Risposta in Frequenza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risposta in Frequenza"

Transcript

1 Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla pulsazio ω, cioè Z= Z(, Y= Y(. Copot R I I Ipdza Z R C /jωc = - j/ωc L jωl Y = Z I V Strutazio Elttroica di Misura - V. Frrari

2 Aalisi di Circuiti i Rgi Siusoidal Tutt la lggi prstat pr circuiti rsistivi (KVL, KCL, Thvi, Norto, ) soo stdibili a circuiti co R, C, L i rgi siusoidal a patto di cosidrar pr ciascu copot la sua ipdza Espio: I s R C V o V O = IS R = jωc R = IS + jωrc Rgi Siusoidal Liarità I circuiti liari cosrvao la fora di sgali siusoidali S all igrsso è applicata ua siusoid a frquza f, all uscita è cssariat prodotta ua siusoid alla stssa frquza Gli uici paratri ch possoo vtualt variar soo apizza fas x(t) = X cos( ωt) circuito liar y(t) = Y cos( ωt + Φ) Strutazio Elttroica di Misura - V. Frrari 2

3 Aalisi l Doiio dlla Frquza Doiio dl Tpo circuito liar x(t) = X cos( ωt) y(t) = Y cos( ωt + Φ) R [...] R[...] X( = X jωt X Y( = X Y circuito liar Doiio dlla Frquza H jφ jωt Y = X jφ Y ( ( = jφ( X ( Y( = Y jφ X( = H( X( jωt Risposta i Frquza H( Rapprsta il coportato di u circuito liar i rgi siusoidal al variar dlla frquza Fuzio di risposta i frquza (FRF) H(: fuzio coplssa dlla pulsazio ω data dal rapporto Y(/X( tra l uscita Y( l igrsso X( trabi rapprstati i fora coplssa (otazio co fasori) Strutazio Elttroica di Misura - V. Frrari 3

4 Risposta i Frquza H( L coplicat quazioi itgro-diffrziali ch lgao igrsso uscita l doiio dl tpo si trasforao, l doiio dlla frquza, i u splic prodotto: Y( = H( X( L ipdza Z( è u caso particolar di FRF, i cui igrsso uscita soo corrt tsio dllo stsso bipolo Diagrai di Bod di H( Modalità di graficar H( scodo l sguti rgol: Diagraa dl odulo H( sprsso i dcibl (db) i fuzio di ω (o di f ) i scala logaritica H db= 20log0 H Diagraa dlla fas H( i gradi o radiati i fuzio di ω (o di f ) i scala logaritica Attravrso la covrsio i db, i prodotti si trasforao i so d è possibil tracciar i diagrai di Bod a partir da blocchi splici ch copogoo H( Strutazio Elttroica di Misura - V. Frrari 4

5 Espio: circuito RC R Vi C Vo R = kω C = 00 F 0-50 SEL>> -00 0d vdb( 2) -90d. 0Hz 0Hz 00Hz. 0KHz 0KHz 00KHz. 0MHz vp( 2) Fr qucy Sgali Aalogici Rapprstazio di Fourir Strutazio Elttroica di Misura - V. Frrari 5

6 Iforazio Sgali Iforazio: i sso gral è idtificabil co il cotuto di u ssaggio trasfrito da u soggtto ad u altro. Sgal: l voluzio dlla gradzza fisica ch supporta iforazio. Gralt è ua dipdza di ua gradzza dal tpo o da u altra gradzza. Sgali Aalogici Prdoo il o dal fatto ch soo aaloghi alla quatità fisica ch rapprstao. Soo spriibili co fuzioi y(x) dfiit i u itrvallo cotiuo dlla variabil idipdt x, a valori i u itrvallo cotiuo l doiio dlla variabil dipdt y. Tipicat, la variabil idipdt x è il tpo t Pr spio: E u sgal aalogico la tsio fuzio dl tpo grata da u icrofoo. Tal tsio rapprsta l adato cotiuo l tpo dlla prssio soora i igrsso. Strutazio Elttroica di Misura - V. Frrari 6

7 Elaborazio di Sgali Aalogici Elaborazio liar, pr spio: Aplificazio Filtraggio liar Filtri passa-basso, passa-alto, passa-bada, liia-bada Elaborazio o liar, pr spio: Raddrizzato Covrsio da siusoid a oda quadra Sgali Priodici U sgal l tpo f(t) è priodico s sist u itrvallo di tpo T tal ch pr ogi N itro: f ( t) = f ( t + NT ) L itrvallo T la frquza f 0 =!/T si dicoo priodo frquza fodatal di f(t) f(t) t -T T 2T 3T I sgali siusoidali (so coso) soo casi particolari di sgali priodici. Strutazio Elttroica di Misura - V. Frrari 7

