACIA

Capitolo 12. Moto oscillatorio

Problemi di dinamica del punto materiale

Transcript:

Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi sono dei fluidi. Una distinzione fra liquidi e gas puo essere basata sulla osservazione che una certa quantita di liquido ha un volume definito, mentre un gas si espande fino a riempire completamente il recipiente in cui e posto. Questo differente comportamento macroscopico dipende dalle differenti proprieta delle forze di coesione fra le molecole. Pressione Immaginiamo di immergere in un fluido un sensore molto piccolo, come quello schematizzato in figura. Un pistone avente area A e massa trascurabile puo scorrere, vincolato ad una molla, in un cilindro all interno del quale e fatto il vuoto. Quando lo strumento viene immerso, il fluido esercita sul pistone una forza di modulo F, perpendicolare al pistone stesso, spingendolo verso l interno. Il pistone raggiungera la posizione in cui la forza esercitata dalla molla su di esso bilancia quella esercitata dal fluido. Definiamo pressione P del fluido nel punto in cui si trova il sensore lo scalare dato dal rapporto P= F/A Si trova sperimentalmente che la pressione P cosi definita non dipende dall orientamento del sensore. La unita di misura della pressione nel S.I. e il Pascal (Pa) 1 Pa = 1 N/m 2 Altre unita di misura della pressione ancora utilizzate sono: l atmosfera (atm) equivalente alla pressione media della atmosfera a livello del mare; il torr equivalente alla pressione esercitata da una colonna di 1 mm di mercurio ed il bar equivalente a 10 5 Pa 1Atm=1.01 10 5 Pa = 1.01 bar = 760 torr

Massa volumica La massa volumica ρ (o densita ) di una sostanza e definita come la massa per unita di volume della sostanza considerata. Poiche come osservato i gas non hanno un volume definito, la loro massa volumica dipendera fortemente dalla pressione e dalla temperatura. Tale dipendenza e invece solitamente trascurabile o molto debole per i liquidi ed i solidi Esempio 1 Una stanza ha un pavimento di dimensioni 3.5 m per 4.5 m ed altezza di 3.2 m. Calcolare la massa m ed il peso mg dell aria contenuta nella stanza a pressione atmosferica e temperatura di 0 o C ed il modulo F della forza esercitata dall aria sul pavimento della stanza. m = ρ V = 1.29 (3.5 x 4.5 x 3.2) = 65 kg mg = 6.4 10 2 N F = PA= 1.01 10 5 x (3.5 x4.5) = 1.6 10 6 N Tale enorme forza e equivalente al peso di una massa di 1.6 10 5 kg!!

Legge di Stevino Ci proponiamo di capire in che modo varia con la profondita la pressione di un fluido in quiete avente densita ρ costante. Consideriamo un contenitore contenente un liquido in quiete avente densita ρ come schematizzato in figura. y Consideriamo la quantita di liquido contenuta dentro un cilindro immaginario avente base di area A e che si estende dalla superficie fino alla profondita h. Sia P la pressione esercitata dal liquido esterno al cilindro sulla base del cilindro a profondita h. La pressione esercitata dall aria sulla superficie del cilindro e la pressione atmosferica P 0. Poiche il cilindro di liquido e in quiete, la componente rispetto all asse y della risultante delle forze agenti sul cilindro deve essere nulla. Quindi si ha: +P 0 A +Mg PA = 0 + P 0 A +(A h ρ )g PA = 0 P= P 0 + ρ g h Cioe la pressione ad una profondita y=h e maggiore della pressione atmosferica di una quantita ρ g h Tale legge prende il nome di legge di Stevino.

Esempio 2: il barometro a mercurio Evangelista Torricelli (1608-1647), al quale e dedicato il nome di una delle unita di misura della pressione, il torr, invento un semplice strumento che consente di misurare la pressione atmosferica: il barometro a mercurio. y Il barometro e costituito da un tubo, chiuso ad una estremita, riempito di mercurio. Il tubo viene rovesciato in un contenitore aperto, anch esso pieno di mercurio, avendo cura di non fare entrare aria nel tubo stesso durante la operazione. Alla estremita chiusa del tubo si crea una zona di vuoto dove la pressione puo essere considerata nulla. La altezza della colonna di mercurio osservata eseguendo l esperimento al livello del mare e di 76 cm. Dalla legge di Stevino abbiamo che P 0 = P+ ρgh = 0 + ρgh = ρgh = 1.01 10 5 Pa = 1 atm La pressione atmosferica e quindi equivalente a quella generata da una colonna di mercurio di altezza h=76 cm Principio di Pascal Come abbiamo visto, la pressione in un fluido in quiete dipende solo dalla profondita. Pertanto, ad esempio, un aumento della pressione P 0 sulla superficie sara trasmesso in qualsiasi altro punto del fluido. Il primo a comprendere cio fu Blaise Pascal (1623-1662), al quale e dedicato il nome della unita di pressione del S.I., che enuncio la legge oggi nota come principio di Pascal: Una variazione di pressione applicata ad un fluido viene trasmessa invariata ad ogni punto del fluido e alle pareti del contenitore.

Esempio 3: un sollevatore per auto Una importante applicazione del principio di Pascal e il martinetto idraulico la cui logica di funzionamento e la seguente. Una forza F 1 viene applicata ad un piccolo pistone di area A 1. La pressione viene trasmessa attraverso un fluido ad un pistone di area A 2 >A 1, sul quale sara quindi esercitata una forza F 2. Poiche la pressione e la stessa su entrambi i pistoni si ha: P = F 1 /A 1 = F 2 / A 2 F 2 = F 1 (A 2 /A 1 ) > F 1 Su tale principio si basa il funzionamento di freni idraulici, sollevatori idraulici, carrelli elevatori e simili. y Un elevatore tiene sollevata una automobile di massa M=1.3 10 3 kg. Per fare funzionare l elevatore si utilizza dell aria compressa per comprimere un pistoncino di raggio R 1 =5.0 cm, mentre il raggio del secondo pistone e R 2 =15 cm. Quale forza F 1 deve esercitare l aria compressa per tenere sollevata l auto? Quale sara la pressione dell aria compressa necessaria? Mg + F 2 = ma = 0 -Mg + F 2 = 0 - Mg + F 1 (A 2 /A 1 ) =0 F 1 = Mg (A 1 /A 2 ) = Mg (R 1 /R 2 ) 2 = (1/9) Mg= 1.4 10 3 N P = F 1 /A 1 = F 1 /(πr 12 ) = 1.8 10 5 Pa = 1.8 atm

Principio di Archimede Archimede, piu di 2000 anni addietro, enuncio quello che e oggi noto come principio di Archimede: un corpo immerso in un fluido riceve una spinta dal basso verso l alto pari al peso del fluido spostato. Ci proponiamo di capire, alla luce delle nostre conoscenze attuali, quale e l origine di tale spinta. y Dato un contenitore contenente un fluido in quiete avente densita ρ, consideriamo la quantita di fluido contenuta dentro un cubo immaginario di lato L come schematizzato in figura. Poiche il cubo di fluido e in quiete, la componente lungo l asse y della risultante delle forze agenti sul cubo di fluido deve essere nulla. Quindi: -Fg + B = 0 B = Fg = mg Quindi la spinta B verso l alto agente sul cubetto di fluido e uguale, in modulo, al peso del cubetto di fluido stesso. Ora se il cubetto di fluido venisse sostituito da da un cubetto di un altra sostanza,avente le stesse dimensioni, il fluido circostante si comporterebbe allo stesso modo e la spinta rimarrebbe uguale al peso del fluido spostato. Notiamo che la spinta di Archimede e originata dalla differenza di pressione P = Pdown - Pup fra la faccia inferiore (down) e superiore (up) del cubo. B = Fdown Fup = L2 Pdown - L2 Pup = L2 (Pdown - Pup ) = L2 (ρ gl) = (L3 ρ) g = mg

Condizione di galleggiamento Cosa succede ad un corpo di densita ρ c quando viene immerso in un fluido di densita ρ f? Come conseguenza del principio di Archimede si ha che: se ρ c < ρ f il corpo sara soggetto ad una forza risultante rivolta verso l alto e galleggera nel fluido, se ρ c > ρ f il corpo sara soggetto ad una forza risultante rivolta verso il basso ed affondera nel fluido. Infatti, detto V c il volume del corpo considerato, la componente della forza risultante F rispetto ad un asse verticale rivolto verso l alto sara : F y =-mg + V c ρ f g =-V c ρ c g + V c ρ f g =V c g(ρ f - ρ c ) Essa sara quindi positiva se ρ c < ρ f e negativa se ρ c > ρ f. Esempio 4: il galleggiamento di un iceberg Dato un iceberg, che galleggia in mare aperto, ci proponiamo di calcolare quale e la frazione del suo volume che rimane immersa sapendo che: la densita del ghiaccio costituente l iceberg e ρ i = 917 kg/m 3 e la densita dell acqua dove esso e immerso e ρ f = 1030 kg/m 3. La parte immersa dell iceberg deve generare una spinta di Archimede B pari in modulo al peso P i dell iceberg stesso. Pertanto, detti V i il volume totale dell iceberg e V il volume della sua parte immersa si ha: P i = B V i ρ i g = V ρ f g V/ V i = ρ i / ρ f = 0.89 = 89 % Da cui il modo di dire e solo la punta di un iceberg!

Introduzione alla dinamica dei fluidi: moto di un fluido ideale Finora ci siamo limitati allo studio di un fluido in quiete. Lo studio del moto di un fluido reale e molto complesso, pertanto ci limiteremo ad introdurre alcune nozioni basilari riguardanti lo studio del moto di un fluido ideale. Lo studio del moto di un fluido ideale e basato sulle seguenti ipotesi. Il fluido non e viscoso La viscosita e per i fluidi l analogo dell attrito per i solidi. Essa rappresenta una sorta di attrito interno fra le varie particelle del fluido e fra il fluido e le pareti della condotta. Ad esempio, dalla definizione data, segue che un oggetto in moto all interno di un fluido non viscoso non sarebbe soggetto ad alcuna forza che si oppone al suo moto. Analogamente all effetto delle forze di attrito nel moto dei solidi, nel moto di un fluido viscoso della energia meccanica viene trasformata in energia termica. Il fluido e incomprimibile. Assumiamo cioe che la massa volumica (densita ) del fluido sia costante. Essa sara quindi la stessa in qualsiasi punto all interno della condotta. Il moto e stazionario. Il moto e stazionario quando, considerato un punto generico all interno della condotta, il vettore velocita delle particelle di fluido che transitano in quel punto non cambia col tempo. Il moto e irrotazionale. Il moto di un fluido e irrotazionale se nessuna delle sue particelle ruota attorno ad un asse passante per il suo centro di massa. Ad esempio immaginiamo di far muovere un piccolo granello di polvere in un fluido. Se il moto e irrotazionale, il granello di polvere non ruoterebbe attorno ad un asse passante per il suo centro di massa anche se dovesse muoversi lungo un camino circolare.

Equazione di continuita Consideriamo un fluido ideale che si muova lungo una condotta di sezione variabile come schematizzato in figura. La massa m 1 di fluido che attraversa la sezione A 1 in un intervallo di tempo t deve essere uguale alla massa m 2 che attraversa la sezione A 2 nello stesso intervallo di tempo. Pertanto: m 1 = m 2 ρ 1 (A 1 x 1 ) = ρ 2 (A 2 x 2 ) ρ 1 (A 1 v 1 t) = ρ 2 (A 2 v 2 t) ρ 1 A 1 v 1 = ρ 2 A 2 v 2 (se la densita e costante) A 1 v 1 = A 2 v 2 Tale equazione prende il nome di equazione di continuita e mostra che la velocita del fluido e maggiore dove il tubo e piu stretto e minore dove il tubo e piu largo. Il prodotto AV, che ha le dimensioni di un volume diviso un tempo, e chiamato portata. A 1 Esempio 5 Osservando un flusso di acqua che esce da un rubinetto, notiamo che la sua sezione si restringe (A 2 < A 1 ) man mano che l acqua cade acquistando velocita. Cio e una diretta conseguenza della equazione di continuita. Infatti: A 1 v 1 = A 2 v 2 ma v 2 >v 1 quindi A 2 A 2 <A 1

Equazione di Bernoulli Daniel Bernoulli ricavo per primo la seguente equazione che, per il moto di un fluido ideale di densita ρ, lega la pressione P, la velocita v e la quota y del fluido dentro la condotta dove esso scorre: P 1 + 1/2 ρ v 12 + ρgy 1 = P 2 + 1/2 ρ v 22 + ρgy 2 = costante Tale equazione, ricavata tramite considerazioni di tipo energetico, e oggi nota come equazione di Bernoulli. Ci proponiamo ora di dimostrare la suddetta equazione. Prendiamo in considerazione la quantita di fluido (avente volume V e massa m = V ρ) che in un tempo t attraversa le sezioni 1 e 2 della condotta. Poiche stiamo ipotizzando che il moto del fluido sia ideale (e quindi stazionario), la porzione di fluido compresa fra x 1 e x 2 non subisce alcuna variazione nel tempo t. Quindi, dal punto di vista energetico, e come se nel tempo t la massa m di fluido considerata si spostasse dal tratto x 1 al tratto x 2. Il fluido a sinistra della sezione 1 effettua sulla massa m di fluido considerata un lavoro L 1 L 1 = F 1 x 1 = P 1 A 1 x 1 = P 1 V Analogamente il fluido a destra della sezione 2 effettua su m un lavoro L 2 = - F 2 x 2 = - P 2 A 2 x 2 = - P 2 V Imponendo che lavoro totale sia uguale alla variazione di energia meccanica totale della massa m di fluido considerata, otteniamo la equazione di Bernoulli L tot = L 1 + L 2 = (P 1 -P 2 ) V L tot = K + U (P 1 -P 2 ) V = (1/2mv 2 2-1/2 m v 12 ) + (mgy 2 -mgy 1 ) (P 1 -P 2 ) = (1/2 ρ v 2 2-1/2 ρ v 12 ) + (ρ gy 2 - ρ gy 1 ) P 1 + 1/2 ρ v 12 + ρgy 1 = P 2 + 1/2 ρ v 22 + ρgy 2

Esempio 6 Un serbatoio di acqua ha su una parete un forellino di diametro trascurabile rispetto al diametro del serbatoio stesso. Il foro si trova ad una quota h al di sotto del livello dell acqua nel serbatoio. Con quale velocita l acqua esce dal forellino? Siano A ed a le sezioni del serbatoio e del forellino; V e v le velocita dell acqua alla superficie del serbatoio e all uscita dal forellino. Siano inoltre P 0 la pressione atmosferica e ρ f la densita dell acqua. Dalla equazione di continuita si ha: A V = a v V= v (a/a) Ma a<<a V<<v Applicando l equazione di Bernoulli si ottiene: P 0 + ½ ρ f V 2 + ρ f gh = P 0 + ½ ρ f v 2 + 0 + ½ v 2 = ½ V 2 + gh Poiche V<<v il termine 1/2 V 2 sara trascurabile rispetto ½ v 2 e si avra + ½ v 2 = gh v = [2gh] 1/2 L acqua avra quindi la stessa velocita che avrebbe un corpo cadendo da una quota h

Esempio 8: la equazione di Bernoulli ed i tiri di Platini Abbiamo piu volte detto che un corpo, lanciato con velocita diversa da zero in prossimita della superficie terrestre, si muovera su un piano lungo una traiettoria parabolica. Sappiamo pero che in alcuni sport come il calcio, il pingpong, il tennis, dei bravi giocatori riescono a far si che una palla segua delle traiettorie che si discostano di molto da una parabola Non dobbiamo dimenticare che, nel dimostrare che la traiettoria deve essere parabolica, abbiamo trascurato la interazione con l aria che e, in realta, un fluido reale! Traiettorie particolari possono essere ottenute tirando la palla in modo che essa abbia una grande velocita angolare attorno ad un asse passante per il suo centro. Consideriamo la figura in basso. Se in un dato istante la velocita di traslazione del pallone ha direzione e verso della linea tratteggiata, la velocita dell aria rispetto al pallone avra verso opposto. Inoltre, se la palla ruota in senso antiorario, essa trascinera con se un sottile strato di aria che tendera a ruotare con essa. La velocita dell aria rispetto al pallone sara data dalla somma della velocita dell aria legata alla traslazione e di quella legata alla rotazione. Nell esempio in figura tali velocita hanno verso concorde alla sinistra del pallone e opposto alla destra. La velocita dell aria rispetto al pallone sara quindi maggiore alla sinistra del pallone e, come conseguenza della equazione di Bernoulli, la pressione sara inferiore. Il pallone sara quindi soggetto ad una forza rivolta verso sinistra che fara si che la sua traiettoria non sia parabolica.

Alcuni quesiti di verifica 1)Sapreste discutere il principio di funzionamento di un barometro al mercurio? Se si volesse costruire uno strumento di questo tipo utilizzando acqua al posto del mercurio, quale altezza della colonna di acqua vi aspettereste? 2)Conoscete ed avete capito il significato della legge di Stevino del principio di Pascal e del principio di Archimede? 3)Quali sono le condizioni che devono essere soddisfatte affinche un corpo possa galleggiare in un fluido? 4)Sotto quali condizioni e valida la equazione di Bernoulli? 5)La equazione di Bernoulli e in qualche modo legata ad un principio di conservazione? Discutere. 6)Sapreste mettere in relazione qualche fenomeno osservabile comunemente, con la equazione di Bernoulli e/o con la equazione di continuita?