Risposta in Frequenza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risposta in Frequenza"

Transcript

1 Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla pulsazio ω, cioè Z= Z(, Y= Y(. Copot R I I Ipdza Z R C /jωc = - j/ωc L jωl Y = Z I V Strutazio Elttroica di Misura - V. Frrari

2 Aalisi di Circuiti i Rgi Siusoidal Tutt la lggi prstat pr circuiti rsistivi (KVL, KCL, Thvi, Norto, ) soo stdibili a circuiti co R, C, L i rgi siusoidal a patto di cosidrar pr ciascu copot la sua ipdza Espio: I s R C V o V O = IS R = jωc R = IS + jωrc Rgi Siusoidal Liarità I circuiti liari cosrvao la fora di sgali siusoidali S all igrsso è applicata ua siusoid a frquza f, all uscita è cssariat prodotta ua siusoid alla stssa frquza Gli uici paratri ch possoo vtualt variar soo apizza fas x(t) = X cos( ωt) circuito liar y(t) = Y cos( ωt + Φ) Strutazio Elttroica di Misura - V. Frrari 2

3 Aalisi l Doiio dlla Frquza Doiio dl Tpo circuito liar x(t) = X cos( ωt) y(t) = Y cos( ωt + Φ) R [...] R[...] X( = X jωt X Y( = X Y circuito liar Doiio dlla Frquza H jφ jωt Y = X jφ Y ( ( = jφ( X ( Y( = Y jφ X( = H( X( jωt Risposta i Frquza H( Rapprsta il coportato di u circuito liar i rgi siusoidal al variar dlla frquza Fuzio di risposta i frquza (FRF) H(: fuzio coplssa dlla pulsazio ω data dal rapporto Y(/X( tra l uscita Y( l igrsso X( trabi rapprstati i fora coplssa (otazio co fasori) Strutazio Elttroica di Misura - V. Frrari 3

4 Risposta i Frquza H( L coplicat quazioi itgro-diffrziali ch lgao igrsso uscita l doiio dl tpo si trasforao, l doiio dlla frquza, i u splic prodotto: Y( = H( X( L ipdza Z( è u caso particolar di FRF, i cui igrsso uscita soo corrt tsio dllo stsso bipolo Diagrai di Bod di H( Modalità di graficar H( scodo l sguti rgol: Diagraa dl odulo H( sprsso i dcibl (db) i fuzio di ω (o di f ) i scala logaritica H db= 20log0 H Diagraa dlla fas H( i gradi o radiati i fuzio di ω (o di f ) i scala logaritica Attravrso la covrsio i db, i prodotti si trasforao i so d è possibil tracciar i diagrai di Bod a partir da blocchi splici ch copogoo H( Strutazio Elttroica di Misura - V. Frrari 4

5 Espio: circuito RC R Vi C Vo R = kω C = 00 F 0-50 SEL>> -00 0d vdb( 2) -90d. 0Hz 0Hz 00Hz. 0KHz 0KHz 00KHz. 0MHz vp( 2) Fr qucy Sgali Aalogici Rapprstazio di Fourir Strutazio Elttroica di Misura - V. Frrari 5

6 Iforazio Sgali Iforazio: i sso gral è idtificabil co il cotuto di u ssaggio trasfrito da u soggtto ad u altro. Sgal: l voluzio dlla gradzza fisica ch supporta iforazio. Gralt è ua dipdza di ua gradzza dal tpo o da u altra gradzza. Sgali Aalogici Prdoo il o dal fatto ch soo aaloghi alla quatità fisica ch rapprstao. Soo spriibili co fuzioi y(x) dfiit i u itrvallo cotiuo dlla variabil idipdt x, a valori i u itrvallo cotiuo l doiio dlla variabil dipdt y. Tipicat, la variabil idipdt x è il tpo t Pr spio: E u sgal aalogico la tsio fuzio dl tpo grata da u icrofoo. Tal tsio rapprsta l adato cotiuo l tpo dlla prssio soora i igrsso. Strutazio Elttroica di Misura - V. Frrari 6