8 Scoposizio di Fourir U sgal f(t) priodico di priodo T è spriibil co ua soa ifiita (sri) di sgali siusoidali (so coso) avti pulsazio ultipla dlla pulsazio fodatal ω 0 = 2π/T f ( t) = a [ a cos( ω t) + b s(ω t ] ) = La sri si chiaa Sri di Fourir i cofficiti a 0, a, b, si chiaao cofficiti di Fourir rlativi a f(t) Scoposizio di Fourir I cofficiti soo ricavabili da f(t) trait l sguti sprssioi: a a = f t 0 ( ) T T b = 2 dt f ( t) cos(ω t 0 ) T T = 2 f ( t) s(ω t 0 ) T T Tri i cotiua (DC), ovvro valor dio di f(t) su u priodo T dt dt co ω 0 2π = T Strutazio Elttroica di Misura - V. Frrari 8

9 Scoposizio di Fourir U sprssio altrativa dlla sri di Fourir ch ipiga solo cosi è la sgut: f(t) = a 2 A = a + b 0 + A cos( ω0t + Φ ) = I cofficiti di apizza A di fas Φ soo dati da: 2 Φ b = ar ta a I grafici di A Φ i fuzio dlla frquza soo dtti rispttivat spttro dll apizz dll fasi di f(t) Scoposizio di Fourir Strutazio Elttroica di Misura - V. Frrari 9

10 Sgali Quasi Priodici U sgal f(t) coposto dalla soa di sgali siusoidali co divrs frquz ch tra di loro stao i rapporti o razioali si dic, i gral, quasi priodico: f(t) = a + A 0 cos( ω t + Φ ) = L pulsazioi ω o soo ultipl di ssua pulsazio ω 0 prtato f(t), pur ssdo coposto da sgali priodici siusoidali, ha u voluzio tporal ch o si ript ai. Spttro a Righ S f(t) rapprsta u sgal priodico o quasi priodico la scoposizio di Fourir di f(t) produc uo spttro a righ: frquz discrt ch, l caso priodico, soo ultipl dlla fodatal Sri di Fourir A A soo i cofficiti dlla sri di Fourir di f(t) f Strutazio Elttroica di Misura - V. Frrari 0

11 Spttro Cotiuo S f(t) rapprsta u sgal o priodico la scoposizio di Fourir di f(t) produc uo spttro cotiuo : frquz distribuit co cotiuità i u itrvallo (o bada) A (f) Itgral di Fourir A(f) è la trasforata di Fourir di f(t) f Circuiti Liari co Sgali No Siusoidali circuito liar x (t) y(t) Sgali priodici o priodici soo (tra cczioi) spriibili co so di sgali siusoidali (Fourir) Ciascua copot a pulsazio ω ch cotribuisc a forar il sgal di igrsso x(t) vi trattata scodo la H( dl circuito, producdo ua copot i uscita Grazi al pricipio di sovrapposizio dgli fftti, cosguza dlla liarità dl circuito, il sgal di uscita y(t) è spriibil co soa dll suddtt copoti Strutazio Elttroica di Misura - V. Frrari

12 Covrsio Aalogico/Digital Sgali Digitali (o Nurici) Foriscoo ua rapprstazio discrtizzata l tpo quatizzata i apizza dlla quatità fisica ch rapprstao Soo spriibili co fuzioi y(x) dfiit i u itrvallo discrto dlla variabil idipdt x, a valori i u itrvallo discrto l doiio dlla variabil dipdt y. Equivalgoo a tabll o squz di uri Pr spio: E u sgal digital la squza di valori ottuti isurado la tpratura i ua staza ad itrvalli di tpo rgolari di u ora (discrtizzazio l tpo), arrotodado la lttura a C (quatizzazio ll apizza) Strutazio Elttroica di Misura - V. Frrari 2

13 Codifica i Biario I lttroica u sgal digital è tipicat sprsso (codificato) i fora biaria, ossia utilizzado solo du siboli: 0 Ciò è dovuto alla rlativa facilità co cui è possibil ralizzar circuiti sisti lttroici ch aipolao i odo vloc affidabil sgali biari U uro N è spriibil i biario co: N = b 2 b = 0, si chiaa cifra biaria, ovvro BIary digit = BIT Covrsio Aalogico-Digital Il procsso di covrsio AD iplica du oprazioi: discrtizzazio l tpo, capioato (saplig) discrtizzazio ll apizza, quatizzazio (quatizig) valor digital valor aalogico /f s Il sgal capioato l tpo a o quatizzato i apizza (la squza di o ) si dic tpo-discrto t Tpo Valor digital Strutazio Elttroica di Misura - V. Frrari 3

