Ingegneria dei sistemi di Controllo

Documenti analoghi
La struttura di un azionamento elettrico si può riassumere in modo molto sintetico come segue: Potenza in ingresso SORGENTE DI ALIMENTAZIONE PRIMARIA

Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _

Modellistica dei Sistemi Elettro-Meccanici

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

MOTORI IN CORRENTE CONTINUA (C.C.) Comprendere come si genera energia meccanica di rotazione a partire da una corrente continua

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo

UNIVERSITÀ DEGLI STUDI DI BERGAMO CORSO DI AZIONAMENTI DEI SISTEMI MECCANICI

Motori BLDC Controllo

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

È l elemento della catena dei controlli che attua il processo (motore asincrono trifase, motore in corrente continua, cilindro pneumatico).

Elementi di Fisica 2CFU

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

EFFETTO MAGNETICO DELLA CORRENTE

TASFORMATORI. I trasformatori sono macchine elettriche:

Motori elettrici di diversa struttura e potenza

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P Serie P Serie P Serie P Serie P85 18.

La corrente alternata

GENERATORI MECCANICI DI CORRENTE

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Generatori di tensione

Modellistica di sistemi elettromeccanici

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Lezione 16. Motori elettrici: introduzione

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

MACCHINE ELETTRICHE - TEORIA 2 febbraio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _

Esercizi di magnetismo

Cosa è la dinamo? dinamo

MACCHINE SINCRONE TRIFASE

Sez 3c DETTAGLI COSTRUTTIVI E FUNZIONALI. 25 febbraio 2016 dalle ore alle ore 19.00

Azionamenti elettrici: il motore brushless. Andrea Toscani

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

Fisica Generale II (prima parte)

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).

Il trasformatore Principio di funzionamento

M12 - Motori passo-passo.

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

Macchina asincrona. Primo motore elettrico (1885) Galileo Ferraris ( )

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

magneti superficiali magneti interni disposizione poligonale

Fig. 1: rotore e statore di una dinamo

Formulario Elettromagnetismo

Distribuzione di carica piana ed uniforme... 32

Fisica II. 7 Esercitazioni


MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

CORSO di AGGIORNAMENTO di FISICA

Cose da sapere - elettromagnetismo

Sommario Introduzione Il progetto motoruota Obiettivi della tesi Layout meccanico del sistema.3

Trasformatore monofase

Programma svolto di Elettrotecnica e Laboratorio. Modulo n 1/ Argomento: Studio di reti in corrente continua. Modulo n 2/ Argomento: Elettrostatica

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Attuatori. Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti

7. Convertitori statici

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Appunti di elettromagnetismo

Esercizi di Fisica LB: Induzione Elettromagnetica

ECO-TOP POWER MOTORI (ELECTRONICALLY COMMUTED) CATALOGO Italiano. electric motors. rev. 01

Induzione magnetica 1

Gli alternatori. Alternatore. L alternatore è costituito da due parti una rotante (generalmente l induttore e una fissa generalmente l indotto)

I.P.S.I.A. Di BOCCHIGLIERO

Impianto elettrico. Utenze

MACCHINE ELETTRICHE-OPENLAB-0.2 kw

Elettronica per l'informatica 21/10/03

TRASDUTTORI DI POSIZIONE

Esempi di modelli fisici

Il motore a corrente continua

Simbolo induttore. Un induttore. Condensatore su nucleo magnetico

Note su motori passo-passo

Esame Scritto Fisica Generale T-B/T-2

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

I trasduttori Classificazione dei trasduttori

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

MOTORE SINCRONO A MAGNETI PERMANENTI

Sistemi E Tecnologie per l'automazione LM

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase.

MACCHINE ELETTRICHE MACCHINA SINCRONA

PROBLEMA N.2 Il motorino elettrico

Freni dinamometrici. Corso di : Sperimentazione e collaudi

AZIONAMENTI ELETTRICI-lezione 5 Prof.sa Isoardo

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

(a) ;

Prof.ssa Garagnani Elisa - Correnti indotte. Campi magnetici variabili e correnti indotte

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

Sistemi elettronici di conversione

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

IIS Ferraris Brunelleschi Empoli _ ITI Indirizzo elettrotecnico. Programma consuntivo Pagina 1 di 5

ELETTROTECNICA. La corrente alternata. Livello 15. Andrea Ros sdb

Classe 3ael prof. Pollini Stefano

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Transcript:

Dalmine, 09-03-2017 Dipartimento di Ingegneria Ingegneria dei sistemi di Controllo Università degli Studi di Bergamo Dipartimento di Ingegneria dell Informazione Ermidoro Michele 1

Come possiamo agire sul sistema?

Cosa è un attuatore?

Gli attuatori, all interno dei sistemi automatici, sono il corrispettivo dei nostri muscoli. Essenzialmente, accettano un comando (tipicamente elettrico) e producono un cambio nel sistema, generando calore, forza, movimento, flusso ecc. Tipicamente, lavorano accoppiati con alimentazione e sistema meccanico:

Classificazione di attuatori

Che tipologie di attuatori esistono? Tipo di energia Tipo di output Elettrica Elettromeccanica Binario Continuo Pneumatica Idraulica Elettromagnetica Materiali speciali

Elettrici Sono gli attuatori tipicamente utilizzati per le operazioni di ON/OFF Utilizzano l energia elettrica per avviare qualsiasi altro tipo di device/sistema. Sono tipicamente binari Diodi Tiristori BJT Triac MOSFET / PMOSFET Relay a stato solido Caratteristiche principali Tipo Elettronico Altissima frequenza di risposta Basso consumo di potenza Binari

Elettromeccanici MOTORI DC AC - STEPPER Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Pneumatici Tipicamente vanno a fornire un movimento lineare Il movimento lineare è fornito tramite l utilizzo di un piston che viene spostato dall aria Lavorano tipicamente associate ad una valvola Caratteristiche principali Basse/medie forze Spinta breve Movimentazioni molto veloci Uscita continua

Idraulici Tipicamente vanno a fornire un movimento lineare Il movimento lineare è fornito tramite l utilizzo di un pistone che viene spostato da un fluido non comprimibile (olio tipicamente) Lavorano tipicamente associati ad una valvola Caratteristiche principali Grandi forze Lunghe corse Mediamente più lenti Più costosi da mantenere Uscita continua

Elettromagnetici Gli attuatori elettromagnetici sono tipicamente composti da un solenoide Un nucleo di ferro è inserito all interno di un coil in cui scorre corrente. Una volta energizzato il campo magnetico spingerà il nucleo verso l esterno. Caratteristiche: Elevata forza per un breve tempo Ideali per On/Off Uscita binaria

Elettromagnetici Gli attuatori elettromagnetici sono tipicamente composti da un solenoide Vengono usati, prevalentemente nelle valvole di controllo direzione Esempio: Valvola 5/2

Materiali speciali Gli attuatori sfruttano delle proprietà speciali dei materiali. Tipicamente sono embeddati nella struttura del sistema Parliamo di attuatori piezoelettrici, magnetostrittivi, elettroreologici ecc.. Caratteristiche piezo: Alta frequenza ma spostamento breve Alta risoluzione

Motore Piezoelettrico

Micro e Nano attuatori Sono MEMS che sfruttano lo stesso processo di costruzione della microelettronica (silicio) Possono costruire valvole, motori o pompe Da utilizzare solo in determinate applicazioni

Criterio di scelta Spesso è vincolato dai requisiti di potenza e dai vincoli di coupling meccanico. Alcuni criteri di scelta: Range di movimento Risoluzione Accuratezza Picchi di forza/coppia Dissipazione calore Risposta in frequenza Caratteristiche elettriche

Attuatori elettrici

Motori Elettrici - introduzione I motori elettrici, comunemente definiti macchine elettriche (EM), sono dispositivi in grado di convertire l energia elettrica in energia meccanica e viceversa. Tutte le macchine elettriche si basano sulla medesima idea (benchè con approcci diversi): È il campo magnetico a permettere l interazione tra l energia elettrica e quella meccanica.

Basi di elettromagnetismo

Elettromagnetismo - fondamenti I fenomeni elettromagnetici rendono possibile la conversione di energia elettrica in meccanica e viceversa. Partendo dalla base: un conduttore rettilineo, ipoteticamente di lunghezza infinita, percorso da corrente genera un campo magnetico le cui linee di forza sono concentriche e ortogonali al conduttore, con una intensità proporzionale alla corrente e inversamente proporzionale alla distanza i H H = i 2πr

Elettromagnetismo - fondamenti In una spira circolare di raggio R, il campo magnetico dipendente da z (distanza dal centro) è: H = i 2 R 2 R 2 + z 2 3 2 In z = 0: H = i 2R Generalizzando il risultato ad un solenoide di n spire, con densità di spire N(spire/lunghezza), e considerando la lunghezza del solenoide >> rispetto al raggio della spira, abbiamo che: H = in

Elettromagnetismo - fondamenti Il vettore di induzione magnetica è un vettore proporzionale al campo magnetico secondo una costante (µ) dipendente dal mezzo in cui agisce il campo magnetico B = μh [T] Il flusso magnetico è definito come l integrale del vettore induzione attraverso una superficie A Φ = A B n da Nel caso di induzione uniforme attraverso area piana: n α B Φ = BAcosα A

Leggi fondamentali Legge di Hopkinson: E l analogo della legge di Ohm, riferita ai circuiti magnetici È costante il rapporto tra la forza magneto-mortice ed il flusso magnetico Ohm V = R I Hopkinson M = R Φ M: forza magneto-motrice Φ: flusso magnetico R: riluttanza (misurata in Henry^-1) La riluttanza dipende dal volume e dalla permeabilità magnetica del materiale R = 1 μ l A di un cilindro di lunghezza l e sezione A.

Leggi fondamentali spostamento

Leggi fondamentali

Leggi fondamentali Legge di Faraday-Lenz: fem = dφ dt La fem indotta è pari all opposto della derivata temporale del flusso magnetico concatenato. Esempio: un aumento di flusso dovuto a una crescita di corrente nel circuito provoca una fem con segno opposto che si oppone a questo aumento di corrente. In generale le fem indotte hanno verso tale da contrastare il processo induttivo che le genera fem spostamento B Legge di Lorentz: F = qv B Una corrente che si muove in un campo magnetico genera una forza meccanica

Motori

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici - Asincroni Componenti: Statore: cilindro di materiale ferromagnetico munito di cave in cui sono alloggiati avvolgimenti che vengono alimentati con corrente trifase. Rotore: cilindro ferromagnetico in cui è inserito un circuito elettrico costituito da sbarre di rame o alluminio. Principio di funzionamento: 1. La corrente trifase che percorre lo statore genera un campo magnetico rotante alla velocità angolare ω 0 = 2πf, con f frequenza di alimentazione e p paia p di poli. 2. Nel rotore, per la legge di Faraday si inducono delle correnti, che generano a loro volta un campo magnetico rotante. 3. Il rotore, è percorso da una corrente ed è immerso in un campo magnetico. Viene quindi indotta una forza (Legge di Lorentz). 4. La rotazione del campo magnetico statorico fa si che le forze indotte provochino la rotazione del rotore. Esso roterà ad una velocità ω < ω 0 ; da qui il termine motore asincrono.

Motori Elettrici - Asincroni Proprietà: Detto anche ad induzione per via del processo che ne provoca il funzionamento; Alimentato direttamente dalla rete in corrente alternate, monofase o trifase; Bassi costi manutentivi; Molto utilizzato in ambito industriale, la sua velocità di rotazione dipende dalla frequenza di alimentazione; Autoavviante (se alimentato con trifase) La differenza tra la velocità del campo magnetico e la velocità del rotore è detta slip. Se le velocità di rotore e del campo magnetico sono uguali (slip = 0), il motore produce coppia nulla e rallenta. Controllo: Controllo V-F: variando la tensione e la frequenza di alimentazione si possono modificare le curve di coppia; Variazione numero poli: variando p (se il motore lo permette) può essere variata la velocità del campo magnetico; Il motore asincrono prevede (per via della sua costruzione) una retroazione interna in velocità dovuta alla BEMF.

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici - Sincroni Componenti: Statore: cilindro di materiale ferromagnetico munito di cave in cui sono alloggiati avvolgimenti (similare allo statore del motore asincrono); Rotore: esistono diverse tipologie costruttive differenti tra loro: A riluttanza; A magneti permanenti; A rotore avvolto. Principio di funzionamento: 1. La corrente trifase che percorre lo statore genera un campo magnetico che in un certo istante ha un orientamento α s. 2. Il rotore si troverà in posizione α r, provocando uno sfasamento geometrico (espresso in gradi elettrici): α e = α r α s p 3. I campi di rotore e statore tendon ad allinearsi, generando una coppia C pari a: C = C max sin α e - magneti permanenti C = C max sin 2α e - a riluttanza 4. Se non si supera C max il rotore viene trascinato alla stessa velocità del campo magnetico statorico, da qui il nome motori sincroni. 5. I motori sincroni non sono autoavvianti, ma garantiscono elevate prestazioni.

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici sincroni sinusoidali Sono motori nati per essere utilizzati con 220v 50Hz, ormai in disuso. Sono presenti spazzole per alimentare il rotore. + Elettronica di controllo semplice - Presenza di spazzole per l eccitazione rotorica - Basso rapporto peso/potenza - Alta Complessità/Costo di produzione

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici sincroni - stepper Sono motori utilizzati per una movimentazione con elevata precisione angolare e ridotta velocità. 3.6 7.2 10.5 + Elevata precisione + Elevata coppia - Elettronica di controllo complessa (ponte H per ogni fase) - Ridotta velocità di rotazione - Recupero energetico solo con nucleo magnetizzato

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici sincroni - riluttanza Sono motori che sfruttano la tendenza del rotore a posizionarsi (rispetto allo statore) sempre nella posizione a minima riluttanza. + Rotore a peso ridotto + Elevata robustezza + Ridotto costo di produzione - Algoritmo di controllo complesso (sistema non lineare) - Ridotta coppia nominale - Elevata rumorosità - Non è possibile la generazione

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici Sincroni Brushless a magneti permanenti Costruttivamente rotore e statore possono essere posizionati come segue: STATORE Rotore interno ROTORE Rotore esterno ROTORE STATORE

Motori Elettrici Sincroni Brushless a magneti permanenti Il numero di coppie polari può essere stabilito a livello costruttivo: Basso numero di coppie polari Alto numero di coppie polari

Motori Elettrici - introduzione I magneti possono essere installati in due diverse configurazioni: Magneti Permanenti Superficiali (SPM) Magneti Permanenti Interni (IPM)

Motori Elettrici Sincroni Brushless a magneti permanenti I motori possono essere progettati per velocità elevate oppure per coppie elevate, ad esempio: Elevati RPM Bassa coppia Bassi RPM Elevata coppia Specifiche: Potenza max.: 5000W Dimensioni: 76mm x 49mm Peso: 427g Giri max.: 20000 RPM Specifiche: Potenza max.: 5000W Dimensioni: 126mm x 206mm Peso: 11 kg Giri max.: 5000 RPM

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici DC Introduzione La macchina in corrente continua (brevemente macchina in CC o macchina in DC) è stata la prima macchina elettrica realizzata, ed è tuttora utilizzata ampiamente per piccole e grandi potenze, da generatore o da motore. Sono a corrente continua (o comunque alimentabili in corrente continua) numerosi motori di piccola potenza per usi domestici, come anche motori per trazione ferroviaria e marina della potenza di molte centinaia di kw. Tutte le macchine CC (a magneti permanenti e non) hanno un comportamento reversibile ( motore/generatore ). Si dividono principalmente in due classi, che si differenziano per la distribuzione di energia all interno del rotore: Brushless Motor: nello statore circola la corrente che genera il campo magnetico che trascina il rotore; Brushed Motor: lo statore genera un campo magnetico fisso e nel rotore viene fatta scorrere una corrente necessità spazzole.

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Elettrici - introduzione Dalla legge di Lorentz: df = dq dl dt B df = IdL B F = IL B = ILB sin θ Da cui si può ottenere la coppia applicata alla spira percorsa dalla corrente τ = F cos α w = BILw cos α sinθ = BILw cos α θ si può ipotizzare pari a 90. Ovviamente la coppia applicata alla spira si annulla in corrispondenza di α = 90.

Motori Elettrici - introduzione Aumentando il numero di spire, ed eccitando la spira opportuna, possiamo ottenere la rotazione continua desiderata

Motori Elettrici BACK EMF BEMF o back electromotive force (Forza controelettromotrice) è un voltaggio che si oppone alla corrente che induce il movimento. La corrente scorre in campo magnetico e genera una forza (legge di Lorentz) Il motore si mette in rotazione La rotazione della spira comporta una variazione di flusso al suo interno che induce una tensione La tensione si oppone al fenomeno che l ha creata [la corrente] (legge di Faraday-Lenz) La BEMF può essere quindi vista come un generatore di tensione opposta alla tensione di alimentazione

Motori Elettrici BACK EMF BEMF o back electromotive force (Forza controelettromotrice) è un voltaggio che si oppone alla corrente che induce il movimento. La BEMF può essere quindi vista come un generatore di tensione opposta alla tensione di alimentazione Al crescere della velocità la corrente motore diminuirà Velocità a vuoto Coppia nulla [no load speed] La BEMF dipende da: Velocità di rotazione Flusso magnetico statorico Parametri costruttivi del motore

Brushed DC motor - Model Campo magnetico dei mag permanenti Modellizzazione avvolgimenti rotore Tensione applicata al rotore Back EMF

Brushed DC motor Modello Elettrico e: BEMF k v : costante di velocità del motore i: corrente rotore θ: velocità angolare rotore Φ s : flusso magnetico dei magneti permanenti Applicando le leggi di Kirchoff: La back EMF è definita come: V in V R V L e = 0 e = k θφ s = k v θ Approssimazione valida per un numero elevato di spire, con k v costante di velocità dipendente dal flusso dei magneti permanenti, dalla riluttanza delle armature e dal numero di spire. Sostituendo si ottiene l equazione differenziale che governa le caratteristiche elettriche del motore: V in ir L di dt k vθ = 0

Brushed DC motor Modello Meccanico Applicando un bilancio di coppie: La coppia elettrica è: τ e τ J τ ω τ L = 0 τ e = k t i La coppia dovuta all accelerazione angolare è: τ J = J θ La coppia dovuta all attrito è: τ ω = b θ L equazione differenziale che rappresenta le caratteristiche meccaniche è dunque: k t i J θ b θ τ L = 0 τ L : coppia di carico k t : costante di coppia del motore i: corrente rotore J: inerzia del rotore b: coefficient attrito viscoso θ: velocità angolare rotore

Brushed DC motor Modello V in ir L di dt k vθ = 0 I s = 1 R + Ls (V in k v Ω s ) Applicando Laplace: Θ s = 1 s k t i J θ b θ τ L = 0 1 b + Js (K ti(s) τ L (s)) Volendo analizzare lo schema a blocchi tra tensione e velocità angolare del rotore, abbiamo che: τ L V in + 1 R + Ls I K t + 1 b + Js Ω s 1 s Θ s K v

Brushed DC motor Modello τ L V in + 1 R + Ls I K t + 1 b + Js Ω s 1 s Θ s K v Ω s V in (s) = Ω s Τ L (s) = R + Ls R + Ls K t b + Js + K t K v R + Ls b + Js + K t K v k t : costante di coppia del motore k v : costante di velocità del motore L: induttanza equivalente degli avvolgimenti R: resistenza equivalente degli avvolgimenti J: inerzia del rotore b: coefficient attrito viscoso Ω s : velocità angolare rotore θ: velocità angolare rotore V in s : tensione sull armatura Τ L : coppia di carico

Brushed DC motor Considerazioni Le costanti k t e k v assumono lo stesso valore numerico (K) ed hanno unità di misura equivalente. La coppia generata è proporzionale alla corrente d armatura. La forza controelettromotrice è direttamente proporzionale alla velocità di rotazione dal rotore. Alla velocità a vuoto (ω 0 ) la bemf eguaglia la tensione in ingresso, producendo una coppia nulla. La Potenza meccanica resa è massima in corrispondenza di ω = ω 0 2. A parità di tensione la coppia è inversamente proporzionale alla velocità di rotazione. L equazione della curva caratteristica statica del motore in c.c a magneti permanenti è: C m = K V in K ω R R Il rendimento è massimo per ω = ω 0 Curva di coppia C Potenza meccanica W rendimento η TENSIONE COSTANTE

Brushed DC attuazione

Brushed DC motor Considerazioni Ω s V in (s) = K t Ω s R + Ls b + Js + K t K v b + Js + K t K v Τ L (s) = R + Ls R + Ls b + Js + K t K v Variando la tensione sono in grado di modificare la velocità angolare del motore Come modificarla? Regolatore di tensione Richiede elettronica specifica Costo energetico alto (effetto Joule) PWM Comandato direttamente da un microcontrollore Facilmente comandabile

Brushed DC motor Regolazione tensione

Brushed DC motor PWM

Brushed DC motor PWM La modulazione di larghezza di impulso (o PWM, acronimo del corrispettivo inglese pulsewidth modulation), è un tipo di modulazione digitale che permette di ottenere una tensione media variabile dipendente dal rapporto tra la durata dell'impulso positivo e di quello negativo (duty-cycle). V p 40 T on [V] 30 20 10 T V 0 0 5 10 15 20 25 [ms] Frequenza: f = 1 T Duty Cycle: D = T Valore Medio: on T 100 [%] V = D V p

Brushed DC motor PWM Per estrapolare un valore compreso tra 0 e V p il circuito a cui è connessa la linea PWM dovrà filtrare il segnale in ingresso. Condizione per un buon filtraggio: f LP f o N.B.: Il filtraggio viene effettuato dal motore stesso! Se il motore è in grado di filtrare il segnale a partire dal Duty Cycle è possibile regolare la tensione ai capi dei morsetti.

Brushed DC motor PWM Hardware Il motore DC (brushed), ha un unico avvolgimento alimentato; per questo motivo è sufficiente un inverter a singolo ramo per una rotazione in singolo senso. Per una rotazione in entrambi i sensi, è necessario un inverter a due rami. CW CCW 2-ph PRE DRIVER

Brushed DC motor PWM Hardware Interponendo il carico fra due Half-Bridge comandati in anti-fase è possibile fornire al carico tensioni sia positive che negative D + Vbatt v LP = v LP_1 - v LP_2 + Vbatt 1 D R L MCU 1 D i D GND v LP_1 = Vbatt D v LP_2 = Vbatt (1 D) GND 10 v LP = v LP1 - v LP2 = Vbatt 2D 1 V LP [v] 5 0-5 -10 0 10 20 30 40 50 60 70 80 90 100 D [%]

Brushed DC motor ponte H e diodi ricircolo Tipica struttura: V CC In1 DIODI DI RICIRCOLO: Il motore ha un carico induttivo. Ogni volta che al coil del motore viene tolta alimentazione, l energia magnetica immagazzinata deve trovare una via per scaricarsi. Questo provoca picchi di tensione che dal motore risalgono verso I MOSFET di commando, uccidendoli miserabilmente. I diode forniscono una via di scarica. In essi l energia magnetica è dissipata in forma di calore. In2

Brushed DC motor controllo di coppia Il controllo in coppia, all interno di un motore DC a magneti permanenti, corrisponde a controllarne la corrente. Ricordando la coppia elettrica: τ e = k t i MCU D D MOS DRIVER MOS DRIVER D 1 D 1 D D + Vbatt GND A + Vbatt i RSENSE i R L Il controllo di questi motori è molto semplice: la normalità tra campo magnetico e rotore è garantita meccanicamente (dalla presenza delle spazzole). GND

Brushed DC motor controllo di coppia Controllo Il software di controllo è, di fatto, un regolatore PI. K i Current ref. s Voltage ref. PWM K p Motor driver Motor Current