7 Elaborazio di Sgali Aalogici Elaborazio liar, pr spio: Aplificazio Filtraggio liar Filtri passa-basso, passa-alto, passa-bada, liia-bada Elaborazio o liar, pr spio: Raddrizzato Covrsio da siusoid a oda quadra Sgali Priodici U sgal l tpo f(t) è priodico s sist u itrvallo di tpo T tal ch pr ogi N itro: f ( t) = f ( t + NT ) L itrvallo T la frquza f 0 =!/T si dicoo priodo frquza fodatal di f(t) f(t) t -T T 2T 3T I sgali siusoidali (so coso) soo casi particolari di sgali priodici. Strutazio Elttroica di Misura - V. Frrari 7

8 Scoposizio di Fourir U sgal f(t) priodico di priodo T è spriibil co ua soa ifiita (sri) di sgali siusoidali (so coso) avti pulsazio ultipla dlla pulsazio fodatal ω 0 = 2π/T f ( t) = a [ a cos( ω t) + b s(ω t ] ) = La sri si chiaa Sri di Fourir i cofficiti a 0, a, b, si chiaao cofficiti di Fourir rlativi a f(t) Scoposizio di Fourir I cofficiti soo ricavabili da f(t) trait l sguti sprssioi: a a = f t 0 ( ) T T b = 2 dt f ( t) cos(ω t 0 ) T T = 2 f ( t) s(ω t 0 ) T T Tri i cotiua (DC), ovvro valor dio di f(t) su u priodo T dt dt co ω 0 2π = T Strutazio Elttroica di Misura - V. Frrari 8

9 Scoposizio di Fourir U sprssio altrativa dlla sri di Fourir ch ipiga solo cosi è la sgut: f(t) = a 2 A = a + b 0 + A cos( ω0t + Φ ) = I cofficiti di apizza A di fas Φ soo dati da: 2 Φ b = ar ta a I grafici di A Φ i fuzio dlla frquza soo dtti rispttivat spttro dll apizz dll fasi di f(t) Scoposizio di Fourir Strutazio Elttroica di Misura - V. Frrari 9

10 Sgali Quasi Priodici U sgal f(t) coposto dalla soa di sgali siusoidali co divrs frquz ch tra di loro stao i rapporti o razioali si dic, i gral, quasi priodico: f(t) = a + A 0 cos( ω t + Φ ) = L pulsazioi ω o soo ultipl di ssua pulsazio ω 0 prtato f(t), pur ssdo coposto da sgali priodici siusoidali, ha u voluzio tporal ch o si ript ai. Spttro a Righ S f(t) rapprsta u sgal priodico o quasi priodico la scoposizio di Fourir di f(t) produc uo spttro a righ: frquz discrt ch, l caso priodico, soo ultipl dlla fodatal Sri di Fourir A A soo i cofficiti dlla sri di Fourir di f(t) f Strutazio Elttroica di Misura - V. Frrari 0

11 Spttro Cotiuo S f(t) rapprsta u sgal o priodico la scoposizio di Fourir di f(t) produc uo spttro cotiuo : frquz distribuit co cotiuità i u itrvallo (o bada) A (f) Itgral di Fourir A(f) è la trasforata di Fourir di f(t) f Circuiti Liari co Sgali No Siusoidali circuito liar x (t) y(t) Sgali priodici o priodici soo (tra cczioi) spriibili co so di sgali siusoidali (Fourir) Ciascua copot a pulsazio ω ch cotribuisc a forar il sgal di igrsso x(t) vi trattata scodo la H( dl circuito, producdo ua copot i uscita Grazi al pricipio di sovrapposizio dgli fftti, cosguza dlla liarità dl circuito, il sgal di uscita y(t) è spriibil co soa dll suddtt copoti Strutazio Elttroica di Misura - V. Frrari

12 Covrsio Aalogico/Digital Sgali Digitali (o Nurici) Foriscoo ua rapprstazio discrtizzata l tpo quatizzata i apizza dlla quatità fisica ch rapprstao Soo spriibili co fuzioi y(x) dfiit i u itrvallo discrto dlla variabil idipdt x, a valori i u itrvallo discrto l doiio dlla variabil dipdt y. Equivalgoo a tabll o squz di uri Pr spio: E u sgal digital la squza di valori ottuti isurado la tpratura i ua staza ad itrvalli di tpo rgolari di u ora (discrtizzazio l tpo), arrotodado la lttura a C (quatizzazio ll apizza) Strutazio Elttroica di Misura - V. Frrari 2