14 Capioato Tora dl Capioato (di Nyquist/Shao): f S > 2 f M f S = frquza di capioato f M = frquza dl sgal Frquza di Nyquist f N : assia frquza dl sgal ch può ssr capioata corrttat f N = f S /2 Frquz dl sgal aggiori di f N causao aliasig f M f S >> 2f M f M f S < 2f M f S Assza di aliasig t f S Prsza di aliasig t Quatizzazio Itrvallo di quatizzazio: apizza dll itrvallo di valori dll igrsso ch vi covrtito i ciascu valor digital i uscita. Dtria la risoluzio di covrsio. Covrsio a 0 bit: risoluzio rifrita al fodo scala di /2 0 = /024 = 9.7X0-4 (Tratto dal catalogo Natioal Istruts) Strutazio Elttroica di Misura - V. Frrari 4

15 Elaborazio di Sgali Digitali I sgali i fora di dati soo laborati da algoriti, ossia da procdur dscritt da istruzioi ch forao u prograa sguito da u laborator (co vari gradi di coplssità) Espi: Aplificazio Mdia obil Calcolo di DFT (Discrt Fourir Trasfor) FFT (Fast Fourir Trasfor) Elaborazio i tpo ral: il tpo di laborazio è trascurabil ai fii dll applicazio Carattristica fodatal di sisti di laborazio digitali è potr cotar sulla orizzazio di dati/sgali Strutazio Elttroica di Misura - V. Frrari 5

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fodamti di lcomuicazioi 5 - SEGNALI DIGIALI E A IMULSI IN BANDA BASE rof. Mario Barra [part 3] Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

... a) Lo spettro di un segnale SSB è costituito da... b) Un segnale SSB può essere ottenuto... in una... mediante un... centrato su...

... a) Lo spettro di un segnale SSB è costituito da... b) Un segnale SSB può essere ottenuto... in una... mediante un... centrato su... MODULAZIONE ANALOGICA UNITÀ VERIFICA Copleta: a) Per odulazione lineare si intende la... dello spettro del... intorno alla frequenza... b) La odulazione di apiezza consiste nel... del segnale portante...

Dettagli

Congelatori Orizzontali in Classe A+, A++ e A -60%

Congelatori Orizzontali in Classe A+, A++ e A -60% Cogelatori Orizzotali i Classe A+, A++ e A -60% Modello: GTP 6 Valvola StopFrost I cogelatori orizzotali Liebherr della serie GTP e GTS soo dotati del sistea StopFrost. Questa valvola riduce la forazioe

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s,

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s, OFDM - apputi Modulazio u più portati OFDM (Orthogoal Frqucy Diviio Multiplx) L ida fodamtal dl itma di modulazio OFDM coit llo comporr il fluo di dati da tramttr (R bit/) i flui i paralllo da tramttr

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Inverter stand-alone Kaco Il nuovo inverter ad onda sinusoidale

Inverter stand-alone Kaco Il nuovo inverter ad onda sinusoidale Ivrtr stad-alo Kaco Il uovo ivrtr ad oda siusoidal Foritura idipdt di rgia I uovi ivrtr ad oda siusoidal soo idali pr l'uso i ar dov o è prst o o è affidabil la rt lttrica pubblica. Covrtdo la corrt cotiua

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

POLITECNICO DI MILANO ANALISI E SPERIMENTAZIONE DEI MODELLI DI SIMULAZIONE DEL TRAFFICO APPLICATI AL CASO DELLA METROTRANVIA MILANO-SEREGNO

POLITECNICO DI MILANO ANALISI E SPERIMENTAZIONE DEI MODELLI DI SIMULAZIONE DEL TRAFFICO APPLICATI AL CASO DELLA METROTRANVIA MILANO-SEREGNO POLITECNICO DI MILANO Scuola di Iggria Civil, Ambital Trritorial Corso di Laura Magistral i Iggria Civil ANALISI E SPERIMENTAZIONE DEI MODELLI DI SIMULAZIONE DEL TRAFFICO APPLICATI AL CASO DELLA METROTRANVIA

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT)

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT) 3 - rasormata d orr dscrta Dscrt orr rasorm D - Dscrtzzazo dlla sr d orr - Dzo rortà dlla D - D d sgal traslat - U smo d D - ormla d vrso dlla D - Egaglaza d Parsval - D ral 3 - Dscrtzzazo dlla sr d orr

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURZZA RGIMI DI FUNZIONAMNTO DI CIRCUITI LTTRICI: CORRNT CONTINUA SOLO ALCUNI SMPI DI ANALISI DI UN CIRCUITO LTTRICO FUNZIONANTI IN CORRNT CONTINUA APPUNTI DL

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli