Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Documenti analoghi
NOZIONI DI CALCOLO DELLE PROBABILITÀ

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

MATEMATICA. a.a. 2014/15

Introduzione al Calcolo delle Probabilità

3.1 La probabilità: eventi e variabili casuali

Statistica Inferenziale

PROBABILITA E STATISTICA

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Calcolo della probabilità

Teoria della probabilità

NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI

La probabilità composta

OPERAZIONI CON GLI EVENTI

1 Ingredienti base del CDP. 2 Denizioni classica e frequentista. 3 Denizione assiomatica. 4 La σ-algebra F. 5 Esiti equiprobabili

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento

Probabilità I Calcolo delle probabilità

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Probabilità. Ing. Ivano Coccorullo

CALCOLO DELLE PROBABILITA

Elementi di probabilità

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

IL CALCOLO DELLE PROBABILITA

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Lezione 1: Università Mediterranea di Reggio Calabria Decisions Lab. Insiemi. La Probabilità Probabilità e Teoria degli Insiemi

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

Cenni di probabilità

Statistica 1 A.A. 2015/2016

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Il Calcolo delle Probabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici.

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)

Definizione frequentistica di probabilita :

La probabilità matematica

Introduzione alla probabilità

Calcolo delle Probabilità

incompatibili compatibili complementari eventi composti probabilità composta

La probabilità: introduzione

Calcolo combinatorio

Corso di Statistica. Introduzione alla Probabilità. Prof.ssa T. Laureti a.a

Calcolo delle probabilità

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

Esercizi di Calcolo delle Probabilità

STATISTICA 1 ESERCITAZIONE 8

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

Statistica. Capitolo 4. Probabilità. Cap. 4-1

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Probabilità delle cause:

STATISTICA e PROBABILITA'

QLaprobabilità dell'evento intersezione

Storia della Probabilità

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti

IL CALCOLO DELLE PROBABILITA

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

Calcolo delle probabilità

5 di tutti i possibili risultati relativi a un determinato esperimento si chiama spazio probabilistico

Esercizi su variabili aleatorie discrete

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:

Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi

La simulazione con DERIVE Marcello Pedone LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE

Matematica con elementi di statistica ESERCIZI: probabilità

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica

Analisi dei Dati e Statistica a.a. 2011/2012. Prof. Giuseppe Espa. 0461/ Probabilità (prima parte) Perchè la

Probabilità Condizionale - 1

prima urna seconda urna

- Teoria della probabilità

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U U

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15

Lezione 1. La Statistica Inferenziale

Note introduttive alla probabilitá e alla statistica

p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

IL CALCOLO DELLE PROBABILITA

Riprendiamo le probabilità. 1.Probabilità a priori oggettiva 2.Probabilità a posteriori frequentista

Statistica ARGOMENTI. Calcolo combinatorio

FENOMENI CASUALI. fenomeni casuali

( A) ( ) 3. Concezioni e valutazioni di probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercizi svolti di statistica. Gianpaolo Gabutti

Sommario. Corso di Statistica Facoltà di Economia. Teoria della Probabilità e Inferenza Statistica

TEORIA DELLA PROBABILITÁ

UNIVERSITÀ di ROMA TOR VERGATA

P (F E) = P (E) P (F E) = = 25

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

PROBABILITA. Nella costruzione dello spazio degli eventi la difficoltà aumenta notevolmente laddove sia necessario fare uso del prodotto cartesiano.

CENNI DI CALCOLO DELLE PROBABILITÀ (Vittorio Colagrande)

Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità.

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Soluzione esercizi (quarta settimana)

Esperimento casuale (o probabilistico, o aleatorio) previsione in condizioni di incertezza.

STATISTICA A K (63 ore) Marco Riani

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

Il Calcolo delle Probabilità

STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA

IL CALCOLO DELLE PROBABILITA

VARIABILI CASUALI CONTINUE

Transcript:

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Concetti importanti da (ri)vedere funzione vettore matrice cenni di calcolo combinatorio probabilità: storia e assiomi probabilità condizionata indipendenza di due eventi teorema di Bayes variabili aleatorie spazio campionario valore atteso densità di probabilità campione statistico medie varianza 2

Diversi approcci alla probabilità Ci sono quattro modi di porre la definizione di probabilità: a) definizione classica b) definizione frequentista c) definizione assiomatica d) definizione soggettivista 3

Definizione classica di probabilità (P. S. Laplace, 1749-1827) La probabilità P(E) di un evento E è il rapporto fra il numero F dei casi favorevoli (al verificarsi di E) e il numero N dei casi possibili, giudicati egualmente possibili. P(E) F N 0 P(E) 1 Se F=0, cioè se non esistono casi favorevoli al verificarsi dell evento, l evento è detto impossibile e la sua probabilità è nulla: P(E) =0; se F=N, cioè se tutti i casi sono favorevoli al verificarsi dell evento, l evento è detto certo e la sua probabilità è 1: P(E)=1. 4

Note alla concezione classica Uno dei punti deboli della concezione classica è la condizione, pressoché impossibile da verificare, che tutti i casi in cui può manifestarsi il fenomeno siano egualmente possibili. La definizione si può applicare quando l insieme dei casi è un insieme finito. 5

Premessa alla definizione frequentista di probabilità: frequenza relativa di un evento La concezione frequentista è basata sulla definizione di frequenza relativa di un evento. Si definisce frequenza relativa di un evento in n prove effettuate nelle stesse condizioni, il rapporto fra il numero v delle prove nelle quali l evento si è verificato e il numero n delle prove effettuate: f= v/n se f=0 l evento non si è mai verificato in quelle n prove; se f=1 (v=n) l evento si è sempre verificato in quelle n prove. 6

Note alla concezione frequentista La frequenza dipende dal numero n delle prove fatte, ma, per uno stesso n, la frequenza può variare al variare del gruppo delle prove: Se si lancia 100 volte una moneta e si presenta testa 54 volte, effettuando altri 100 lanci si può presentare 48 volte. Se il numero di prove è sufficientemente alto, il rapporto v/n tende a stabilizzarsi. 7

Legge empirica del caso In una serie di prove, ripetute un gran numero di volte, eseguite tutte nelle stesse condizioni, la frequenza tende ad assumere valori prossimi alla probabilità dell evento e l approssimazione è tanto maggiore quanto più numerose sono le prove eseguite. 8

Legge empirica del caso: un po di storia Gli esperimenti storici sul lancio di una moneta hanno confermato che, al crescere del numero delle prove, la frequenza si avvicina ordinariamente al valore 0,5 della probabilità dell evento testa calcolato con l impostazione classica, confermando la legge empirica del caso. G. L. Buffon (1707-1788) lanciò 4.040 volte una moneta ottenendo testa 2.048 volte con frequenza 0,5069. E. S. Pearson (1857-1936) lanciò in un primo esperimento 12.000 volte una moneta ottenendo testa 6.019 volte, con frequenza 0,50158; in un secondo esperimento ottenne, su 24.000 lanci, 12.012 volte testa, con frequenza 0,5005. 9

Definizione frequentista di probabilità La legge empirica del caso permette di formulare la seguente definizione frequentista di probabilità per eventi ripetibili: La probabilità di un evento è la frequenza relativa in un numero elevato di prove. Generalmente non si può dire quante prove siano necessarie; il numero delle prove dipende dal fenomeno in esame. 10

Approccio soggettivista alla probabilità Definizione soggettivista di probabilità (De Finetti et alii, 1931): Somma p che un soggetto coerente ritiene equo di pagare per ricevere una somma unitaria (ad es. 1 centesimo) nel caso che l evento si verifichi ( coerente significa che lo stesso soggetto deve essere disposto nel contempo a pagare la somma 1-p per ricevere 1 centesimo nel caso che l evento non si verifichi). In altre parole: la probabilità di un evento è la misura del grado di fiducia che un individuo coerente attribuisce in base alle proprie opinioni e alle informazioni di cui dispone, al verificarsi di quell evento. 11

Approccio assiomatico alla probabilità Esso costituisce la struttura portante delle diverse definizioni precedenti, che vengono per così dire amalgamate in una teoria assiomatica della probabilità (Kolmogorov, 1933). In quest ottica ci si preoccupa non tanto di stabilire cos è la probabilità, ma di definirla implicitamente tramite un insieme di assiomi che possano essere condivisi dai diversi approcci presentati. 12

Approccio assiomatico alla probabilità Base dell approccio assiomatico è la definizione di spazio campionario. Per spazio campionario si intende una terna (,F,P) che formalizza tutto quello che sappiamo sull'esperimento aleatorio. : è lo spazio campionario, contiene tutti i possibili esiti dell'evento. F: è una collezione di sottoinsiemi di, che contiene tutti gli eventi a cui possiamo assegnare una probabilità. P: è una funzione che assegna un numero da 0 a 1 ad ogni elemento di A. 13

Esperimento ed eventi aleatori La teoria della probabilità si fonda sul concetto di esperimento aleatorio, nel senso di prova che si assume possa essere ripetuta indefinitamente sotto le medesime condizioni. Si dice evento l insieme costituito da uno o più dei possibili risultati di un esperimento aleatorio. NB: Il termine aleatorio ha semplicemente il significato di non conosciuto, ma di per sé ben determinato. 14

Esperimento composto Supponiamo di definire n esperimenti, X 1, X 2,, X n, ad esempio: n lanci di una moneta n estrazioni di una carta da un mazzo ben mescolato Si definisce ESPERIMENTO COMPOSTO l esperimento che consiste semplicemente nell eseguire gli n esperimenti in sequenza, l uno in maniera indipendente dall altro, ovvero l esperimento costituito da un numero finito (oppure infinito) di repliche dell esperimento X i. Intuitivamente, la nozione di indipendenza significa che il risultato di un esperimento non influenza il risultato di nessuno degli altri esperimenti. 15

Spazio campionario Lo spazio campionario o spazio degli eventi per un esperimento è l'insieme di tutti i suoi possibili esiti. Un evento è dunque un sottoinsieme dello spazio campionario. ESEMPIO Nel caso dell'esperimento costituito dal lancio di un dado, lo spazio campionario è l insieme dei punti campione corrispondenti ai sei eventi elementari E i, con i = 1, 2,, 6: = {E1, E2, E3, E4, E5, E6} E i = nel lancio esce il numero i, con i=1,2,,6 16

Spazio campionario Nel caso dell esperimento che consiste nell estrarre una carta da un mazzo, lo spazio campionario o degli eventi è costituito da tutte le 52 carte del mazzo, da cui = {1, 2,, 13} x {Cuori, Quadri, Fiori, Picche} Nel caso dell'esperimento consistente nel misurare il Ph di uno yogurt all uscita da una linea di produzione, lo spazio campionario è = [0;14]. In questo caso, lo spazio contiene un insieme infinito non numerabile di punti campione. 17

Tipologie di eventi Gli eventi si possono distinguere in Eventi elementari Eventi composti Gli eventi elementari sono costituiti da uno solo dei possibili risultati di un esperimento aleatorio. Essi sono detti anche, come già detto, punti campione. 18

Evento composto Nello spazio campionario di un esperimento aleatorio, un evento composto corrisponde dunque ad un insieme che contiene più di un punto campione. Per l esperimento costituito dal lancio di un dado viene definito l'evento A: si osserva un numero dispari. Quindi A={1,3,5} A è un evento composto. B: si osserva un numero maggiore di 5 B={6 } B é invece un evento elementare. 19

Compatibilità di eventi DEFINIZIONE Sia uno spazio campionario di eventi. Due eventi A e B in si dicono compatibili se possono avvenire contemporaneamente. Quindi: due eventi sono incompatibili (o mutuamente esclusivi) se essi non possono accadere contemporaneamente. ESEMPIO Gli eventi "estrai una figura" e "estrai picche non sono incompatibili, dal momento che possiamo estrarre il re di picche, ma gli eventi "estrai una carta rossa e "estrai picche" sono mutuamente esclusivi, cioè il verificarsi del primo evento non ha nulla a che fare con il verificarsi del secondo. 20

Assiomi della probabilità La teoria della probabilità è basata, come precedentemente ricordato, sugli assiomi di Kolmogorov. Nel caso di uno spazio campionario finito, un numero P(E), chiamato probabilità di E, può essere assegnato a ciascun evento E (E è un sottoinsieme di ) se vengono rispettati i seguenti assiomi: 1) P(E) 0, in particolare P()=0 evento impossibile. 2) Se E 1, E 2,, E m sono eventi incompatibili in, allora P(E 1 u E 2 u u E m )= m i1 P(A i ) 3) Se lo spazio campione è costituito da N eventi elementari, Allora P()=P(E 1 u E 2 u u E N ) = 1 evento certo 21

Interpretazione degli assiomi della probabilità L assioma 1 può essere riformulato in termini di frequenza relativa ("probabilità"): essa deve essere maggiore o uguale a zero, dato che frequenze relative negative, non hanno senso. L assioma 2 dice sostanzialmente che la frequenza relativa dell unione di due o più eventi incompatibili è uguale alla somma delle rispettive frequenze relative e fornisce quindi una regola di addizione. 22

Interpretazione degli assiomi della probabilità L assioma 3 asserisce che la somma delle frequenze relative di tutti gli eventi elementari dello spazio campionario deve essere uguale a 1. Gli assiomi 1 e 3 sottintendono la scelta di una convenzione: decidiamo di misurare la probabilità di un evento con un numero compreso tra 0 e 1. 23

Interpretazione rigorosa della definizione frequentista di probabilità In base all impostazione frequentista e alla luce delle definizioni appena date, per probabilità P di un evento A si intende il limite a cui tende la frequenza relativa delle prove in cui l evento si verifica, quando il numero di prove tende all infinito: A lim n P( A) 24

Evento congiunto o intersezione La definizione di probabilità condizionata fa uso della nozione di evento congiunto o evento intersezione: A B. Un evento congiunto A B è un evento composto che ha la proprietà di essere costituito da un insieme di eventi elementari, ciascuno dei quali appartiene sia all insieme A che all insieme B. 25

Probabilità di Eventi congiunti La probabilità di A B si calcola nello stesso modo in cui si calcola la probabilità di qualsiasi evento composto o complesso: facendo la somma delle probabilità di tutti gli eventi elementari che lo compongono. Nel caso di uno spazio campione finito costituito da eventi elementari equiprobabili, la probabilità P(A B) è uguale a: P( AB) numero di eventi numero totale di elementariin AB eventi elementari 26

Probabilità dell evento contrario In simboli, l evento contrario è tale che: AUA C = Dato che P( )=1, la sua probabilità è P(A C ) = 1-P(A) Si dice evento contrario o complementare di un evento A dato, e si indica con A C, l evento la cui unione con A dà origine all evento certo. Esempio: Lancio di un dado A : esce un numero minore di 3 A C : esce un numero maggiore o uguale a 3 27

Esempi di Eventi congiunti P(A B) + P(A B c ) = P(A) A B A B P(A B) + P(A c B) = P(B) A B A B 28

Esempi di Eventi congiunti P(A c B) + P(A c B c ) = P(A c ) A B A B P(A B c ) + P(A c B c ) = P(B c ) A B A B 29

Esempi di Eventi congiunti P(A c B) + P(A c B c ) = P(A c ) P(A B c ) + P(A c B c ) = P(B c ) 30

Esempi di Eventi congiunti P(A B) + P(A B c ) = P(A) P(A B) + P(A c B) = P(B) 31

Probabilità condizionata Calcolare la probabilità condizionata di un dato evento significa calcolarne la probabilità, sapendo che un altro evento ha avuto luogo e quindi ne condiziona l esito. 32

Probabilità condizionata Supponiamo di eseguire un esperimento aleatorio avente spazio campionario uguale a. Se un evento B di ha avuto luogo, in generale ciò altera le probabilità che vengono assegnate ad altri eventi. Se A è un secondo evento, allora A si verifica se e solo se A e B possono verificarsi assieme. In altre parole, lo spazio campionario si è ridotto a B. 33

Probabilità condizionata La probabilità che A si verifichi, dunque, dovrebbe essere proporzionale a P(A B). Questo conduce alla seguente definizione. Siano A e B due eventi definiti per un esperimento aleatorio con P(B) > 0. La probabilità condizionata di A dato B è data da: P AB P A PB B 34

Probabilità condizionata A B P AB P A PB B S AB P(A B) rappresenta la probabilità di A B rispetto allo spazio ridotto di B. 35

Probabilità condizionata Dati due eventi A e B, si possono definire due probabilità condizionate: P AB P AB P B A PB P A PA B 36

Probabilità condizionata W S A B P AB P A PB B AB P(B A) rappresenta la probabilità di A B rispetto allo spazio ridotto di A. 37

Probabilità condizionata: casi particolari Qual è la probabilità che l evento A si verifichi sapendo che ha avuto luogo l evento B, P(A B), nel caso in cui A B =? A B P(A B) = P(A B ) / P(B) = 0 38

Probabilità condizionata: casi particolari Qual è la probabilità che l evento A si verifichi sapendo che ha avuto luogo l evento B, P(A B), nel caso in cui B A? A B = B B A P(A B) = P(A B ) / P(B) = P(B) / P(B) = 1 39

Probabilità condizionata: casi particolari Qual è la probabilità che l evento A si verifichi sapendo che ha avuto luogo l evento B, P(A B), nel caso in cui A B? A B = A A B P(A B) = P(A B ) / P(B) = =P(A) / P(B) 40

Sintesi sulla probabilità condizionata Nel caso di uno spazio campionario finito, costituito da eventi elementari equiprobabili, la probabilità P(A B) è uguale a: P(A B) numero di elementidi A numero di elementidi B B 41

Probabilità condizionata: esempio 1 acciughe salame funghi 42

Probabilità condizionata: esempio 1 Una fetta di pizza viene scelta a caso. Sulla fetta di pizza c è del salame piccante. Qual è la probabilità che ci siano anche dei funghi? P(funghi salame) = 3/5 P(F S) P(F S) P(S) 3 5 8 8 3 5 43

Probabilità condizionata: esempio 1 Una fetta di pizza viene scelta a caso. Sulla fetta di pizza ci sono delle acciughe. Qual è la probabilità che vi siano anche dei funghi? P(funghi acciughe) = 2/3 P(F A) P(F A) P(A) 2 3 8 8 2 3 44

Probabilità condizionata: esempio 2 Supponiamo che un quesito con risposte possibili sì e no sia stato rivolto a 34 studenti, 18 maschi e 16 femmine. I risultati sono i seguenti: Maschi Femmine SI 10 4 14 NO 8 12 20 18 16 34 45

Probabilità condizionata: esempio 2 Supponiamo di estrarre a caso uno studente da questo gruppo e definiamo le seguenti probabilità: Maschi Femmine SI 10 4 14 NO 8 12 20 P(M) P(S) 18 34 14 34 18 16 34 P(M S) 10 34 46

Leggi della probabilità nel caso di probabilità condizionata Legge del prodotto Legge della somma Legge della probabilità totale Teorema di Bayes 47

Legge del prodotto e probabilità condizionata La probabilità dell evento congiunto A B è P(A B) P(A) P(B A) P(B) P(A B) La legge del prodotto, detta anche teorema delle probabilità composte, segue direttamente dalla definizione di probabilità condizionata: P(A B) P(A B) P(B) P(B A) P(A B) P(A) 48

Legge del prodotto ed eventi indipendenti A e B si dicono (stocasticamente) indipendenti, se il fatto che si verifichi l uno non altera la probabilità dell altro evento, ovvero se: P(A B ) = P(A) e P(B A) = P(B) In tal caso: P(A B) P(A) P(B) 49

Legge della somma La probabilità dell unione di due eventi A e B compatibili è: P(A B) P(A) P(B) P(A B) 50

Legge della somma ed eventi indipendenti Se A e B sono incompatibili (o mutuamente esclusivi), allora si ha: P(A B) 0 P(A B) P(A) P(B) 51

Esempio 1 acciughe salame funghi 52

Esempio 1 Una fetta di pizza viene scelta a caso. Qual è la probabilità che la fetta di pizza abbia del salame piccante oppure dei funghi? P(funghi salame) = = P(funghi) + P(salame) - P(funghi salame) = = 4/8 + 5/8-3/8 = 3/4 53

Esempio 2 Sia A l evento donna e B l evento mancino. Siano assegnate le probabilità di A, di B e di A B : P(A) = 0, 51 P(B) = 0, 35 P(A B) = 0, 10 54

Esempio 2 Qual è la probabilità di osservare una donna oppure un mancino? P(A B) = = P(A) + P(B) - P(A B) = 0, 51 + 0, 35-0, 10 = 0, 76 A B 55 0

Esempio 2 Qual è la probabilità di osservare una donna non mancina? P (A B c ) A B P(A B c ) = P(A) - P(A B) = 0, 51-0, 10 = 0, 41 56 0

Esempio 2 Qual è la probabilità di osservare un uomo mancino? P(A c B) A B P(A c B) = P(B) - P(A B) = 0, 35-0, 10 = 0, 25 57

Esempio 2 Qual è la probabilità di osservare un uomo non mancino? P(A c B c ) A B P(A c B c ) = P(A c ) - P(A c B) = 0, 49-0, 25 = 0, 24 P(A c B c ) = 1 - P(A B) = 1-0, 76 = 0, 24 58

Probabilità totale e teorema di Bayes A corollario delle proprietà di addizione e moltiplicazione illustrate, si può infine introdurre il concetto di probabilità totale. Premesse Dati gli eventi H 1, H 2,, H n mutuamente incompatibili, sia E un evento, non impossibile, che si verifichi insieme ad uno ed uno solo di questi n eventi. Innanzitutto, si potrà affermare che: A = (AH 1 ) (AH 2 ) (AH n ) 58 59

Probabilità totale e teorema di Bayes Trattandosi di eventi incompatibili, la probabilità che A ha di verificarsi risulta: P(A) = P(AH 1 )+P(A H 2 ) + +P(AH n ) Per il teorema delle probabilità composte, l espressione sopra può essere scritta come: P(A) = P(H 1 ) P(A H 1 )+ P(H 2 ) P(A H 2 )+ + + P(H n ) P(A H n ) Tale espressione prende il nome di formula della probabilità totale. 59 60

Probabilità totale e teorema di Bayes Supposto che l evento E si verifichi a diverse condizioni, sulle quali si facciano n ipotesi H 1, H 2,, H n, in genere prima di effettuare la prova sono note le probabilità di ciascuna ipotesi H i. Si sa anche che ciascuna di esse dà all evento E una probabilità condizionata P(A H i ). Supponiamo che si verifichi A: questo potrebbe causare una rivalutazione delle probabilità delle ipotesi H 1, H 2,, H n. Il teorema di Bayes risolve quantitativamente la questione, permettendo di calcolare in che modo si devono cambiare le probabilità di queste ipotesi, essendosi già verificato E. 60 61

Teorema di Bayes Il teorema di probabilità delle cause o delle ipotesi, attribuito al matematico inglese Thomas Bayes (1701? 7 Aprile 1761), esprime la probabilità che si realizzi l ipotesi H i, dato che si sia già verificato E: p(h E) i p(h )p(e H ) n p(h )p(e H ) i1 i i i i 61 62

Teorema di Bayes In sintesi, una dimostrazione del teorema.. Poiché si ha che: P(A) = P(AH 1 )+P(A H 2 ) + +P(AH n ), p(e H ) i p(e)p(h E) Da cui segue in particolare che: p(h i)p(e H i) p(h i E) p(e) i p(h )p(e H ) i i In forma concisa si può scrivere che: n p(e) p(h )p(e H ) i1 i i E dunque: p(h E) i p(h )p(e H ) p(h )p(e H ) i i1 n i i i 62 63

Teorema di Bayes: un esempio Suppongo di possedere 5 confezioni contenenti cioccolatini, distribuiti come segue: 2 confezioni (ipotesi H 1 ) contengono 2 cioccolatini fondenti e 3 al latte; 2 confezioni (ipotesi H 2 ) contengono 1 cioccolatino fondente e 4 al latte; 1 confezione (ipotesi H 3 ) contiene 4 cioccolatini fondenti e 1 al latte. Scelgo un cioccolatino da una confezione a caso e scopro che è fondente (evento E). Qual è la probabilità che il cioccolatino sia stato estratto dalla quinta confezione (ultima ipotesi)? 63 64

Teorema di Bayes: un esempio 64 P(H1)=p(H2)=2/5 p(h3)=1/5 P(E H1)= 2/5 p(e H2)=1/5 p(e H3)=4/5 Dalla formula dimostrata si ha che la probabilità cercata è: 5 2 10 4 5 4 5 1 5 1 5 2 5 2 5 2 5 4 5 1 ) ( ) ( ) ( ) ( ) ( 3 1 3 3 3 i i H i E p H p H E p H p E H p 65