CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random: Regstrazone nel tempo d un segnale generato da un sensore d pressone montato n una rampa d lanco d un mssle per la msura della pressone acustca generata da fum d scarco. Le sollectazon causate da tal presson possono determnare la rottura per fatca della struttura. 1
Poché sono necessar n molt d quest cas metod d anals spermentale, è mportante msurare ed analzzare con accuratezza segnal random. 2
TEMPO DI ACQUISIZIONE t 0 : S acqussce l segnale casuale dal tempo zero al tempo t 0, e s assume l segnale par a zero per t > t 0, assmlando l segnale casuale ad uno transtoro. Occorre determnate l tempo d taglo t 0 n manera tale che l segnale acqusto n 0 < t < t 0 sa un buon esempo statstco dell ntero segnale random. Acquszone del segnale nell ntervallo 0 < t < t 0 L esstenza d un valdo tempo d taglo mplca che process casual sano stazonar, coè che le loro propretà statstche (come l valore medo, l valore quadratco medo etc.) non cambno con l tempo. Quando questo è vero esste un certo t 0 corrspondente al lvello scelto d confdenza de rsultat. Regstrazone d lunghezza nfnta Regstrazone d lunghezza fnta rsultat precs c è una certa probabltà che sano corrett Un semplce metodo per determnare t 0 3
DESCRIZIONE STATISTICA DEI SEGNALI CASUALI: Descrzone dell ampezza della varable. Descrzone della rapdtà (contenuto n frequenza) della varable. Descrzone dell ampezza della varable: meda o valor medo valore quadratco medo radce quadratca meda funzone dstrbuzone dell ampezza S consder una varable random q da: Essendo q ( t), la meda o valor medo q ( t) è defnto T 1 q( t) lm T q ( t ) dt t 0 ( t) una componente costante d tutto l segnale e non nfluenza le sue fluttuazon è generalmente sottratta dal segnale totale, per avere un segnale a valor medo nullo. D ora nnanz s consdereranno solo segnal casual q con valor medo nullo. ( t ) 4
Valore quadratco medo: T 2 1 q t T q 2 ( ) lm ( t ) dt t 0 Indca l ampezza della varable casuale, ha le dmenson del quadrato della grandezza stessa. Radce quadratca meda o rms: 2 rms q ( t) q ( t) 5
Il valore quadratco medo e la radce quadratca meda danno una ndcazone della grandezza totale q ( t) e non della dstrbuzone della ampezze. S ntroduce allora la funzone dstrbuzone dell ampezza o funzone denstà d probabltà W ( q ). (HIST A; HIST B) S defnsce la probabltà P che q ( t ) s trov tra alcun valor specfc q 1 e q 1 +q come: dove Pr obabltà[ q 1 q q 1 q ] P[ q 1, q 1 q ] lm T t rappresenta l tempo totale n cu q ( t ) s trova nella banda q durante l ntervallo d tempo T. S defnsce la funzone dstrbuzone dell ampezza W ( q ): P[ q1, q1 q W1 ( q) lm q 0 q t T dalla defnzone segue che W 1 ( q )dq = Probabltà che q s trov n dq : q2 W1 ( q) dq q1 Probabltà che q cada tra q 1 e q 2. La funzone W 1 ( q ) può avere n teora un numero nfnto d dfferent forme, certe hanno trovato un precso modello matematco che descrve l processo fsco reale. La pù comune è la dstrbuzone Normale o Gaussana data da: q 1 2 W1 ( q ) e 2 2 2 dove è la devazone standard. 6
7
DESCRIZIONE DELLA RAPIDITÀ (CONTENUTO IN FREQUENZA) DELLA VARIABILE: La radce quadratca meda (rms) e la funzone dstrbuzone delle ampezze sono suffcent per descrvere l ampezza d una varable casuale, ma non danno ndcazon sulla rapdtà d varazone nel tempo. Così due process random potrebbero entramb essere Gaussan con lo stesso valore numerco d ma uno può varare molto pù rapdamente che l altro. Autocorrelazone Denstà spettrale quadratca meda Funzone dstrbuzone dell ampezza Funzone d Cross-correlazone Cross denstà spettrale Funzone d autocorrelazone R() d una varable random q ( t ): la funzone q ( t ) 1 T R( ) lm q ( t) q ( t ) dt T 0 T è semplcemente q ( t ) traslata nel tempo d second. 8
Dstanza tra la testna d lettura e scrttura Veloctà del nastro Per = 0 la funzone d autocorrelazone R() è numercamente uguale al valore quadratco medo q 2 ( t ) della funzone. 9
