Trasformata di Laplace unilatera Teoria



Documenti analoghi
Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Un modello di ricerca operativa per le scommesse sportive

Il moto circolare uniforme

Metodo della Trasformata di Laplace (mtl)

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO

Navigazione da satellite

3. Catene di Misura e Funzioni di Trasferimento

Problema 1: Una collisione tra meteoriti

SIMULAZIONE - 22 APRILE QUESITI

6 ESERCITAZIONE. Esercizi svolti: Capitolo 6 Interesse reale e nominale Esercizio 2. Capitolo 7 Consumo e investimento Esercizio 5

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Algoritmi di visita di un grafo

Sintesi tramite il luogo delle radici

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso

Capitolo IV L n-polo

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Investimento. 1 Scelte individuali. Micoreconomia classica

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Risoluzione dei problemi

Lezione 12. Regolatori PID

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Struttura dei tassi per scadenza

Lezioni di Fisica Generale Per il corso di laurea in Ingegneria Edile A.A. 2002/2003

UNIVERSITÀ DEGLI STUDI DI PADOVA

STRUTTURE ALGEBRICHE

Circuito Simbolico. Trasformazione dei componenti

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

Descrizione generale di Spice

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Applicazioni lineari

Disequazioni Intervalli sulla retta reale

SEGNALI E SISTEMI 31 agosto 2017

C8. Teoremi di Euclide e di Pitagora

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

VALORE EFFICACE DEL VOLTAGGIO

Funzioni. Funzioni /2

Teoria del consumo basata sulle aspettative

Diagramma circolare di un motore asincrono trifase

V AK. Fig.1 Caratteristica del Diodo

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Grandezze cinematiche angolari (1)

2 FUNZIONI REALI DI VARIABILE REALE

RISPOSTA NEL DOMINIO DEL TEMPO

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Valore finanziario del tempo

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

Corso di Microonde II

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

REALTÀ E MODELLI SCHEDA DI LAVORO

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

ESEMPI DI ESERCIZI SU IRPEF ED IRES

13. Campi vettoriali

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Guida al calcolo della ripetibilità di un metodo di prova ed alla sua verifica nel tempo

Magnetostatica: forze magnetiche e campo magnetico

Il criterio media varianza. Ordinamenti totali e parziali

I SISTEMI TRIFASI B B A N B B

Fondamenti e didattica di Matematica Finanziaria

Transitori del primo ordine

Il teorema di Gauss e sue applicazioni

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6

METODI DECISIONALI PER L'AZIENDA. Dott. Lotti Nevio

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

Transcript:

Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe <. = vaiabile indipendene eale della funzione eale f() F() = afomaa di Laplace della funzione f() = vaiabile indipendene complea della afomaa di Laplace Di fao, la afomaa di Laplace è un opeaoe che afoma una funzione eale di (ad eempio l equazione di un onda) in una funzione complea di (ad eempio l equazione di una ipoa in fequenza). f() c F() c Š Eienza e dominio della afomaa La afomaa è definia aaveo un inegale impopio. La ua La condizione di eienza è quindi: Inegale impopio convege u Tafomaa di Laplace eie Inegale impopio divege u Tafomaa di Laplace non eie Siccome l inegale impopio ha un paameo compleo, ogni vola che i calcola la afomaa di Laplace biogna dicuee pe quali valoi di l inegale convege, e pe quali valoi divege. Si dimoa che (il paagafo Convegenza di e ne da una pova) ciò che cona pe la convegenza dell inegale di Laplace è la pae eale di. In paicolae, i oveà empe che Re()>a u Inegale di Laplace convege Quea condizione cea di fao un emipiano di convegenza, nel quale la afomaa di Laplace eie. Biogneebbe empe dicuee l eienza di queo emipiano, che invece peo è daa, pe emplicià, valida. Eiono anche funzioni che hanno, cioè pe le quali non eie afomaa di Laplace. Un eempio è la funzione: f()=e 2 Veifica della convegenza Eiono e modi pe veificae che una funzione ia afomabile econdo Laplace: ) Calcolae dieamene la afomaa con l inegale di definizione, e dicuee il paameo. 2) Dimoae che l inegale impopio non convege, enza calcolalo. A queo copo, è uile quea compoizione: e $ $ f() e (a + j $ b) $ f() e a $ f() $ [e b $ j ] e a $ f() $ [co(b)+j $ en(b)] Quindi: f() $ e ($) d = e a $ f() $ co(b)+j $ e a $ f() $ en(b) Mediane quea compoizione, abbiamo oenuo due inegali a valoi eali. Se i pova che quei inegali convegono, i dimoa che la afomaa di f() eie. NOTA: anche in queo cao, i evidenzia come Re(), cioè a, ia il valoe che deemina la convegenza o meno dell inegale. Im(), cioè b, compae olo nel eno e nel coeno, e deemina olo un ocillameno dell inegale a e -. 3) Veificae che: F() [ M $ e n$ con >, n e m eali e poiivi