Brushed DC motor controllo di coppia Controllo Il software di controllo è, di fatto, un regolatore PI. τ L V in + 1 R + Ls I K t + 1 b + Js Ω s 1 s Θ s K v

Brushed DC motor controllo di coppia Controllo Il software di controllo è, di fatto, un regolatore PI. τ L V in + + + 1 R + Ls I K t + 1 b + Js Ω s 1 s Θ s + PI I ref K v

Brushed DC motor controllo di velocità La velocità ha la seguente dipendenza dalla tensione: Ω s V in (s) = R + Ls K t b + Js + K t K v Per controllare la velocità ho quindi diverse alternative: Variare la tensione di alimentazione Variare la resistenza di armatura collegando un reostato in serie K i s Speed ref. K d s Voltage ref. Motor driver PWM Motor K p Speed

Brushed DC motor controllo di velocità Come leggere la velocità? Encoder Tachimetro BEMF τ L V in + + 1 R + Ls I K t + 1 b + Js Ω s 1 s Θ s + K v PID V ref

Brushed DC motor misura velocità - BEMF BEMF?

Motori Brushless

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Brushless I motori Brushless sono delle macchine sincrone (AC/DC), in cui il campo magnetico statorico ed il rotore ruotano alla stessa velocità. Sono caratterizzati dal non avere le spazzole Statore: Lo statore è composto da cave in cui sono alloggiati gli avvolgimenti che andranno a creare il campo magnetico rotante. Di conseguenza è alimentato da tre tensioni sfasate. Rotore: Il rotore tipicamente è composto da magneti permanenti, che generano un campo magnetico costante.

Motori Brushless - DC Questa tipologia di motori, detti BLDC, sono caratterizzati dall avere una bemf con forma trapezoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro.

Motori Brushless - DC Questa tipologia di motori, detti BLDC, sono caratterizzati dall avere una bemf con forma trapezoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro.

Motori Brushless - DC Questa tipologia di motori, detti BLDC, sono caratterizzati dall avere una bemf con forma trapezoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro.

Motori Brushless - DC Questa tipologia di motori, detti BLDC, sono caratterizzati dall avere una bemf con forma trapezoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro.

Motori Brushless - DC Questa tipologia di motori, detti BLDC, sono caratterizzati dall avere una bemf con forma trapezoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro.

Motori Brushless - DC BEMF trapezoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra.

Motori Brushless - DC BEMF trapezoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra.

Motori Brushless - DC BEMF trapezoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra.

Motori Brushless - DC BEMF trapezoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra. Ritardo di 90 Segno opposto (principio della bemf) Forma trapezoidale

Motori Elettrici - Classificazione Motori elettrici AC DC Asincroni A spazzole Universali Sincroni DC brushed A più fasi A singola fase Sinusoid. Stepper Brushless Gabbia di scoiattolo Cond. fisso Split phase Rotore avvolto variabile sincrona Rotore avvolto Avvio a cond. Shaded pole Rotore a m. perm. Magneti perm. commut. Synchros Funzion. a cond. variabile Cond. rotante Ibrido

Motori Brushless - AC Questa tipologia di motori, sono caratterizzati dall avere una bemf con forma sinusoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti «sinusoidali» con avvolgimenti concentrati: Il flusso dipende dalla «geometria» del traferro. Modifico la «distribuzione volumetrica» dei magneti.

Motori Brushless - AC Questa tipologia di motori, sono caratterizzati dall avere una bemf con forma sinusoidale. Questo avviene per via di come è costruito il motore: Magneti permanenti con avvolgimenti distribuiti: Soluzione ideale Soluzione approssimata

Motori Brushless - AC BEMF sinusoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra.

Motori Brushless - AC BEMF sinusoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra.

Motori Brushless - AC BEMF sinusoidale: La bemf dipende dal flusso. In particolare si oppone al principio che l ha generata. La direzione p data dalla regola della mano sinistra. Ritardo di 90 Segno opposto (principio della bemf) Forma sinusoidale

Motori BLDC Controllo