13 Codifica i Biario I lttroica u sgal digital è tipicat sprsso (codificato) i fora biaria, ossia utilizzado solo du siboli: 0 Ciò è dovuto alla rlativa facilità co cui è possibil ralizzar circuiti sisti lttroici ch aipolao i odo vloc affidabil sgali biari U uro N è spriibil i biario co: N = b 2 b = 0, si chiaa cifra biaria, ovvro BIary digit = BIT Covrsio Aalogico-Digital Il procsso di covrsio AD iplica du oprazioi: discrtizzazio l tpo, capioato (saplig) discrtizzazio ll apizza, quatizzazio (quatizig) valor digital valor aalogico /f s Il sgal capioato l tpo a o quatizzato i apizza (la squza di o ) si dic tpo-discrto t Tpo Valor digital Strutazio Elttroica di Misura - V. Frrari 3

14 Capioato Tora dl Capioato (di Nyquist/Shao): f S > 2 f M f S = frquza di capioato f M = frquza dl sgal Frquza di Nyquist f N : assia frquza dl sgal ch può ssr capioata corrttat f N = f S /2 Frquz dl sgal aggiori di f N causao aliasig f M f S >> 2f M f M f S < 2f M f S Assza di aliasig t f S Prsza di aliasig t Quatizzazio Itrvallo di quatizzazio: apizza dll itrvallo di valori dll igrsso ch vi covrtito i ciascu valor digital i uscita. Dtria la risoluzio di covrsio. Covrsio a 0 bit: risoluzio rifrita al fodo scala di /2 0 = /024 = 9.7X0-4 (Tratto dal catalogo Natioal Istruts) Strutazio Elttroica di Misura - V. Frrari 4

15 Elaborazio di Sgali Digitali I sgali i fora di dati soo laborati da algoriti, ossia da procdur dscritt da istruzioi ch forao u prograa sguito da u laborator (co vari gradi di coplssità) Espi: Aplificazio Mdia obil Calcolo di DFT (Discrt Fourir Trasfor) FFT (Fast Fourir Trasfor) Elaborazio i tpo ral: il tpo di laborazio è trascurabil ai fii dll applicazio Carattristica fodatal di sisti di laborazio digitali è potr cotar sulla orizzazio di dati/sgali Strutazio Elttroica di Misura - V. Frrari 5

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fodamti di lcomuicazioi 5 - SEGNALI DIGIALI E A IMULSI IN BANDA BASE rof. Mario Barra [part 3] Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

PERIFERICHE STANDARD PER SISTEMI EMBEDDED: REGISTRI DI I/O

PERIFERICHE STANDARD PER SISTEMI EMBEDDED: REGISTRI DI I/O 1 SCUZIO DI APPLICAZIOI SU SISTI BDDD PRIFRICH STADARD PR SISTI BDDD: RGISTRI DI I/O TCOLOGI DI COUICAZIO PR SISTI BDDD: ORY APPIG IPLTAZIO DLLA COUICAZIO I SISTI BDDD: ULTIPLXD SHARD BUS SISTA BDDD DI

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s,

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s, OFDM - apputi Modulazio u più portati OFDM (Orthogoal Frqucy Diviio Multiplx) L ida fodamtal dl itma di modulazio OFDM coit llo comporr il fluo di dati da tramttr (R bit/) i flui i paralllo da tramttr

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT)

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT) 3 - rasormata d orr dscrta Dscrt orr rasorm D - Dscrtzzazo dlla sr d orr - Dzo rortà dlla D - D d sgal traslat - U smo d D - ormla d vrso dlla D - Egaglaza d Parsval - D ral 3 - Dscrtzzazo dlla sr d orr

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURZZA RGIMI DI FUNZIONAMNTO DI CIRCUITI LTTRICI: CORRNT CONTINUA SOLO ALCUNI SMPI DI ANALISI DI UN CIRCUITO LTTRICO FUNZIONANTI IN CORRNT CONTINUA APPUNTI DL

Dettagli

Relè allo Stato Solido per il controllo Motori Trifase Modello REC2R

Relè allo Stato Solido per il controllo Motori Trifase Modello REC2R Rlè allo Stato Solido pr il cotrollo Motori Trifas Modllo REC2R Cotrollo lttroico pr motori i CA Commutazio istataa Tr poli co du o tr fasi slzioabili dicazio a ED Du rag di cotrollo: 15-32 VCC, 90-253

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti La chiarazion annual IVA l ottimizzazion dlla gstion di crti L, 13 Marzo 2006 - Assdustria Gnova ASSINDUSTRIA GENOVA Cssion pro soluto di crti Iva Crt Suiss Crt Suiss è lita prsntar a soluzion novativa

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

... a) Lo spettro di un segnale SSB è costituito da... b) Un segnale SSB può essere ottenuto... in una... mediante un... centrato su...

... a) Lo spettro di un segnale SSB è costituito da... b) Un segnale SSB può essere ottenuto... in una... mediante un... centrato su... MODULAZIONE ANALOGICA UNITÀ VERIFICA Copleta: a) Per odulazione lineare si intende la... dello spettro del... intorno alla frequenza... b) La odulazione di apiezza consiste nel... del segnale portante...

Dettagli

Tutori: Giovanni Corradi e Paolo Ciambrone. 1. Analisi nel dominio della frequenza

Tutori: Giovanni Corradi e Paolo Ciambrone. 1. Analisi nel dominio della frequenza INDICE: Filtri RC e CR 1. Analisi nel dominio della frequenza 1.1. Filtro PASSA BASSO 1.2. Filtro PASSA ALTO 1.3. Filtro PASSA ALTO + PASSA BASSO 1.4. Filtri PASSA BASSO IN CASCATA 2. Analisi nel dominio

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di tensione Uscita

Dettagli

IL RESPONSABILE DEL SERVIZIO

IL RESPONSABILE DEL SERVIZIO Rprtorio n. 712/2014 Prot. n. 39292/X/4 dl 19.12.2014 Oggtto: dtrminazioni in ordin al subntro dll Univrsità di Brgamo, mdiant la cssion dl contratto disciplinata dal cod.civ. artt. 1406 sgg., ni contratti

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA DI MEDICINA E CHIRURGIA BANDO DI SELEZIONE PER L AFFIDAMENTO DI INRICHI DIDATTICI NEI CORSI DI LAUREA DELLE PROFESSIONI SANITARIE PER L ANNO ACDEMICO

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale pr tutti i visitatori disponibil tutti i giorni gratuito con il biglitto dlla mostra Contin un album una matita una gomma qusto manual Un manual pr visitar la mostra ossrvar 1 chi è già un po sprto chi

Dettagli

Filtraggio nel Dominio della Frequenza Parte I

Filtraggio nel Dominio della Frequenza Parte I Filtraggio nl Dominio dlla Frqunza Part I Prof. Sbastiano Battiato Introduzion Una funzion priodica può ssr sprssa com somma di sni /o cosni di diffrnti frqunz ampizz Sri di Fourir. Anch una funzion non

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI PROGRAMMAZIONE INDIVIDUALE PIANO DIDATTICO ANNUALE A.S. 2015/2016 Matria: Tcnologi Informatich Class (docnt) 1^ACH - Prof. Musumci

Dettagli

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE Lrk - Lrk nt: LA SOLUZIOnE In COnEnSAZIOnE PEr LE GrOSSE POtEnZE Marilla Progttista Lrk - Lrk Nt Caldaia in acciaio con in acciaio inox 316 Ti, lato a tr giri di fuo, tpratura costant, da quipaggiar di

Dettagli

REPORT APPRENDISTATO

REPORT APPRENDISTATO REPORT APPRENDISTATO Rilascio 9 gnnaio 2015 Aggiornamnto 7 gnnaio 2015 PROGRAMMA POT Pianificazion Trritorial Oprativa Sommario DOCUMENTI ATTUATIVI DELLA MISURA APPRENDISTATO... 3 Tab. 1 Apprndistato pr

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani;

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani; CONVENZIONE FRA IL COMUNE DI CASTEL MAGGIORE, L UNIONE RENO GALLIERA E I COMUNI DI ARGELATO, BENTIVOGLIO, SAN GIORGIO DI PIANO, SAN PIETRO IN CASALE, CASTELLO D ARGILE, PIEVE DI CENTO, GALLIERA, PER LA

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

RIFLESSI DEL NUOVO ASSETTO NORMATIVO FISCALE SULLE SCELTE ORGANIZZATIVE E OPERATIVE DELLE SOCIETA IMMOBILIARI

RIFLESSI DEL NUOVO ASSETTO NORMATIVO FISCALE SULLE SCELTE ORGANIZZATIVE E OPERATIVE DELLE SOCIETA IMMOBILIARI RIFLESSI DEL NUOVO ASSETTO NORMATIVO FISCALE SULLE SCELTE ORGANIZZATIVE E OPERATIVE DELLE SOCIETA IMMOBILIARI Riccardo Bolla Commrcialista in Gnova Milano Stuo Profssionisti CTS Bolla Quaglia Associati

Dettagli

finanza DELLA MERCATVRA

finanza DELLA MERCATVRA rc co ani zza z n rc chi siao Iprnditori Voi. Dlla Mrcatura offr all iprs una consulnza spcializzata in nanza, attività rcial. I nostri Clinti sono ubicati prvalntnt in Eilia-Roagna, hanno un fatturato

Dettagli

Repubblica di Malta - Legge sull identità di genere Traduzione italiana di Roberto De Felice per ARTICOLO29

Repubblica di Malta - Legge sull identità di genere Traduzione italiana di Roberto De Felice per ARTICOLO29 - Rpubblica di Malta - Rpubblika ta' Malta - Rpublic of Malta - LEGGE pr il riconoscimnto la rgistrazion dl gnr di una prsona pr rgolar gli fftti di tal cambiamnto, nonché il riconoscimnto la tutla dll

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

REPORT APPRENDISTATO

REPORT APPRENDISTATO REPORT APPRENDISTATO Rilascio 19 gnnaio 2015 Aggiornamnto 7 gnnaio 2015 PROGRAMMA POT Pianificazion Trritorial Oprativa Sommario DOCUMENTI ATTUATIVI DELLA APPRENDISTATO... 3 Tab. 1 Apprnstato pr la qualifica

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Comunicazione periodica agli iscritti per l anno 2012

Comunicazione periodica agli iscritti per l anno 2012 Comunicazion priodica agli iscritti pr l anno 2012 La prsnt comunicazion, rdatta dal Fondo pnsion PREVIMODA scondo lo Schma prdisposto dalla COVIP, vin trasmssa ai soggtti ch risultano iscritti al 31 dicmbr

Dettagli

APPROFONDIMENTO MANAGEMENT

APPROFONDIMENTO MANAGEMENT APPROFONDIMENTO MANAGEMENT Iniziativa Comunitaria Equal II Fas IT G2 CAM - 017 Futuro Rmoto Approfondimnto LIQUIDAZIONI E VERSAMENTI IVA ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA LIQUIDAZIONE

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

dossier a cura di Alessandro Massari

dossier a cura di Alessandro Massari I REFERENDUM REGIONALI ABROGATIVI, CONSULTIVI, PROPOSITIVI dossir a cura di Alssandro Massari PREMESSA... 2 1. RIMBORSI SPESE... 2 2. REFERENDUM PREVISTI NELLE DISPOSIZIONI STATUTARIE DELLE REGIONI A STATUTO

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

p(e 3 ) = 31 [R. c) e d)]

p(e 3 ) = 31 [R. c) e d)] CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la

Dettagli

Digital Storage Oscilloscope (DSO)

Digital Storage Oscilloscope (DSO) Digital Storage Oscilloscope (DSO) 1 Indice degli argomenti trattati Principio di funzionamento Richiami su campionamento e quantizzazione Campionamento in tempo reale e tempo equivalente Gestione del

Dettagli

La tua guida nella burocrazia

La tua guida nella burocrazia DCOER1621 Ifo Ao VI -. 1 Fbbraio 2014 CGIL Omologato priodico IL SISTEMA SERVIZI Post Italia S.p.A. Spdizio i abboamto postal D.L. 353/2003 (cov. i L. 27/02/2004.46) art. 1, comma 1. GIPA/C/TO/04/2012

Dettagli

COMUNE DI SAN GIOVANNI IN PERSICETO. Provincia di Bologna REP. 16820 CONVENZIONE PER LA REALIZZAZIONE DEL SISTEMA MUSEALE DI TERRED ACQUA

COMUNE DI SAN GIOVANNI IN PERSICETO. Provincia di Bologna REP. 16820 CONVENZIONE PER LA REALIZZAZIONE DEL SISTEMA MUSEALE DI TERRED ACQUA Esnt dall imposta di bollo ai snsi dll art. 16 dlla tablla allgato B) al D.P.R. 26/10/1972 N. 642 succ. modif. COMUNE DI SAN GIOVANNI IN PERSICETO Provincia di Bologna REP. 16820 CONVENZIONE PER LA REALIZZAZIONE

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

"PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010" MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia

PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010 MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia "PREMIO BEST PRACTICE PATRIMOI PUBBLICI 2010" MIMUV Monitoraggio Intrvnti Manutnzion Urbana Vnzia MIMUV: Monitoraggio Intrvnti Manutnzion Urbana Vnzia Contsto patrimonial quo ant "PREMIO BEST PRACTICE

Dettagli

Decoder per locomotive MX61 model 2000 e MX62

Decoder per locomotive MX61 model 2000 e MX62 ZIMO Manual istruzioni dl Dcodr pr locomotiv MX61 modl 2000 MX62 pr il formato di dati NMRA-DCC nll vrsioni MX61R (con connttor mdio) MX61F (connttor piccolo) MX62W (con 7 cavtti snza connttor) MX62R (

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

MODULO: Circuiti elettrici in corrente alternata

MODULO: Circuiti elettrici in corrente alternata Università di Modena e Reggio E. Scuola di Specializzazione per l nsegnamento Secondario cl. A03 ciclo MODULO: Circuiti elettrici in corrente alternata Unità d apprendimento 3: Rappresentazione di grandezze

Dettagli

Affettivita e sessualita

Affettivita e sessualita Affttivita sssualita FNALTÀ: ilirar l ctz idividuali ilirar il ctst rlazial l abit scial di vita. MODUL PRMARA SECONDARA GRADO SECONDARA GRADO 5a: affttivutà sssualità 3 : affttività sssulità ll adlscza

Dettagli

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole.

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole. INTRODUZIONE Il prsnt opuscolo contin una raccolta di indirizzi informazioni sull scuol stranir prsnti a Roma. Pr i contatti si suggrisc di utilizzar gli indirizzi in intrnt. Un sito util é anch www.romschools.org

Dettagli

Laboratori Laurea Scienze Pedagogiche e dell Educazione e Laurea Magistrale in Scienze Pedagogiche a.a. 2015/16

Laboratori Laurea Scienze Pedagogiche e dell Educazione e Laurea Magistrale in Scienze Pedagogiche a.a. 2015/16 Laboratori Scinz Pdagogich dll Educazion in Scinz Pdagogich a.a. 2015/16 L'organizzazion didattica di laboratori pr l'aa 2015-2016 è qulla indicata nll tabll sottostanti. iscrizioni (salvo divrsa indicazion)

Dettagli

ALLEGATO C ELENCO PREZZI UNITARI QUANTITA PREVISTA. Cassonetti Intervento. Cestini Intervento. 231 Interventi. Cassonetti Intervento.

ALLEGATO C ELENCO PREZZI UNITARI QUANTITA PREVISTA. Cassonetti Intervento. Cestini Intervento. 231 Interventi. Cassonetti Intervento. ART. 1 2 3 DESCRIZIONE Svuotaeto autoatizzato di coteitori portarifiuti da 1,1 3 istallati dall'ipresa presso le Stazioi Autostradali, i Posti di Mautezioe ediate ipiego di attrezzatura specifica e secodo

Dettagli

Interventi di risanamento conservativo e adeguamento alle norme

Interventi di risanamento conservativo e adeguamento alle norme Intrvnti risanamnto consrvativo adguamnto all norm SCUOLA SECONDARIA DI PRIMO GRADO G. MAMELI IN VIA BLIGNY La scuola scondaria primo grado G. Mamli, in via Bligny ha sd in ficio ch si sviluppa su tr livlli

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE 100% VERGINE

UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE 100% VERGINE rsin 103 UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE % VERGINE Dalmin rsin UNI EN 12666 U Ø2 S16 PE SN 2 Dalminrs PEbd DN 40 PN 6 PER ACQUA POTABILE - POLIETILENE % VERGINE 103 UNI

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA SETTORE ECONOMICO PROFESSIONALE 1 SETTORE EDILIZIA Procsso Costruzion di difici di opr di inggnria civil/industrial Squnza di procsso

Dettagli

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4 INFO (DF-M) PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 3.06.005. Tempo:.5 ore. È consentito l uso di libri ed appunti propri. ESERCIZIO (0 punti) x(t) g(x) z(t) H(f) H(f) y (t) + + y (t) y(t) H(f) = 4 ( e

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Le soluzioni di elettroliti

Le soluzioni di elettroliti Le soluzioi di elettroliti Elettroliti: sostaze (acidi, basi e gra parte dei sali) che, sciolte i acqua o altri opportui solveti, dao origie a soluzioi capaci di codurre la correte elettrica Elettrolita

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli