ANALISI DI SEGNALI BIOMEDICI: STIMA DELLE PERIODICITA

Documenti analoghi
SEGNALI STAZIONARI: ANALISI SPETTRALE

Che cosa si registra?

Sonno e sogni. Principali caratteristiche del sonno. Sospensione dello stato cosciente (dal punto di vista comportamentale)

Risposte evocate od evento relate

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Campionamento e quantizzazione

Comunicazioni Elettriche anno accademico Esercitazione 1

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Elettroencefalogramma

Unità di misura nell analisi del segnale G. D Elia. Sezione1

DISTRIBUZIONI DI PROBABILITA

CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE%

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Ulteriori Conoscenze di Informatica e Statistica

RANDOM VIBRATIONS RANDOM VIBRATIONS

Reti di Calcolatori a.a

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon

Conversione Analogico/Digitale

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

Lezione 5: Processi Stocastici - Analisi in frequenza

L indagine campionaria Lezione 3

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Struttura del sonno

Segnale e Rumore Strumentale

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Analisi dell EEG mediante il metodo della cordance

Calcolo della Concentrazione Rappresentativa della Sorgente (CRS)

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

La codifica dei suoni

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

Variabili aleatorie Parte I

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

λ è detto intensità e rappresenta il numero di eventi che si

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:

Caratterizzazione dei segnali aleatori nel dominio della frequenza

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Variabile casuale Normale

Esercitazione: La distribuzione NORMALE

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.

Distribuzioni di Probabilità

Rappresentazione digitale del suono

Esercizi sul campionamento

VIE DI MOTO CENTRALI: POTENZIALI EVOCATI MOTORI ATTRAVERSO LA STIMOLAZIONE MAGNETICA TRANSCRANICA

Risposte evocate od evento relate

Il rumore nei circuiti elettrici

La turbolenza e il suo ruolo nello Strato Limite Atmosferico

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

Modulazione PAM Multilivello, BPSK e QPSK

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Generazione di Numeri Casuali- Parte 2

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

La percezione uditiva

Analisi dei segnali nel dominio del tempo

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura

STATISTICA Disciplina scien tifica che fornisce strumenti per l interpretazione delle informazioni contenute in insiemi di dati relativi a

I Segnali nella comunicazione

MISURA DELLA FUNZIONE DI DENSITÀ SPETTRALE (POWER SPECTRAL DENSITY)

Statistica di base per l analisi socio-economica

METODI MATEMATICI PER LA FISICA

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

Il tema proposto può essere risolto seguendo due ipotesi:

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

RETI DI TELECOMUNICAZIONE

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA

Progetto Reluis Assemblea annuale

Valutazione della capacità dissipativa di un sistema strutturale

QUANTIZZAZIONE Conversione analogico/digitale

Elementi di Statistica

Esercizi di Calcolo delle Probabilità

Dispense del corso di Elettronica L Prof. Guido Masetti

La distribuzione delle frequenze. T 10 (s)

Elaborazione numerica dei segnali

La percezione acustica

Il Corso di Fisica per Scienze Biologiche

Fondamenti di Automatica

Comunicazione Elettriche L-A Identità ed equazioni

ANALISI DI FREQUENZA

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase

a) 36/100 b) 1/3 c)

Segnali ad energia ed a potenza finita

Statistica descrittiva II

LA PRODUZIONE DEI RAGGI X

Teoria dei Fenomeni Aleatori AA 2012/13

La simulazione è l'imitazione di un processo o di un sistema reale per un

La codifica dei suoni

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM

informatica di base per le discipline umanistiche

STATISTICA ESERCITAZIONE

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Capitolo 6 La distribuzione normale

Grandezze fisiche e loro misura

Transcript:

ANALISI DI SEGNALI BIOMEDICI: STIMA DELLE PERIODICITA Se x(t) è un segnale (deterministico) limitato su [0, N 0-1], nullo fuori da tale intervallo, l autocorrelazione (AC) R xx (m) è definita come: R xx (m) m= ritardo ( lag ) R xx (m) rappresenta il grado di similitudine medio fra x(k) e x(k+m) e dà una misura della memoria del sistema. Proprietà dell autocorrelazione: R xx (-m) = R xx (m) R xx (m) R xx (0) Quanto detto è relativo al caso di segnali TD. Analogamente per segnali TC.

AUTOCORRELAZIONE - TD L autocorrelazione (AC) R xx [m] indica le relazione lineare fra due punti del segnale x distanti m. Problema: I segnali reali sono quasi-periodici (di durata finita), perciò i picchi della R xx [m] non sono molto pronunciati, con difficoltà nella loro individuazione. Es: Segnale vocale: Segnali periodici (vocalici) hanno valori elevati dell autocorrelazione, mentre i suoni non vocalici (consonanti) o vocalici ma fortemente disfonici sono caratterizzati da bassi valori di R xx [m].

ESEMPIO: SEGNALE VOCALICO PERIODO T? PERIODO T 0.6 /a/ pre-surgical 0.6 /a/ post-surgical Normalised amplitude [arb. units] 0.4 0.2 0-0.2-0.4 Normalised amplitude [arb.units] 0.4 0.2 0-0.2-0.4-0.6-0.6 1 2 3 4 5 6 7 8 9 10 11 2 4 6 8 10 Time [s] x 10-3 Time [s] PATOLOGICO PRE-INTERVENTO POST-INTERVENTO T = 1/F 0 - F 0 = frequenza fondamentale x 10-3

vocalico non vocalico ESEMPIO L autocorrelazione (AC) può essere usata come primo test di verifica sulla periodicità del segnale vocale: suoni non vocalici (consonanti) o disfonici (dovuti a patologie o malfunzionamento) hanno valori bassi di AC. Negli esempi F s =44.1kHz. A seconda del tipo di segnale si analizzano frame di dimensione 5ms t 20ms 220 N 880 100 lag 400 2.5ms t 10ms Valore elevato di autocorrelazione Valore basso di autocorrelazione lag lag Neonato sano Tenore ESEMPI Paralisi cordale

AUTOCORRELAZIONE - AC Alcune proprietà dell AC: (*=trasposto coniugato) Matrice di AC costruita con M+1 valori dell AC: E una matrice che viene utilizzata spesso nell analisi dei sistemi dinamici. E una matrice hermitiana (r xx (k)=r xx (-k)) e Toeplitz (tutti gli elementi lungo ogni diagonale sono uguali).

AUTOCOVARIANZA AC - TD Se il segnale è a media non nulla, l autocorrelazione può essere mascherata da tale valore. L autocovarianza C xx (m) è la misura della memoria del sistema, relativamente ai suoi scostamenti rispetto al valore medio : AC e autocorrelazione sono legate dalla relazione: R xx (m) C xx (m) x 2 Quanto detto è relativo al caso di segnali discreti (TD). Analogamente per segnali continui (TC).

ESEMPIO x(n) = n per 1 n 3 x(0)=0; x(n)=0 per n>3 N 0 =4 Valore medio: Autocorrelazione:

ESEMPIO (CONT.) AC: R x (m) C x (m) x 2 C x (0)=3.5-(1.5) 2 =1.25 C x (1)=2- (1.5) 2 =0.25 C X (2)=0.75-(1.5) 2 =-0.5 C x (m)=-2.25, m 3

ES3 MATLAB confrcorr.m 3 segnali random (scorrelati) a media nulla di 64, 512, 4096 punti risp. La AC dovrebbe essere uguale a zero. I segnali con pochi dati (blu e rosso) non consentono di ottenere una media nulla. 2 C (m) R (m) x xx xx v. funzioni Matlab: showcorr.m, showdtcorr.m, showcorr_sine, covstat.m

ESEMPIO La funzione di AC ha grande importanza nell analisi dei segnali biomedici. ES.: Valutare l indipendenza di un atto respiratorio dagli altri. Da punto di vista clinico, è utile per stabilire le connessioni neuronali nel midollo allungato che generano il ritmo respiratorio. L approccio comunemente utilizzato è quello di costruire un modello matematico di rete neuronale che simuli il funzionamento dei neuroni reali. Il modello deve produrre un oscillazione simile al ritmo respiratorio, ed avere altre caratteristiche fisiologiche. Attualmente, i modelli hanno la proprietà che ogni atto respiratorio è indipendente dagli altri. Ma il segnale reale verifica questa condizione? Per rispondere a questa domanda, si definisce: v(n) = volume d aria inspirato all n-mo atto respiratorio; N = numero di atti respiratori (N=120 in questo esempio); Si calcola la AC e si osserva il risultato ottenuto:

ATTI RESPIRATORI Max per lag=0 AC >0 fino a lag=25 AC <0 per lag>25 Questo contraddice l ipotesi di indipendenza i modelli attuali non tengono conto di elementi fisiologici importanti

ES2 MATLAB ranproc2.mat Flusso respiratorio di 8 ratti. Ogni registrazione comprende circa 30-40 atti respiratori. F s = 75Hz. I segnali sono simili, ma non uguali. Ci sono differenze anche all interno della singola registrazione (realizzazione).

flusso respiratorio di 2 ratti a riposo (n.1 e n.2) - Fs=75 Hz ampiezza 0 Grafici ottenuti con MATLAB Example2.m 0 5 10 15 20 25 tempo [s] Caso n.1 Caso n.3 Caso n.5 Caso n.7 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000 Caso n.2 Caso n.4 Caso n.6 Caso n.8 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000 1 0-1 0 500 1000 1500 2000

PSD (periodogramma) ES2/6 MATLAB - ranproc2.mat Freq.respiratoria Flusso respiratorio 1 registrazione Picco nella PSD (Power Spectral Density): frequenza respiratoria media del soggetto. Un confronto fra questi valori su tutti i casi può dare un indicazione sulla ipotesi di processo stocastico per questo esempio.

ES.6 MATLAB PLOTRP2.M 0.3 Grafico della derivata del segnale vs. il segnale: grafici sovrapposti 0.2 0.1 0-0.1-0.2-0.3-0.4-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

plotrp2.m - ranproc2.mat 20 PSD del 4 segnale: scala lineare 15 10 5 0 0 5 10 15 20 25 10 5 PSD del 4 segnale: scala logaritmica 10 0 10-5 10-10 0 5 10 15 20 25 Freq. (Hz)

MATLAB ES6 - ranproc3.mat Segnale EMG, F s = 500Hz: contrazione del muscolo della lingua estrinseco genio-glosso. Registrazioni di 8 contrazioni diverse (realizzazioni) dello stesso soggetto, ciascuna contenente 256 dati. PSD della 5 registrazione Non ci sono picchi evidenti nella PSD, ma tutti gli spettri sono simili, indicando la provenienza dallo stesso processo stocastico.

ES.6 MATLAB - PLOTRP3.M 4 x 104 Grafico della derivata del segnale vs. il segnale: grafici sovrapposti 3 2 1 0-1 -2-3 -3-2 -1 0 1 2 3 x 10 4

ranproc3.mat 6 x 107 PSD del 4 segnale: scala lineare 4 2 0 0 50 100 150 200 250 10 8 PSD del 4 segnale: scala logaritmica 10 6 10 4 0 50 100 150 200 250 Freq. (Hz)

ES4 MATLAB hrv1.mat Frequenza cardiaca istantanea in battiti al minuto (cioè: 60/durata battito) in soggetto a riposo. memoria del sistema

ES.4 HRV1COV.M 100 Freq. cardiaca istantanea Heart rate 90 80 70 0 50 100 150 200 250 300 time AC normalizzata 1 0.5 0-0.5 0 50 100 150 200 250 300 lag

ES.4 MATLAB hrv.mat A sinistra: 10 registrazioni di frequenza cardiaca dallo stesso individuo. A destra: AC delle 10 registrazioni.

HRVCOV.M - HRV.MAT 40 AC per le prime due registrazioni 20 0-20 0 50 100 150 200 250 300 lag AC per le 10 registrazioni 40 20 0-20 0 50 100 150 200 250 300 lag

SEGNALE: ENERGIA E POTENZA Per un segnale deterministico x(t), la potenza istantanea all istante t è (*=trasposto coniugato): La potenza istantanea all istante t data dall interazione di due segnali x(t) e y(t) è: La potenza media su un intervallo [t 0, t 0 +T] è: L energia di un segnale x(t) è l integrale della potenza nel tempo : L energia data dall interazione di due segnali x(t) e y(t) è e xy ( ): Due segnali si dicono scorrelati se e xy ( ) =0

DENSITA SPETTRALE La densità spettrale di energia (Energy Spectral Density, ESD), o spettro di energia, del segnale x(t) è: La cross-densità spettrale di energia (Energy Spectral Density, ESD), o spettro di energia, fra due segnali x(t) e y(t) è: Il teorema di Parseval afferma che l energia totale del segnale è indipendente dalla scelta della sua rappresentazione nel tempo o in frequenza (conservazione dell energia): Poiché il prodotto di due trasformate di Fourier è la trasformata di Fourier della convoluzione delle due funzioni nel tempo, il cross-spettro di energia è (teorema di Wiener-Khintchine):

PROCESSO STOCASTICO I valori futuri di un segnale aleatorio (stocastico) non possono essere predetti esattamente. I segnali aleatori sono tali per loro natura (meccanismo interno) o rappresentano meccanismi che non conosciamo esattamente. Esiste variabilità fra i risultati di esperimenti diversi ed internamente al singolo risultato. Es.: un gruppo di individui a cui viene misurata la pressione costituisce l insieme degli esperimenti e il singolo individuo è una realizzazione. Il valore di una singola realizzazione ad uno specifico istante di tempo è una variabile aleatoria, cioè una variabile il cui valore dipende da un evento casuale. Ogni realizzazione è diversa dalle altre. Scopo: ottenere rappresentazioni (modelli) di realizzazioni di processi stocastici da cui ricavare le proprietà ed i parametri del processo stocastico. Quasi tutti i segnali biomedici possono essere visti come realizzazioni di processi stocastici, e spesso utilizzare valori medi invece della singola realizzazione non è il principale obbiettivo dell analisi.

PROCESSO STOCASTICO Insieme di successioni (TC o TD) ciascuna derivante da un diverso esperimento: x(n;i) i = i-ma successione (esperimento, o realizzazione ) n = indice temporale Fissato i, si utilizza la notazione semplificata x(n). Un processo stocastico è stazionario se il suo valore medio è costante e l AC dipende solo dalla differenza temporale m=n 2 -n 1. Due processi stocastici stazionari x(n) e y(n) sono caratterizzati da cross-correlazione r xy (m) e cross-covarianza c xy (m): ε = valor medio; * = complesso coniugato

ESEMPIO L uscita del processo stocastico è influenzata da componenti di rumore aleatorie in ogni realizzazione, pertanto i vari segnali in uscita p i (t) non descrivono esattamente il processo reale.

SEGNALI STOCASTICI Per segnali stocastici, al posto della media si considera il valore atteso o valore medio o momento del 1 ordine, cioè il valore a cui converge la media di un insieme di osservazioni (realizzazioni). (p=densità di probabilità) Il valore atteso di x 2 è il momento del 2 ordine. La varianza è la deviazione quadratica della variabile aleatoria dal suo valore medio. Bias = differenza fra il valore vero dei parametri e il valore atteso della loro stima. Uno stimatore è consistente se bias e varianza tendono a zero all aumentare del numero delle osservazioni.

POWER SPECTRAL DENSITY Power Spectral Density (PSD) = estensione statistica della ESD a segnali stocastici. Il teorema (equazione) di Parseval afferma che l energia di un segnale x(t) è distribuita fra le sue componenti in frequenza in modo tale che l energia ad ogni frequenza f è proporzionale al quadrato dell ampiezza di X(f), X(f) 2. Il teorema di Parseval costituisce uno strumento efficiente per analizzare la distribuzione dell energia in un segnale. La Densità Spettrale di Potenza (PSD, Power Spectral Density) di un segnale (di lunghezza N) è rappresentata con il grafico di X(f) 2 in funzione di f, diviso per il n. N di campioni di segnale: P xx (f) X(f) N 2

PSD La Power Spectral Density (PSD) è definita come la trasformata di Fourier (discreta) della sequenza di autocorrelazione r xx (m): r xx (m)=e x(n+m)x*(n) (T = periodo di campionamento): Questa equazione mette in relazione le proprietà di memoria (autocorrelazione) con la funzione di densità spettrale di potenza di un sistema, e afferma che la potenza ad ogni frequenza riflette l ampiezza della componente sinusoidale a quella frequenza nella funzione di autocorrelazione.

PSD PER RUMORE BIANCO Rumore bianco w(n): processo a media nulla scorrelato per tutti i valori di m, tranne che per m=0, che corrisponde alla varianza w. L AC è: PSD costante f (m)=successione delta discreta. w(n) ha componenti a tutte le frequenze: da qui il nome di rumore bianco.

EEG: il problema degli artefatti /1 artefatti muscolari Realizzazioni dello stesso processo stocastico Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

EEG di superficie /1 La corteccia cerebrale contiene diversi tipi di cellule nervose che possono venire raggruppate in due classi principali: Neuroni piramidali Interneuroni L EEG registra variazioni del campo elettrico generato da gruppi di neuroni piramidali, mentre la MEG registra variazioni del campo magnetico indotto dal variare del campo elettrico generato dagli stessi neuroni. Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

EEG di superficie /1 basi fisiologiche della generazione del segnale: Il segnale EEG è il risultato dell attività elettrica assonale e denditica dei neuroni piramidali corticali serve un attività sincrona di un numero elevato di neuroni (10 5 ) per generare un segnale apprezzabile sulla superficie dello scalpo Ampiezza segnale: dell ordine delle decine di μv Bande di frequenza di interesse: δ, θ, α, β, γ (range: 0.5-oltre 30Hz) sistemi per l acquisizione del segnale segnale registrato attraverso elettrodi di superficie. numero elettrodi: 19, 32, 64, 128,... modi per registrarlo: tanti tipi di elettrodo, tra cui le cuffie EEG Frequenza di campionamento: 200 : 1000 samples/sec Digitalizzazione a 12 bit impedenza di contatto elettrodo-cute da mantenere sotto i 5 Kohm Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA EEG sistema 10/20

EEG di superficie /2 gli elettrodi vengono posizionati secondo il sistema di riferimento internazionale 10-20. Ciascun elettrodo e definito rispetto: - all area cerebrale sottostante (F= frontale, P= parietale, C= centrale per il vertice, T= temporale, O= occipitale); - alla linea mediana (numero pari per gli elett. destri, dispari per gli elett. sinistri, e z per gli elett. mediani). Ad es, F3 indica un elettrodo frontale sinistro, Cz un elettrodo centrale mediano. Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

EEG: ritmi di base /1 Passando dallo stato di veglia a quello di sonno e coma, le onde EEG diventano progressivamente piu ampie e dalle componenti frequenziali più basse (regola generale, con le dovute eccezioni..) Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

EEG: ritmi di base /2 banda Hz Funzione localizzazione delta 0,5-3 Condizioni patologiche (coma) teta 3-7 alfa 8-13 beta 14-30 gamma >30 Sonno profondo, memoria episodica (corteccia del cingolo anteriore ippocampo) Rilassamento mentale / oscillazione idling (occipitale / occhi chiusi, somatosensoriale (ritmo μ)) Attenzione, concentrazione, aree corticali attivate, attivazione aree motorie Attenzione, concentrazione, aree corticali attivate, processi di integrazione della percezione Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

EEG: ritmi di base /3 Onde delta Onde theta Onde alpha Onde beta Dipartimento di Elettronica Informatica e Sistemistica - UNIVERSITA di BOLOGNA

ESEMPIO: EEG Attività elettrica fra le membrane dei neuroni corticali del cervello. Si distinguono 3 principali tipi di attività, che possono variare circa 15 volte durante il sonno notturno regolare: Ritmo = stato di veglia: 8-12 Hz, bassa ampiezza Ritmo = sonno leggero: 4-8 Hz Ritmo = sonno profondo: <4 Hz, ampiezza elevata (fase del sogno: simile al ritmo, ma con rapidi movimenti oculari (REM=Rapid Eye Movements)) Si registra l EEG durante la notte. Si assegna un indice di sonno all EEG ogni 30 sec., sulla base del ritmo dominante in quei 30 sec. Caso patologico: la transizione da un ritmo ad un altro avviene in meno di 30 sec. Problema: distinguere i 3 ritmi

ES5 MATLAB eegsim1.m 20s. di segnale simulato transizione rapida da ad (dopo 10s. circa) Segnale EEG simulato, campionato a 50 Hz per circa 4 min. Simula i 3 ritmi. Ogni ritmo dura almeno 15s. E un segnale semplificato: le transizioni sono più rapide del caso reale, non si considera lo stato REM, le variazioni in ampiezza sono minori del caso reale. Ipotesi di ergodicità: si dispone di un unica realizzazione del processo stocastico. Spettrogramma: grafico tempofrequenza dell intensità del segnale. Ritmo (0-50s), seguito da ritmo (50-80s) e poi (80-120s). 120s-150s: si torna al ritmo, poi si procede con ritmi a freq. più bassa v. eegsim1.m, tfar.m, montage.mat