In fgura sono rportat due R() per due q (t) varant n modo lento e rapdo Per ogn q (t), sa che esso var velocemente o lentamente, quando = 0, l prodotto q (t)* q (t+ ) è sempre postvo e l ntegrale da l massmo valore possble (q 2 ( t )). Per ogn spostamento ( 0), quando s unscono le part postve e negatve, la curva prodotto è una volta postva ed una volta negatva. Così se q (t) vara rapdamente, basta un pccolo valore d per causare questo abbattmento del valore, mentre una lenta varazone d q (t) rchede una maggore traslazone delle due curve. 10
Un altro metodo per determnare l contenuto n frequenza d un segnale random è la denstà spettrale quadratca meda. denstà spettrale quadratca meda trasformata d Fourer d R(). 11
In altre parole trasporta nel domno della frequenza le stesse nformazon che fornsce R() nel domno del tempo. Nello studo delle vbrazon la denstà spettrale quadratca meda è preferta. Per determnare come ogn parte del range d frequenza contrbusce al valore totale del valore quadratco medo della funzone, s può operare un fltraggo dell uscta con un rstretto fltro passa banda d ampezza come mostrato n fgura: 12
Denstà spettrale quadratca meda = ( ) q 2 rappresenta la denstà del valore quadratco medo poché: 2 ( ) * q Se s valuta () per un completo range d frequenze, s può dsegnare una curva rspetto ad. L area totale rspetto sottesa dalla curva () è par al valore quadratco medo totale q 2 ( t ). Se un q (t) con una nota () è applcato come ngresso ad un sstema lneare d rsposta n frequenza nota, la denstà spettrale quadratca meda dell uscta o (t) è calcolable con la relazone: q o o ( ) ( ) ( ) q 2 13
14
Una partcolare forma d () è d grande mpego: l rumore banco. Rumore banco perfetto: () = 1 per tutte le frequenze. Il rumore banco è usato come un segnale d test, allo stesso modo dell mpulso, perché entramb hanno un contenuto n frequenza unforme su tette le frequenze. Se () = C = costante qo q o( ) ( ) C 15
IMPIEGO DI DUE VARIABILI CASUALI: Funzone dstrbuzone dell ampezza W 1 (q 1,q 2 ) d due varabl casual q 1 (t) e q 2 (t) è data da: dove W q q (, ) lmlm 1 1 2 1 Tq q t T q10 1 2 q 2 0 t rappresenta l tempo totale (durante l tempo T) che q 1 (t) e q 2 (t) s 16
trovano smultaneamente nella banda d valor compresa tra q 1 + q 1 e q 2 + q 2 q2b q1b Probabltà( q q q, q q q ) W ( q, q ) dq dq 1 a 1 1 b 2 a 2 2 b q a q 1 1 2 1 2 2 1a La W1 ( q1, q2) può avere una varetà nfnta d forme. La pù comune è la pù usuale è la dstrbuzone (normale) d Gauss bvarable. Scopo msurazone d W1 ( q1, q2): vedere se dat fsc seguono approssmatvamente qualche modello matematco semplce come la gaussana. ESEMPIO: se q 1 e q 2 rappresentano movment d vbrazone casuale d due part d macchne vcne, la conoscenza d W1 ( q1, q2) permette l calcolo della probabltà che le due part non s colpscano a vcenda. Funzone d Cross-correlazone R q1q2 ( ) per due varabl casual q 1 (t) e q 2 (t): ESEMPI R q q 1 2 1 T ( ) lm T q t q t dt 0 1( ) 2( ) T La Cross denstà spettrale data da: 1 2 ( ) (o Cross denstà spettrale d potenza) è q q dove: 17 ( ) C ( ) Q ( ) q q q q q q 1 2 1 2 1 2 C q1q2 ( ) = cospectrum Q q1q2 ( ) = quad spectrum
Q C q1q2 q1q 2 1 T ( ) lm lm ( q1 )( q dt T T 0 2 ) 0 1 T ( ) lm lm ( q1 ) ( q dt T T 0 2 ) 90 0 q 1 = uscta dal fltro passa banda con l ngresso q 1 (t) q 2 = uscta dal fltro passa banda con l ngresso q 2 (t) ( q 1 ) 90 segnale q 1 con fase spostata d 90. Nota: q1q2 () è una quanttà complessa mentre () è reale. Tramte la Cross denstà spettrale è possble determnare la funzone d trasfermento snusodale (q 0 /q )()d un sstema lneare. Invece utlzzando la denstà spettrale quadratca meda è possble determnare solo l ampezza e non l angolo d fase della funzone d trasfermento, se () è nota e () è msurata. Con la Cross denstà spettrale s può determnare sa l ampezza che la fase, tramte l equazone: q qqo ( ) 0 ( ) q ( ) dove qqo () è la cross denstà spettrale d q e q o ; q () è la denstà spettrale quadratca meda d q ; é necessaro qund msurare una denstà spettrale quadratca meda ed una cross denstà spettrale. q 18