Convegenza di e Vogliamo deeminae il compoameno della funzione: e con c Š quando ende a. Biogna quindi udiae il compoameno della funzione in bae al vaiae del paameo. Siccome è un numeo compleo, la funzione può eee icia oo foma di un numeo compleo: e. = e (a + jb)$ = e a $ e j $ (b) / Modulo: e a e a $ e j $ ( b) j$ ( b) Fae: e Sudio oa il compoameno di al vaiae del uo modulo e della ua fae Fae b La fae del numeo compleo è ininfluene pe deeminae il uo compoameno a. Infai j$ ( b) e numeo compleo di modulo e fae (-b). Al endee all infinio dell angolo di fae, cioè di (-b), il numeo compleo coninua a uoae ulla ciconfeenza di aggio uniaio. Il emine b è ininfluene pe deeminae la convegenza dell eponenziale a u Modulo a Il modulo dell eponenziale compleo è deeminane pe decidene la convegenza. Poiamo diinguee e cai: a > u a = u a < u lim + e a $ e j $ ( b) = $ e j $ ( b) lim + e a $ e j $ ( b) = e j $ ( b) lim + e a $ e j $ ( b) = $ e j $ ( b) Num. compleo di fae vaiabile e modulo nullo L eponenziale convege Num.compleo di fae vaiabile e modulo uniaio L eponenziale ocilla u una ciconfeenza uniaia Num. compleo di fae vaiabile e modulo infinio L eponenziale divege Funzione f() () Dela di Diac u() - Gadino n con n c Œ e a$ a c Š en( $ ) > co( $ ) > en( $ + ) co( $ + ) Pincipali afomae Tafomaa F() n! n+ a 2 + 2 2 + 2 $en( )+ $co( ) 2 + 2 $co( ) $en( ) 2 + 2 Acia di convegenza c Š Re()> Re()> Re()>Re(a) Re()> Re()>

Popieà della afomaa di Laplace Popieà Unicià Moliplicazione pe coane Somma Talazione nel campo Talazione nel campo Deivazione ipeo a Fomula f ()=f 2 () $ f() f ()+f 2 () u( a) $ f( a) a c + e a$ $ f() a c Š f() (n) F () = F 2 () $ F() F () + F 2 () e $a $ F() F( a) n n $ F() n $ f() ( ) = Acia di convegenza ma(, 2 ) +Re(a) ma( n,) Inegazione Podoo di convoluzione Deivaa della afomaa Inegazione Funzioni peiodiche Teoema del valoe iniziale f() & g()= f() $ g( )d f() & g()= f()d $ f()= ( ) n $ n $ f()= f() F() peiodica lim f() d+ lim f() d f( ) $ g()d Eempio: 3 $ F() 2 $ f() $ f () f () F() F() $ G() F () $ e $T F = Tafomaa della funzione bae peiodica T = peiodo della funzione lim $ F() d lim $ F() d F() () F() (n) F(u)du ma(,) ma(, 2 ) di f() Teoema del valoe finale lim f() d Il eoema del valoe iniziale vale e e olo e eie il limie di f(). lim $ F() d Scalameno f(a $ ) a > Il eoema del valoe finale eie e e olo e eie il limie di f(). a $ F( a ) c $ Noa: il pecificao nella colonna delle acie di convegenza è il che i avebbe e i facee la afomaa della ola funzione in eame f(). Unià di miua Se i applica la afomaa di Laplace nel campo dei egnali, biogna conideae anche la dimenione fiica delle vaiabili: Funzione pimiiva f() afomaa F() Dominio empo fequenza Unià di miua econdi hez

AniTafomaa di Laplace Poichè le afomae ono univoche, pe aniafomae è ufficiene applicae le leggi di afomazione al conaio. Se le funzioni ono paiclamene complee, i puo applicae la fomula geneale, che peò è molo complea, oppue icoee a meodi paicolai, come nel cao delle funzioni azionali fae. Fomula geneale La fomula di Riemann-Fouie pemee di aniafomae qualunque F(), ma implica l eecuzione di un inegale complicao: 2 j $ v.p. + $ j $ j e $ F()d Ipoei: f() egolae a ai F() = L[f()] acia di convegenza fi F() > Funzioni azionali fae Le funzioni azionali fae ono l unico ipo afomaa di Laplace che può compaie nei cicuii eleonici. Pe queo è neceaio impaae queo il poceo di aniafomazione. Il pocedimeno è queo: ) Si compone la funzione azionale faa in fai emplici 2) Si aniafoma, uilizzando di vola in vola il meodo più appoiao: a) Regole di afomazione al conaio b) Fomule: Poli emplici: a $ ea Poli mulipli: ( a) ( )! $ $ e a Poli complei coniugai: vedi di eguio Aniafomazione di poli complei Se aniafomai con i meodi nomali, i poli complei danno oigine a aniafomae con eponenziali complei. In ealà, emplificando con le fomule igonomeiche di Euleo, i oengono empe aniafomae eali. Si poono eguie due vie pe avee una aniafomaa eale: a) Si aniafoma con le egole nomali, e poi i applicano le fomule di Euleo b) Si applica una fomula, icodando che, componendo in faoi il denominaoe, i poli complei oenui ono empe coniugai a loo: F()= A $ e j$ (a + b $ j) + A $ e j$ (a b $ j) f()=2 A $ e a$ $ u() $ co(b $ + ) Noa paica: analizzando i cicuii eleonici, la pae eale del polo deve ee poiiva pe ave abilià. In al cao pe applicae la pecedene fomula pae eale, pae immaginaia, fae e modulo ono ifeii al polo che, con davani il meno accolo, è poiivo: 2 $ Modulo del eiduo $ e$re(polo) $ co Im(polo)+ Fae del eiduo (a! b $ j) / (a + b $ j) d Conideao (a b $ j) d Non conideao

Eempio di applicazione delle fomule di Euleo Pe chiaie come i applicano le fomule di Euleo pe emplificae aniafomae complee i ipoa la dimoazione della fomula di aniafomazione di poli complei emplici. Applicando la fomula dei eidui, i oiene anche al numeaoe una coppia di zei complei coniugai: + y $ j F()= (a + b $ j) + Dove:! y $ j = coppia di zei complei coniugai a! b $ j = coppia di poli complei coniugai y $ j (a b $ j) Epimendo gli zei complei in foma polae, i oiene: A $ e F()= j$ (a + b $ j) + A $ e j$ (a b $ j) Aniafomando, il numeaoe ea invaiao, pechè è un coefficiene, mene il denominaoe iula eee una alazione: f()=[ A $ e j$ ] $ [u() $ e (a+b$j)$ ] + [ A $ e j$ ] $ [u() $ e (a b$j)$ ] Raccogliendo u() $ e a$, i ha che: f()= A $ e a$ $ u() $ [e j$(b$+ ) + e j$(b$+ ) ] Ricodando la fomula di Euleo: e j$ = co + j $ en Si può civee che: A $ e a$ $ u() $ [co(b + )+en(b + ) $ i + co( b )+i $ en( b )] Ricodando che: en( )= en() co( )=co() Si può civee che: A $ e a$ $ u() $ [co(b + ) + en(b + ) $ i + co(+b + ) i $ en(b + )] E quindi alla fine i oiene: f()=2 A $ e a$ $ u() $ co(b $ + )