Meccanica dei FLUIDI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Meccanica dei FLUIDI"

Transcript

1 Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione di Poiseuille Moto turbolento Applicazione al sistema circolatorio pag.1

2 Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie libera gas diffusione nell intero volume disponibile Un fluido può essere: omogeneo caratteristiche fisiche costanti per tutto il suo volume disomogeneo caratteristiche fisiche non costanti Fluido ideale : non comprimibile, omogeneo, senza attrito interno (non viscoso). Es. Sangue sospensione di cellule in soluzione acquosa di sali e molecole organiche omogeneo a livello macroscopico, disomogeneo a livello microscopico pag.2

3 Massa, peso, densita MASSA m kg grandezza fondamentale proprietà intrinseca dei corpi PESO p = mg N forza con cui ogni corpo dotato di massa viene attirato dalla Terra Unità di misura pratica: kg peso = kg massa 9.8 m/s 2 = 9.8 N DENSITA (o massa volumica) densità = massa volume relazione tra massa e dimensioni dei corpi, utile soprattutto per liquidi e gas ρ = m/v kg/m 3 (SI) Def. simile: concentrazione v. Chimica pag.3

4 Portata (di volume) di un fluido Portata (Q) = S v = x/ t V x v volume di liquido intervallo di tempo t Q= V/ t m 3 /s SI cgs pratico m 3 /s cm 3 /s l/min V = S x Q = V/ t = S x/ t Q = S v Es. Portata del sangue: 5 l/min = (5000 cm 3 )/(60 s) = cm 3 /s Definizione : Portata di massa = Q ρ (in Kg/s nel SI) pag.4

5 pressione = S F n n F Pressione forza perpendicolare superficie Unita di misura (SI): pascal (Pa) ϑ Relazione tra pascal e baria: Non conta la forza in sè, ma la sua componente perpendicolare! P = F n / S Pa = N/m 2 SI cgs pratici pascal baria atm, mmhg 1 Pa = 1 N/m 2 = (10 5 dine)/(10 4 cm 2 ) = 10 dine/cm 2 = 10 barie Es. pag.5

6 Misure di pressione Pressione atmosferica Torricelli: a livello del mare la pressione esercitata dall aria equivale a quella di una colonna di mercurio alta 760 mm Unità di misura pratiche di pressione: 1 atm = 760 mmhg 1 mmhg (torr) = (1/760) atm Relazione tra atmosfera e pascal: (v. pressione idrostatica) p = ρgh = ( kg/m 3 ) (9.8 m/s 2 ) (0.76 m) Pa 1 atm = Pa = bar = barie 1 bar = 10 5 Pa Pressione sanguigna (sempre in mmhg): Es. 120 mmhg = (120/760) atm = atm = = ( ) Pa Pa = barie pag.6

7 Pressione: alcuni esempi (HRW) pag.7

8 Pressione idrostatica Legge di Stevino: la differenza di pressione tra due punti in un fluido in equilibrio è pari alla pressione esercitata alla base da una colonna di fluido di altezza pari al dislivello tra i due punti P(h 2 ) = P(h 1 ) + ρg(h 1 h 2 ), con h 2 < h 1 Conseguenza (ponendo h 1 = 0 m e P(h 1 ) = 0 Pa): su un corpo immerso in un fluido agisce una pressione addizionale (pressione idrostatica) dovuta al peso della colonna di liquido di altezza h che sovrasta la sua superficie S. m S h P = F/ S = mg/ S = (ρv)g/ S = ρ( S h)g/ S = ρgh NB1: m = massa del liquido, non del corpo immerso! NB2: P NON dipende dall orientamento della superficie s (se s << h) pag.8

9 Principi legati alla Legge di Stevino Legge di Stevino: P(h 2 ) = P(h 1 ) + ρg(h 1 h 2 ) In un fluido all equilibrio: 1) La pressione è costante in tutti i punti che si trovano alla stessa quota (legge di Pascal). 2) Se più recipienti contengono lo stesso liquido e sono in comunicazione tra di loro, allora le loro superfici libere sono allo stesso livello qualunque sia la forma e la capacità dei recipenti (principio dei vasi comunicanti). 3) Una pressione applicata in qualsiasi punto di un fluido confinato è trasmessa inalterata ad ogni porzione del fluido e alle pareti del recipiente che lo contiene (principio di Pascal). pag.9

10 Principio di Pascal: energia di pressione Principio di Pascal: se ad un fluido confinato si applica una pressione esterna P, in ogni punto del fluido si avrà una variazione di pressione pari a P. Applicazioni: martinetto idraulico. P = F S F = PS Lavoro compiuto dalla forza di pressione: L = F l = Fl = PSl = P V F Energia di pressione: E pres = P V Lavoro cardiaco: l S Es. P = 100 mmhg = (100/760) 10 5 Pa ~ Pa V = 60 cm 3 = m 3 (gittata pulsatoria) L = P V = ( N/m 2 ) ( m 3 ) = 0.8 J pag.10

11 Spinta di Archimede Principio di isotropia: la pressione in un punto di un fluido non dipende dall orientamento della superficie, ma solo dalla quota in cui si trova il punto Corpo immerso in un liquido due pressioni diverse: sulla superficie superiore P 1 = ρgh 1 sulla superficie inferiore P 2 = ρgh 2 h 2 >h 1 P 2 >P 1 h 1 F 1 h 2 V=S h S F 2 h Forza risultante verso l alto: F = F 2 -F 1 = (P 2 -P 1 )S = ρg(h 2 -h 1 )S = ρg hs = ρgv = ρvg = mg peso del liquido spostato, non del corpo immerso! pag.11

12 Spinta di Archimede: esempi (HRW) (HRW) pag.12

13 in movimento: eq. di continuità Nel caso generale di fluidi in movimento, si ha che la velocità v del fluido dipende da x e da t: v = v(x,t). MOTO STAZIONARIO: v(x) = cost. in t (dip. solo da x) La portata Q è costante nel tempo in ogni sezione (conservazione della massa) senza SORGENTI senza BUCHI densità = costante S v t Nello stesso intervallo di tempo t: Sv t = S v t v v' t v' S' Q = V t = S v t = S v = costante t Equazione di continuità pag.13

14 Equazione di continuità - 2 Se il condotto si apre in più diramazioni, bisogna considerare la superficie totale. In ogni tratto n si avrà sempre Q = S n v n Q = 100 cm 3 /s A B S 2 = 1.25 cm 2 C S 3 = 0.5 cm 2 S 1 = 5 cm 2 S 1 = 5 cm 2 v 1 = 20 cm/s S 2 = 1.25 cm 2 v 2 = 80 cm/s S 3-tot = 2.5 cm 2 v 3 = 40 cm/s pag.14

15 (Gia) Equazione di continuità: esempio di applicazione al flusso sanguigno pag.15

16 Moto di un fluido in un condotto Tipo di moto: stazionario portata costante nel tempo pulsatile portata variabile in modo periodico Tipo di condotto: rigido non cambia forma sotto qualunque forza deformabile cambia forma sotto una forza ideale reale deformaz.elastica deformaz.non elastica arterie e vene Tipo di fluido: senza attriti (non viscoso) con attriti (viscoso) pag.16

17 L energia nel moto di un fluido ideale Liquido in moto sotto l azione di: - differenza di pressione - forza peso 1 S 1 V1 p 1,v 1,h 1,S 1 p 2,v 2,h 2,S 2 v 2 V h suolo 2 2 h 1 v 1 p 1 S 2 l 2 p 2 h 2 fluido perfetto (attrito nullo: viscosità η=0) condotto rigido moto stazionario (Q=costante S 1 v 1 = S 2 v 2 ) pag.17

18 Fluido ideale in condizioni stazionarie (v(x) e P(x) = cost. in t): teorema di Bernoulli Conservazione dell energia totale: Ecinetica + Epotenziale + Epressione = costante E tot = ½ mv 12 + mgh 1 + p 1 V = ½ mv 22 + mgh 2 + p 2 V Ponendo m = ρ V e dividendo per V: E tot = ½ρ Vv 12 + ρ Vgh 1 + p 1 V = ½ρ Vv 22 + ρ Vgh 2 + p 2 V V V V V V V V Energia totale per unità di volume: E tot / V = ½ρv 2 + ρgh + p = costante termine cinetico + potenziale + piezometrico pag.18

19 Teorema di Bernoulli: esempio (Gia) pag.19

20 Fluido reale: regime laminare (stazionario) con attrito Modello di liquido come lamine che scorrono le une sulle altre A v 2 δ v 1 Forza di attrito: si oppone al moto F A - v F A = η A v δ A v=v 1 -v 2 = velocità relativa tra lamine A = area lamine δ = distanza tra lamine η = coefficiente di viscosità pag.20

21 Fluido reale: viscosità F A = η A v η coefficiente di viscosità δ Unita di misura cgs: poise (P) = dyna s/cm 2 = g/(s cm) Unita di misura MKS: N s/m 2 = Pa s = 10P La viscosita diminuisce al crescere della temperatura. Acqua a 0 o η acqua = poise a 20 o η acqua = poise Sangue Plasma η plasma = 1.5 η acqua Sangue con ematocrito (% eritrociti) 40% η sangue = 5 η acqua Es. pag.21

22 Q = Fluido reale in regime laminare: Equazione di Poiseuille Condizione per il moto di un liquido: differenza di pressione Equazione di Poiseuille: π R 4 P 1 Q P 1 > P 2 P 2 L (P 1 P 2 ) 8 ηl Q p Q = p/rmec La portata è direttamente proporzionale alla differenza di pressione asse del condotto v La velocità è maggiore al centro del condotto (profilo parabolico) Il moto è silenzioso R Rmec: Resistenza meccanica di un condotto dipende da: raggio, lunghezza del tubo, viscosità del liquido pag.22

23 Fluido reale: regime turbolento Quando la velocità del liquido supera una certa velocità critica (Vc), il modello laminare non funziona più: il moto si fa disordinato, si creano vortici. Vc dipende dal fluido (ρ, η) e dal raggio R del tubo: Vc ~ 1200 (η/rρ) v>v c velocità critica La portata non è più direttamente proporzionale alla differenza di pressione Q p Per ottenere la stessa portata serve una pressione decisamente maggiore! La velocità non ha più un profilo regolare, il moto è rumoroso e l equazione di Poiseuille non è più valida pag.23

24 Moto dei fluidi reali: sintesi MOTO STAZIONARIO di un LIQUIDO REALE e OMOGENEO in un CONDOTTO RIGIDO approx. iniziale v < v c REGIME LAMINARE v > v c - lamine e profilo velocità parabolico - Q p - silenzioso (~ conservazione dell energia) REGIME TURBOLENTO - vortici - Q p - rumoroso (alta dissipazione di energia per attrito) pag.24

25 Esempio: sistema circolatorio (fluido non ideale diminuzione di pressione) Vaso sanguigno a sezione costante (S 1 =S 2 ) in posizione orizzontale (h 1 =h 2 ): Eq. continuità: Q=Sv 1 =Sv 2 =cost. v 1 = v 2 = costante v = costante h = costante BERNOULLI p 1 v 1 p 2 v 2 S 1 S 2 p = costante forze di attrito viscoso dissipazione di energia ½ρv 12 + ρgh 1 + p 1 = ½ρv 22 + ρgh 2 + p 2 + A A: energia dissipata per attrito nel tratto 1 2 p 1 = p 2 + A p 1 -p 2 = A p 2 < p 1 pag.25

26 Aneurisma e stenosi Vaso sanguigno in posizione orizzontale (h 1 =h 2 ): Bernoulli ½ρv 12 + ρgh 1 + p 1 = ½ρv 22 + ρgh 2 + p 2 Eq.continuità Q = S 1 v 1 = S 2 v 2 S 1 S 2 v v 2 1 S 1 v 1 S 2 v 2 ANEURISMA v2<v1 p2>p1 STENOSI v2>v1 p2<p1 Fenomeni irreversibili, tendono a cronicizzare: l aneurisma tende a espandersi, la stenosi a restringersi pag.26

27 Sistema circolatorio mmhg CUORE AD VD 25 mmhg AS VS 8 mmhg 100 mmhg Circuito chiuso 5 litri/ min 10 mmhg POLMONI GRANDE CIRCOLO CAPILLARI 40 mmhg 5 litri/ min Portata costante (no immissioni, no fuoruscite) pag.27

28 Sistema circolatorio 2 pressione media velocità media CUORE AORTA ARTERIE ARTERIOLE CAPILLARI VENULE VENE VENA CAVA (nel tempo) (nel tempo) velocità media (cm/s) <0.1 < deve sempre diminuire diminuisce poi aumenta pressione media (mmhg) pag.28

29 Velocita del sangue ARTERIE 140mila ARTERIOLE 4 miliardi CAPILLARI 300 milioni 200 VENULE VENE cm 2 S totale cm Dall equazione di continuità: la velocità è bassissima nei capillari perche il loro numero e altissimo! cm/s v CAPILLARI ARTERIE ARTERIOLE VENULE VENE cm/s pag.29

30 Velocita del sangue - 2 Es. Portata del sangue: Q= 5 l/min = (5000 cm 3 )/(60 s) = cm 3 /s Velocita del sangue nei vari distretti: AORTA (r=0.8 cm) S = π r 2 2 cm 2 v = Q/S 40 cm/s ARTERIOLE S 400 cm 2 v = Q/S 0.2 cm/s CAPILLARI S 4000 cm 2 v = Q/S 0.02 cm/s VENA CAVA (r=1.1 cm) S = π r 2 4 cm 2 v = Q/S 20 cm/s Es. La bassissima velocita del sangue nei capillari (0.2 mm/s) permette gli scambi di sostanze (reazioni chimiche) necessari alla vita. pag.30

31 (HRW) Esercizi (I) (Gia) - Esercizi pag.31

32 (Gia) Esercizi (II) (HRW) - Esercizi pag.32

33 Esercizi (III) Es. 1 Un contenitore chiuso sotto vuoto (P atm = 0) ha la forma di un cilindro di raggio di base pari a 1 m e altezza 15 m e contiene 15 Kl di acqua. (a) Quale è la pressione esercitata dall acqua sulla base del cilindro? (b) Come cambia il risultato se il contenitore è aperto superioremente (P atm = 1.01 bar)? Es. 2 Determinare come varia la pressione nel mare in funzione della profondità. Si consideri per l acqua del mare ρ = Kg/m 3. Es. 3 Un corpo di massa 1Kg e volume 500 cm 3 viene completamente immerso in acqua pura (ρ = 10 3 Kg/m 3 ). Quale sarà il suo peso apparente in acqua? Es. 4 Un rubinetto è aperto in modo che la portata d acqua rilasciata sia Q = 10 l/min. All uscita del rubinetto la sezione del filo d acqua sia A 0 = 1.5 cm 2.. Determinare la sezione del filo d acqua ad una altezza posta 20 cm più in basso rispetto a questo punto. - Esercizi pag.33

34 Esercizi (IV) Es. 5 Supponiamo che, a causa del colesterolo, il diametro di un tratto di un arteria si riduca da 0.8 a 0.78 cm. Quale deve essere la variazione della differenza di pressione alle estremità di questo tratto affinché la portata del flusso sanguigno rimanga invariata? Es (HRW) Calcolare il lavoro svolto su 1.4 m 3 di acqua spinta in un tubo di diametro interno 13 mm da una differenza di pressione tra le estremità di 1 bar. Es (Gia) Calcolare il calo di pressione per cm lungo l aorta, sapendo che il suo raggio è circa 1.2 cm, il sangue vi circola con velocità pari a circa 40 cm/s e che la viscosità del sangue è circa poise. Si trascurino gli effetti di attrito. Es (Gia) Considerando un gradiente di pressione costante, di quale fattore deve decrescere il raggio di un capillare per ridurre la portata del flusso sanguigno del 75%? - Esercizi pag.34

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Meccanica dei fluidi: statica e dinamica

Meccanica dei fluidi: statica e dinamica Meccanica dei fluidi: statica e dinamica Definizione Un fluido, al contrario di un solido, e una sostanza che puo fluire. I fluidi si adattano alla forma del recipiente che li contiene. Questo avviene

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso

Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso Meccanica dei fluidi Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso Densità m Unità di misura (S.I.): kg/m d = 3 V Funzione scalare di ogni punto del

Dettagli

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI Meccanica dei fluidi La meccanica dei fluidi si occupa sia della statica (idrostatica) sia del movimento (idrodinamica) dei fluidi. Per fluidi si intendono

Dettagli

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del

Dettagli

Solido. Liquido. Gassoso STATI DI AGGREGAZIONE DELLA MATERIA. Il corpo ha volume e forma ben definiti

Solido. Liquido. Gassoso STATI DI AGGREGAZIONE DELLA MATERIA. Il corpo ha volume e forma ben definiti FLUIDI Stati aggregazione materia Pressione Portata Moto stazionario Equazione di continuità Applicazione al sistema circolatorio Moto laminare e turbolento Legge Pascal Legge Stevino Legge Bernulli Legge

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000. STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA

EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA LEZIONE n.5 ENERGIA NEI FLUIDI TEOREMA DI BERNOULLI E APPLICAZIONI PRESSIONE IDROSTATICA EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA TEOREMA DI BERNOULLI IL TEOREMA DI BERNOULLI, ESPRIME LA LEGGE DI

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Corso di Fisica. Laurea in Scienze Infermieristiche Sede di Cassino

Corso di Fisica. Laurea in Scienze Infermieristiche Sede di Cassino Corso di Fisica Laurea in Scienze Infermieristiche Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it LEZIONE

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati Esercitazione 5 Dr. Monica Casale Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Fluidi

Dettagli

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5 Fluidi 1 Stati di aggregazione della materia 2 Densità (II) n La densità assoluta è definita dal rapporto tra la massa M di una sostanza omogenea ed il suo volume V: d = M / V n Nel sistema internazionale

Dettagli

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Solidi, liquidi e gas 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene)

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Esempi di esercizi per la preparazione al primo compito di esonero

Esempi di esercizi per la preparazione al primo compito di esonero Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: .d.l. Scienze orestali e Ambientali, A.A. 2012/2013, isica Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. luidi non mantengono la loro forma. Liquidi Gas - scorrono

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

DINAMICA DEI FLUIDI G. ROBERTI

DINAMICA DEI FLUIDI G. ROBERTI DINAMICA DEI FLUIDI G. ROBERTI Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione)

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

elio giroletti effetti del sangue reale MECCANICA FLUIDI effetti del sangue reale MECCANICA FLUIDI

elio giroletti effetti del sangue reale MECCANICA FLUIDI effetti del sangue reale MECCANICA FLUIDI UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via bassi 6, 27100 pavia, italy - tel. 038298.7905 girolett@unipv.it - www.unipv.it/webgiro webgiro 1 elio giroletti effetti del sangue reale

Dettagli

Meccanica dei Fluidi - Fluidostatica -

Meccanica dei Fluidi - Fluidostatica - Meccanica dei Fluidi - Fluidostatica - STATI DI AGGREGAZIONE DELLA MATERIA Stato Solido: La sostanza ha volume e forma ben definiti. Stato Liquido: La sostanza ha volume ben definito, ma assume la forma

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

Cap Fluidi

Cap Fluidi N.Giglietto A.A. 2005/06-15.4 - Legge di Stevino, fluidi a riposo - 1 Cap 15.1-15.2 - Fluidi Un fluido è una sostanza in grado di scorrere: i fluidi prendono la forma dei contenitori nei quali sono confinati.

Dettagli

Se la curvatura è minore, la tensione totale deve essere più grande per mantenere la stessa componente della tensione verso il basso

Se la curvatura è minore, la tensione totale deve essere più grande per mantenere la stessa componente della tensione verso il basso Le Pressioni in emodinamica sono: Pressione di propulsione Pa Pv, responsabile del flusso Pressione transmurale (P tm ). Poiché i vasi sono distensibili la P tm può influenzare il raggio del vaso e per

Dettagli

Lezione 11. Fluido dinamica

Lezione 11. Fluido dinamica Lezione 11 Fluido dinamica Equazione di Bernoulli per un fluido ideale L equazione di Bernoulli esprime la legge di conservazione dell energia totale di un fluido ideale che si muove in un condotto: Le

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

MODULO 3. La pressione

MODULO 3. La pressione MODULO 3 La pressione La pressione L obiettivo del modulo è comprendere gli effetti delle forze che dipendono dalla superficie su cui esse vengono applicate. Il grado di concentrazione di una forza sulla

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica PER ESERCITARSI Parte 2 Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica ESERCIZIO n.1 Due forze uguali ed opposte sono applicate ad un oggetto lungo rette di azione tra loro

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

Tratti (capillari) che consentono la fuoriuscita e l ingresso di liquido

Tratti (capillari) che consentono la fuoriuscita e l ingresso di liquido Le leggi dell idrostatica e dell idrodinamica spiegano i principi fisici che sono alla base del funzionamento del sistema cardio circolatorio, ma le caratteristiche particolari di questo sistema impediscono

Dettagli

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Forze di adesione Vicino alle pareti di un recipente sono attive interazioni tra le molecole del recipiente e quelle del liquido (adesione) oltre a quelle tra le molecole del liquido (coesione) Se le forze

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

STATICA DEI FLUIDI G. ROBERTI

STATICA DEI FLUIDI G. ROBERTI STATICA DEI FLUIDI G. ROBERTI FLUIDI G. Roberti Definizione:sostanze che assumono la forma dei recipienti che le contengono oppure Definizione: sostanze che si deformano senza che si compia lavoro ΔV /

Dettagli

SISTEMA CARDIOVASCOLARE

SISTEMA CARDIOVASCOLARE Il sangue circola attraverso l organismo umano pompato dal cuore all interno di una fitta rete di vasi sanguiferi. Il sangue è composto da: v Plasma: prevalentemente acqua, in cui sono disciolte varie

Dettagli

I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003

I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003 I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003 Nome e Cognome: Gruppo: Problema 1 ( 1 Punto ) Un oggetto di massa m=10kg, partendo da fermo, si muove in linea retta sotto l azione di una

Dettagli

Applicazione delle leggi dell'idrodinamica alla circolazione del sangue. Idrodinamica a Emodinamica. complicazioni

Applicazione delle leggi dell'idrodinamica alla circolazione del sangue. Idrodinamica a Emodinamica. complicazioni Lezione 1 IDROTATICA-UNITA' DI MIURA È grazie a sistemi fluidi che gli organismi riescono a trasportare, scambiare e assimilare ossigeno e sostanze nutritive. La conoscenza della meccanica dei fluidi è

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI 14/01/2014 2 Una porzione di materia costituita da una sostanza la cui composizione chimica non varia da un punto all altro si dice costituita

Dettagli

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del SCHEDA PER IL RECUPERO DI FISICA DEL PRIMO PERIODO anno scolastico 2014-15 STATICA DEI FLUIDI Pressione Leggi il libro di testo (vol. 1) al cap. 11, prova a rispondere alle domande della scheda di verifica

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi Modulo B Unità 3 Equilibrio dei fluidi Pagina Solidi, liquidi, aeriformi I solidi hanno forma e volume propri, i liquidi hanno volume proprio e forma del recipiente che li contiene, gli aeriformi hanno

Dettagli

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 4 (5 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 4 (5 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica dei fluidi Fluidi e solidi Unità 4 (5 ore) Densità e pressione di un fluido Proprietà dei fluidi:

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce)

STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce) STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce) Definizione Di Pressione In questo capitolo si analizzeranno le caratteristiche meccaniche dei fluidi in condizioni di equilibrio

Dettagli

Il sistema cardio-circolatorio è più complesso: Condotti elastici e non rigidi Tratti (capillari) che consentono la fuoriuscita e l ingresso di

Il sistema cardio-circolatorio è più complesso: Condotti elastici e non rigidi Tratti (capillari) che consentono la fuoriuscita e l ingresso di Le leggi dell idrostatica e dell idrodinamica permettono di comprendere i principi fisici che sono alla base del funzionamento del sistema cardio-vascolare, anche se le caratteristiche particolari di questo

Dettagli

F > mg Il cubo galleggia

F > mg Il cubo galleggia LA LEGGE DI ARCHIMEDE Un corpo immerso in un liquido riceve una spinta dal basso verso l'alto pari al peso del liquido spostato Cubo di legno di pioppo V = 1 dm³ mg = 5N (forza peso) Legge di Archimede:

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei

Dettagli

Equazione di Laplace per superfici sferiche

Equazione di Laplace per superfici sferiche Lezione VI 1 Equazione di Laplace per superfici sferiche Si consideri una generica superficie di separazione di forma sferica tra due mezzi, che sia caratterizzata dalla tensione superficiale t. La tensione

Dettagli

VISCOSITA. dv dr. P 2 r. η coefficiente di viscosità R P 1 >P 2 P 1. mks kg /(s m) = Pa s. cgs g /(s cm) = poise 1 poise=0.1 Pa s

VISCOSITA. dv dr. P 2 r. η coefficiente di viscosità R P 1 >P 2 P 1. mks kg /(s m) = Pa s. cgs g /(s cm) = poise 1 poise=0.1 Pa s FLUIDI EALI Durante lo scorrimento di un fluido reale in un condotto si manifestano forze di attrito interno che ne ostacolano il moto. Esse sono proporzionali alla velocità (piccole velocità) o al quadrato

Dettagli

Studente... Matricola...

Studente... Matricola... Studente... Matricola... Data... 1) Un corpo di massa m=2kg si muove come in figura. Determinare l intervallo di tempo in cui è stato sottoposto ad una forza costante, il modulo della forza e il lavoro

Dettagli

MASSA VOLUMICA o DENSITA

MASSA VOLUMICA o DENSITA MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000

Dettagli

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI 1. Un secchio colmo d'acqua pesa complessivamente 2 kg. Se è pesato mentre è sotto un rubinetto con una portata di 0.5 litri/s ed è raggiunto

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

LEZIONE 17 ESERCIZI-FLUIDI

LEZIONE 17 ESERCIZI-FLUIDI LEZIONE 17 ESERCIZI-FLUIDI Qual è, in at, la pressione a 20 di profondità? (densità dell acqua = 1,0 gr/c ) P = 2 at. Sapendo che la densità del ghiaccio è 0,92 g/c e quella dell acqua di are 1,0 g/c,

Dettagli

Lavoro delle forze nei fluidi

Lavoro delle forze nei fluidi aoro delle forze nei fluidi + + + EC P G att est S S C D C D l t h EC P G P S gh t P S gh ρ t ρ B B l t ( P P ) P h ( ρgh ρgh ) - EP att est ( P P ) + ( ρgh ρgh ) + + ρ ρ att est EP + P + + EC Fluidi ideali:

Dettagli

CORSO DI FISICA GENERALE II (L-Z) 1MO MODULO ING. CIVILE - AMBIENTALE

CORSO DI FISICA GENERALE II (L-Z) 1MO MODULO ING. CIVILE - AMBIENTALE CORSO DI FISICA GENERALE II (L-Z) 1MO MODULO ING. CIVILE - AMBIENTALE Dott. G. Pugliese Dipartimento di Fisica di Bari Email: Gabriella.pugliese@ba.infn.it Sito Web http://www.ba.infn.it/~pugliese/ Sito

Dettagli

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI I fluidi Esercizio Una stanza ha dimensioni: 3.5 m (larghezza) e 4. m (lunghezza) ed una altezza di.4 m. (a) Quanto pesa l aria nella stanza se la pressione e.0 atm? SOLUZIONE: mg ( ρv)g (. kg / 48 N m

Dettagli

Pressione. F n. Pressione: è il rapporto P = F n

Pressione. F n. Pressione: è il rapporto P = F n I FLUIDI Pressione P = Pressione: è il rapporto P = F n /S tra la componente della forza ortogonale alla superficie e l area della superficie su cui la forza è applicata. È una grandezza scalare che ci

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

EQUILIBRIO DEI FLUIDI

EQUILIBRIO DEI FLUIDI EQUILIBRIO DEI FLUIDI Pressione atmosferica, spinta di Archimede 1 Pressione atmosferica Bicchiere e cartoncino Cannuccia Uova Ventosa Emisferi di Magdeburgo 1 Emisferi di Magdeburgo 2 Unità D-Lez.2 Par

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale TEOREMA DI BERNOULLI FLUIDI NON PERFETTI Materia: Idraulica agraria (6 CFU) docente:

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia fisica preventivo consuntivo 129 0 titolo modulo 4.1 Grandezze fisiche e misure 4.2 Le forze e l'equilibrio

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

ELEMENTI DI STATICA DEI FLUIDI

ELEMENTI DI STATICA DEI FLUIDI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti ELEMENTI DI STATICA DEI FLUIDI 4.1 GENERALITÀ In generale si parla di materia allo stato fluido quando le forze di coesione

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

( pi + σ ) nds = 0 (3)

( pi + σ ) nds = 0 (3) OLUZIONE IMULAZIONE EAME 0 DICEMBRE 05 I Parte Domanda (5 punti) Un fluido incomprimibile viene pompato in tubo orizzontale di lunghezza L e diametro D. La differenza di pressione agli estremi del tubo

Dettagli

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0.

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0. --------------- 1 -------------- Quantita` di calore = 0.2311E+03 cal. `` `` `` = 0.9672E+10 erg Calore prodotto = 0.1187E+06 joule = 0.2840E+05 cal Ampiezza del moto = 0.9511E-02 m --------------- 2 --------------

Dettagli

SCHEDA 1 PORTATA DI UNA CONDOTTA

SCHEDA 1 PORTATA DI UNA CONDOTTA SCHEDA 1 PORTATA DI UNA CONDOTTA Q = V / t [m 3 /s] oppure [litri/s] 1 litro = 1 dm 3 = 1 / 1000 m 3 1 m 3 = 1000 dm 3 = 1000 litri Definizione: La portata è la quantità di liquido che attraversa una sezione

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA

GLI STATI DI AGGREGAZIONE DELLA MATERIA GLI STATI DI AGGREGAZIONE DELLA MATERIA AERIFORME (gas o vapore) Fluido: : non ha forma propria. Occupa tutto il volume del recipiente che lo contiene.. Le molecole sono legate da forze molto deboli FLUIDI

Dettagli

Prof. Roberto Riguzzi

Prof. Roberto Riguzzi Prof. Roberto Riguzzi 1 STATICA DEI LIQUIDI Sono le basi scientifiche fondamentali del trasporto e stoccaggio dei liquidi e si basano sulla teoria della meccanica dei fluidi. I liquidi non oppongono alcuna

Dettagli

La pressione diminuisce a causa dell ATTRITO

La pressione diminuisce a causa dell ATTRITO Il gradiente pressorio generato dal cuore induce il sangue a scorrere nel sistema circolatorio Atrio destro La pressione diminuisce a causa dell ATTRITO PAM = 80 mmhg+1/3(120-80 mmhg) 1 Concetti base di

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. Unità n 6 Le leggi dei gas 1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. La legge di Gay-Lussac o legge

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA

GLI STATI DI AGGREGAZIONE DELLA MATERIA 1 GLI STATI DI AGGREGAZIONE DELLA MATERIA La materia si presenta in varie forme di aggregazione che dipendono dalle forze interne di coesione delle molecole. Le molecole di un corpo sono sottoposte a due

Dettagli

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica Liceo Scientifico Marconi Delpino Classi 1^ Materia: Fisica Compiti per le vacanze estive Gli alunni promossi devono svolgere soltanto gli esercizi del libro di testo, gli alunni con sospensione del giudizio

Dettagli

a) Calcolare il modulo di F.

a) Calcolare il modulo di F. 1. (1-2-2011, 3-10-2011, 23-7-2013) Un getto d acqua che cade da un rubinetto si restringe verso il basso. Se l area di una sezione del flusso di acqua è A 1 =1.2 cm 2 e diventa A 2 = 0.35 cm 2 45 mm più

Dettagli

METODI DI RAPPRESENTAZIONE DI UN SISTEMA

METODI DI RAPPRESENTAZIONE DI UN SISTEMA METODI DI RAPPRESENTAZIONE DI UN SISTEMA PROPRIETA ELEMENTARI Proprietà elementari dei componenti idraulici Proprietà elementari dei componenti termici Proprietà elementari dei componenti meccanici Proprietà

Dettagli

MODULO BIMESTRALE N.1:Le Grandezze in Fisica

MODULO BIMESTRALE N.1:Le Grandezze in Fisica CLASSE PRIMAFISICA MODULO BIMESTRALE N.1:Le Grandezze in Fisica Conoscere il concetto di grandezza, di misura, di unità di misura, di equivalenza e gli strumenti matematici per valutare le grandezze. ABILITA

Dettagli