Corso di Fondamenti di Telecomunicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fondamenti di Telecomunicazioni"

Transcript

1 Coro di Fodamti di lcomuicazioi 5 - SEGNALI DIGIALI E A IMULSI IN BANDA BASE rof. Mario Barra [part 3] Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici di lia pttri Codici di lia iari pricipali codici di lia iari pttri di potza di codici di lia iari codifica diffrzial Codici di lia multilivllo pttro di potza di gali NRZ polari multilivllo fficiza pttral

2 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] ramiio di gali aalogici digitali Sgal aalogico Sorgt Aalogica AM CM Sgal a impuli Sgal CANALE 000 Sorgt Biaria 000 Sorgt Digital Squza di imoli 000 Codificator multilivllo Squza di imoli Codificator di lia 3 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici di lia pttri Codic di lia iario: formato di galazio rial pr rapprtar i livlli 0 grati da: Sorgti iari Covrtitori A/D com ad mpio il CM Codici di lia iari più diffui: za ritoro a zro (NRZ - No Rtur to Zro) codifica uipolar NRZ codifica polar NRZ codifica Machtr NRZ co ritoro a zro (RZ - Rtur to Zro) codifica polar RZ codifica ipolar RZ (AMI)

3 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Formati di alcu galazioi iari o atipodal 5 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici di lia iari Sgalazio uipolar: Simolo --> +A Simolo 0 --> 0 Chiamata ach o-off kyig UNIOLARE Sgalazio polar: Simolo --> +A Simolo 0 --> -A Chiamata ach galazio atipodal OLARE 6 3

4 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici di lia iari Sgalazio ipolar o pudo-traria Simolo --> livllo ch altra di volta i volta tra +A -A Simolo 0 --> 0 Chiamata ach AMI (Altrat Mark Ivrio) BIOLARE 7 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici di lia iari Sgalazio Machtr: Simolo --> uccio di du impuli +A -A, di durata pari a mtà it Simolo 0 --> uccio di du impuli -A +A, di durata pari a mtà it Chiamata ach plit-pha o i-pha 8

5 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Carattritich di u codic di lia idal Aza di accoppiamto i cotiua: S u codificator di lia gra u gal co valor mdio o ullo, i dic ch prta u accoppiamto i cotiua. I tal cao o pooo r utilizzati circuiti accoppiati i altrata Matimto dlla icroizzazio orgt/dtiazio: il codic coti i é iformazioi riguardo alla tmporizzazio di it (facilità di trazio dl clock) lugh quz di 0 o di o cotituicoo u prolma Baa proailità di rror: i dcodificatori i riczio dovrro forir aa proailità di rror ach i prza di rumor di ISI (itrfrza itrimolica) dipd ach dalla forma dll impulo Bada: dovr r la miima poiil Capacità di rivlazio di rrori: dovr forir la capacità di rivlar a riczio gli rrori 9 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Alcui vataggi vataggi di codici di lia iari Uipolar NRZ facilmt grata da circuiti co igola tio di alimtazio (+5V di circuiti L) ma richid u accoppiamto i cotiua (circuitria co ripota i frquza fio a 0 Hz), poiché il rlativo gal ha ua compot cotiua divra da zro olar NRZ o richid accoppiamto i cotiua, purché il gal commuti frqutmt tra i livlli 0, purché il umro di 0 iviati ia mdiamt ugual al umro di richid circuiti ad alimtazio dual (+ - itoro allo 0) Machtr prta ua compot a frquza ulla ch è mpr 0, idipdtmt dalla quza dati ma richid ua ada di frquza doppia riptto ai circuiti NRZ 0 5

6 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] r i codici di lia Spttri di potza di codici di lia iari Calcolo dllo pttro di potza: Approccio dtrmiitico ( è ota a priori la forma d oda dl gal) Approccio tatitico ( oo ot olo l tatitich dl gal) Si può dimotrar ch: La dità pttral di potza pr u gal di cui è ota la fuzio di autocorrlazio è: F( f ) ( f ) + = k = R( k) j πkf : itrvallo di imolo = l pr galazio iaria pr galazio multilivllo Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttri di potza di codici di lia iari dov: f (t) F( f ) impulo lmtar r mpio, pr formattazio co impulo rttagolar: F dll impulo lmtar t f ( t) = Π R(k) I i fuzio di autocorrlazio dl gal w(t), prima dll applicazio dll impulo I ( k) = E a a = a a { k} ( k ) i R + + i= Numro di poiili coppi di imoli a ditaza k proailità ch il prodotto a a +k auma l i-imo valor poiil i 6

7 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttri di potza di codici di lia iari Dimotrazio F( f ) ( f ) + = k = R( k) j πkf Sappiamo ch la fuzio dità pttral di potza pr u proco alatorio è dfiita com: { X ( f ) } E ( f ) = lim Nl otro cao: = I + N X ( f ) a f ( t ) = F( f ) = N + j πft dov: X ( f ) = I{ x ( t) } = x( t) dt Allora aiamo: f ) = lim N + N = N N ( jπf F( f ) E ( ) a N + = N a j πf = ( N + ) -N N 3 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] [Solo pr i 9 crditi] ( f ) = F( f ) ( f ) = F( f ) Spttri di potza di codici di lia iari Dimotrazio lim N lim N ( N + ) ( N + ) N N = N m= N N N E = N k = N f ) = lim N j πf ( m ) { a a } E m jπ { a } fk a+ k N ( jπf F( f ) E ( ) a N + = N oiamo m=+k N j πfk j πfk r N E{ aa+ k } R( k) Quidi: lim ( ) N k = N + = o dipd da N = + ( N + ) ( ) N N N + = N k = N + k = k = F( f ) ( f ) + = R( k) k = j πkf 7

8 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ uipolar Livlli poiili pr gli a : +A, 0 Suppoiamo ch iao quiproaili, ch i dati iao tatiticamt idipdti pr k = 0 ( A, A),( 0,0) I = pr k 0 ( A, A),( 0,0),( A,0),( 0, A) I = oiili coppi di imoli R( 0) = ( a a ) i = A A = A i i= R( k) = ( a a+ k ) i = A A A + A 0 = A i k 0 i= 5 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ uipolar Quidi: A R( k) = A r impuli NRZ rttagolari: t f t) = Π = k = 0 k 0 F ( F( f ) = ic( f ) F( f ) j πkf f R k uipolar NRZ( ) + ( ) ( ) = + k = + jπkf A ic f k k = 0 A A = ( ) + + ( ) = + + j πkf ic f ic f δ f k = = 6 8

9 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ uipolar uipolar NRZ A = ( ) + + ( f ) ic f δ f = uipolar NRZ A = ( ) + ( ) + A ( f ) ic f ic f δ f = iamo coto ch: 0 ic( f ) = f = f = 0, 0 δ f = 0 f pr f multipl di / i ha: ic ( f ) = 0 uipolar NRZ( f ) = 0 pr f =0 ic ( f ) = + δ f = δ ( f ) = uipolar NRZ A (0) = [ + δ ( f )] 7 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ uipolar uipolar NRZ A = ( ) + ( ) + A ( f ) ic f ic f δ f = uipolar NRZ ( f ) = A [ ic ( f ) + δ ( f )] Codizio di ormalizzazio di u gal NRZ uipolar = + ( f ) df = R (0) = Rww(0) = = A A = [ ( f ) ic ( f )] ( f ) = δ + A = codizio di ormalizzazio di u gal NRZ uipolar 8 9

10 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ uipolar ( f ) = δ ( f ) + ic ( f ) NRZuipolar [ ] R = Svataggio: prco di potza lla tramiio dlla compot cotiua Vataggio: facilità di grazio dl gal co circuiti lttroici ad alimtazio igola 9 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ polar Livlli poiili pr gli a : +A, -A Suppoiamo ch iao quiproaili, ch i dati iao tatiticamt idipdti pr k = 0 ( A, A),( A, A) I = pr k 0 ( A, A),( A, A),( A, A),( A, A) I = A ( k) = 0 k = 0 k 0 oiili coppi di imoli cocutivi R ( f ) = A ic ( f ) polar NRZ Codizio di ormalizzazio di u gal NRZ polar A = 0 0

11 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ polar polar NRZ ( f ) = A ic ( f ) R = Svataggio: compoti o tracuraili ll itoro dlla frquza ulla Vataggi: Facilità di grazio dl gal, ach co circuiti lttroici ad alimtazio dual Alta routzza agli rrori Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic RZ uipolar R ww Livlli poiili pr gli a fuzio di autocorrlazio com l NRZ uipolar Durata dll impulo: A k = 0 ( k) = A k 0 F ( f ) = [ ic( f ) ] Aalogamt a prima i trova: uipolar RZ A = + + f ( f ) ic δ f 6 = Codizio di ormalizzazio di u gal RZ uipolar A = = = Rw(0) w = A

12 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic RZ uipolar uipolar RZ + = + ( ) + f f f ( f ) ic ic δ f ic δ f R = = dipari Svataggi: la ada al primo ullo è doppia riptto al cao NRZ, dato ch l impulo a ha durata mtà la compot cotiua dllo pttro è acora o tracurail ll itoro di f=0 oo cari 3 db i più riptto al formato polar pr forir la ta proailità di rror a parità di dituro Vataggio: compot dicrta pr f=r ch prmtt la icroizzazio di clock 3 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic RZ ipolar (AMI) R Livlli poiili pr gli a : +A, -A, 0 Suppoiamo ch iao quiproaili, ch i dati iao tatiticamt idipdti Durata dll impulo: A k = 0 (, ) (,0 ) ( 0,) ( 0,0) ( + A, A) ( ± A,0) ( 0, ± A) ( 0,0) A F ( f ) = [ ic( f ) ] ( k) = k = 0 k > (, ) (,0 ) ( 0,) ( 0,0) ( ± A, ± A) ( ± A,0) ( 0, ± A) ( 0,0) Aalogamt a prima i A trova: ipolar RZ( f ) = ic ( f ) i ( πf ) ipolar Codizio di ormalizzazio di u gal RZ ipolar (com l RZ uipolar, dato ch diffricoo di u go) A =

13 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic RZ ipolar ( f ) = ic ( f ) i ( πf ) ipolar RZ R = Svataggi: Il ricvitor dv ditigur tra 3 livlli, aziché tra. Quidi la proailità di rror è più grad di u fattor.5 riptto ai codici prcdti, richid quidi all icirca 3 db i più a parità di dituro 5 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic RZ ipolar ( f ) = ic ( f ) i ( πf ) ipolar RZ R = Vataggi: Il codic ipolar ha u ullo i cotiua, quidi il itma di tramiio può uar circuiti accoppiati i altrata È facil trarr u gal di tmporizzazio, covrtdo quto gal i u RZ uipolar attravro raddrizzamto a doppia mioda I gali ipolari hao u itrica capacità di rivlar rrori di tramiio, poiché u rror igolo provoca ua violazio dlla lgg dll altraza 6 3

14 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ Machtr È com la NRZ polar, ma co impulo pari a: t + t f ( t) = Π Π R ww A ( k) = 0 k = 0 k 0 F com pr l NRZ polar jπ F( f ) = ic( f ) ic( f ) = j ic( f ) i( π f ) Aalogamt a prima i trova: jπ Machtr NRZ ( f ) = A ic ( f ) i ( πf ) Codizio di ormalizzazio di u gal NRZ Machtr A = 7 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Spttro di potza dl codic NRZ Machtr Machtr NRZ ( f ) = ic ( f ) i ( πf ) R = Svataggio: La ada al primo ullo è doppia riptto al cao dl formato ipolar Vataggi: Nullo ll origi (o ha compot cotiua) Lugh trigh di 0 o cauao prdita dl icroimo 8

15 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codic di lia NRZ polar multilivllo Covrio (gal iario) --> (gal multilivllo) L = l livlli Empio: codifica DAC a 3 it 9 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codic di lia NRZ polar multilivllo S coidriamo ad mpio, il gut gal di igro iario: ottrrmo il gut gal polar NRZ co L=8 livlli: Vlocità di imolo R D = l Limit ifrior di ada B if = D 30 5

16 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Dità pttral di potza pr gali NRZ polari multilivllo Coidriamo l mpio di L= 3 =8 livlli Fuzio di autocorrlazio 8 8 ( ) = = a k 0 i i ( ) = R( k) i= a = = i 8 i = 8 0 k 0 F( f ) w ( f ) = ( + 0) pr u impulo rttagolar di durata = 3 w ( ) = f 63 ic 3 ( f ) = ic( f ) 3 ic( f ) F( f ) = ( 3 ) ic ( 3 f ) F( f ) = 3 3 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Dità pttral di potza pr gali NRZ polari multilivllo I gral, pr L= l livlli: w ( ) = f 63 ic 3 ( f ) w ( f ) = K ic ( l f ) Bada al primo ullo: B ull = R l R = dov: K = l = R(0) : potza trama 3 6

17 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Efficiza pttral Dfiizio: L fficiza pttral di u gal digital è pari al umro di it al codo di iformazio ch pooo r trami lla ada di u Hz: R η = B ( it/c) Hz Oittivo pr la progttazio di u itma di tlcomuicazioi: cglir il codic di lia ch maimizza η L fficiza pttral è ach limitata dal rumor di caal: η max C S = = log + B N Formula di Shao Efficiza pttral dl codic NRZ polar a L= l livlli co impulo formattator a IMULSO REANGOLARE: R R η = = η =l ( it/c) Hz B R l 33 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Riaumdo Efficiza pttral di alcui codici di lia iari Impulo formattato a IMULSO REANGOLARE Bada Coidrata: Bada al primo ullo 3 7

18 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codifica diffrzial Dcrizio dl prolma: Nlla tramiio di dati riali, può vrificari l ivrio di go di dati trami (ad mpio, pr camio di fili dl doppio tlfoico quado i ua u codic di lia polar) Soluzio: codifica diffrzial: dov: d :dati di igro :dati trami :omma modulo I fa di dcodifica: = d ~ d ~ (XOR) ~ = = olo c è diffrza Ach i cao di ivrio di valori: dato ch tramtto olo l diffrz, la quza vi mpr ricotruita corrttamt 35 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Empio di codifica diffrzial = d ~ d ~ ~ = 36 8

19 Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Sitma di codifica diffrzial 37 9

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s,

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s, OFDM - apputi Modulazio u più portati OFDM (Orthogoal Frqucy Diviio Multiplx) L ida fodamtal dl itma di modulazio OFDM coit llo comporr il fluo di dati da tramttr (R bit/) i flui i paralllo da tramttr

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

Risposta in Frequenza

Risposta in Frequenza Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni 5 - EGALI DIGITALI E A IMPULI I BADA BAE Prof. Mario Barbera [parte ] Codifica La fase di codifica prevede che venga fatta una associazione tra il livello del segnale

Dettagli

FORMULARIO CAPITOLO 5 TRASMISSIONE DIGITALE IN BANDA BASE

FORMULARIO CAPITOLO 5 TRASMISSIONE DIGITALE IN BANDA BASE o. Giovai Schma FORMULARIO CAIOLO 5 RASMISSIOE DIGIALE I ADA ASE SVILUO SU ASE OROGOALE w() t a ϕ () t * dov a w() t ϕ ()dt t K a * ( ϕ m ( a ϕ dt K δ Rapptazio di u gal digital i u itvallo [, ] com comiazio

Dettagli

Risposta al gradino di un circuito RLC

Risposta al gradino di un circuito RLC Ripota al gradio di circito RL Si motra i fig. il circito i am. Fig. ircito RL ri da valtar pr tr divri valori di R. Idichiamo co Vi la tio di igro dl grator co V la tio di cita prlvata l codator. Alla

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

Sintesi formule di calcolo e procedimenti (con esempi di problemi) 2 s : ˆ σ

Sintesi formule di calcolo e procedimenti (con esempi di problemi) 2 s : ˆ σ Siti formul i calcolo procimti (co mpi i problmi Mia campioaria Variaza campioaria - Stima lla variaza lla popolazio S i cooc la variaza campioaria Dai ati grzzi: : ( ( Fai lla vrifica i ipoti formular

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

Esercitazione 2: Ottimizzazione e Tornio

Esercitazione 2: Ottimizzazione e Tornio Erciazio 2: Oimizzazio orio Oimizzazio di roci di lavorazio r aorazio di rciolo Obiivo: riri: Procdra: Paramri: cla di aramri di aglio rlaivi a a macchia o a orazio r oimizzar coi rodzio. miimo coo, maima

Dettagli

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHINE ELETTRICHE Macchin Sincron Stfano Pator Dipartimnto di Inggnria Architttura Coro di Elttrotcnica (IN 04) a.a. 2012-1 Introduzion I gnratori i motori incroni ono formati da du parti: Induttor (part

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT 2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT Mntr il 1 principio rapprnta la conrazion dll nrgia, il 2 principio riguarda la maima quantità di calor ch può r conrtita in laoro. Alcun dfinizioni: Proco

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Gli elettroni nei cristalli

Gli elettroni nei cristalli Gli lttroi i cristalli sio i ua disio: VVa fuzio d oda lttroica: dv risolvr l quazio di Schrödigr i rsza di u otzial riodico co si risolv il robla r il sigolo lttro: fi fuzio d oda ch riscchia la riodicità

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coo di Fodamti di lcomuicazioi 7 IFLUEZA DEI DISURBI SULLE PRESAZIOI DEI SISEMI DI COMUICAZIOE Pof. Maio Baba [pat 3] Fodamti di LC - Pof. M. Baba Sitmi di tamiio biaio Cchmo ua pocdua gal p il calcolo

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA ESERCIZI SUI MOTORI ALTERNATII A COMBUSTIONE INTERNA U oor alraivo co cilidri a ua cilidraa oal di 0,999 d, u rapporo cora diaro di 0,9 fuzioa a ri a 000 iri/i. riar la CORSA la ELOCITÀ MEIA EL PISTONE

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

Lo strato Fisico Parte 2

Lo strato Fisico Parte 2 3/3/ Fracsca Cuomo Lo srao Fisico Par Rapprsazio di sgali orma dl campioamo Sgal aalogico Sgal mpo-coiuo adamo l mpo di ua gradzza prurbaa x ( x (, < < Esmpi Voc, mpraura ambi, musica, lvisio, sio d uscia

Dettagli

Lampada ad arco ad alta pressione di xeno

Lampada ad arco ad alta pressione di xeno Sorg Lampada ad arco ad ala prssio di xo L lvaa sio applicaa agli lrodi provoca ua corr. Il flusso di lroi, urado gli aomi dl gas, li ioizza o li ccia. Il dcadimo o la ricombiazio io-lro grao l missio

Dettagli

Studio 24 scan control scan control. professional light desk user s manual rel. 1.41

Studio 24 scan control scan control. professional light desk user s manual rel. 1.41 Studio ca cotrol ca cotrol profioal light dk ur maual rl.. Avvrtz Grali Lggr atttamt l avvrtz cotut l prt librtto, i quato foricoo importati idicazioi riguardati la icurzza di itallazio, d uo mautzio.

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

4SQSHSVM 6MGGLM MR PMGSTIRI &YSRE JSRXI HM ZMXEQMRE % I ' 4EVXI H M TSV^MSRM QMRMQI H M JVYXXE I ZIVHYVI GSRWMKPMEXI EP KMSVRS -XEPMERM. potassio.

4SQSHSVM 6MGGLM MR PMGSTIRI &YSRE JSRXI HM ZMXEQMRE % I ' 4EVXI H M TSV^MSRM QMRMQI H M JVYXXE I ZIVHYVI GSRWMKPMEXI EP KMSVRS -XEPMERM. potassio. Cppla è u azida familiar italiaa, c ua luga tradizi lla prduzi distribuzi di prdtti alimtari di qualità. La stra tradizi risal al 1908 quad la famiglia Cppla iiziò la cmmrcializzazi di prdtti alimtari

Dettagli

Soluzione Compito 19/09/2007

Soluzione Compito 19/09/2007 Soluzo omo 9/9/7 Prmo uo: alcolamo la cocrazo d carch rch a 53 K (8 : ( T G ( T ( T ( T, do: T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,8 5, 3 3 T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,,93 3 G (T,53,3 - T S ha rao:,53,3 53

Dettagli

Lezione 10. Prestazioni statiche dei sistemi di controllo

Lezione 10. Prestazioni statiche dei sistemi di controllo zion Prtazioni tatich di itmi di controllo Error a tranitorio aurito prtazioni tatich di un itma di controllo fanno rifrimnto al uo comportamnto a tranitorio aurito oia alla ituazion in cui il itma dopo

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO IT LG ha introdotto NON 2 dotato di tcnologia CELLO, una clla di nuova conczion ch migliora l prstazioni l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO Cll Connction (Connssion Clla)

Dettagli

Inverter stand-alone Kaco Il nuovo inverter ad onda sinusoidale

Inverter stand-alone Kaco Il nuovo inverter ad onda sinusoidale Ivrtr stad-alo Kaco Il uovo ivrtr ad oda siusoidal Foritura idipdt di rgia I uovi ivrtr ad oda siusoidal soo idali pr l'uso i ar dov o è prst o o è affidabil la rt lttrica pubblica. Covrtdo la corrt cotiua

Dettagli

Variabili aleatorie una variabile aleatoria ( v.a.)

Variabili aleatorie una variabile aleatoria ( v.a.) Varabl alator ua varabl alatora ( v.a.) ua applcazo ch assoca u umro ral [0,] ad og rsultato dllo spazo dgl vt gral og sprmto alatoro carattrzzabl tramt ua varabl alatora dscrta o cotua Varabl alator dscrt:

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento La mda omtrca Pr ua dstrbuzo utara d u carattr quattatvo d trm, la mda omtrca è dfta com: K usata pr sttzzar dat ch ha sso moltplcar fra loro o pr rassumr dstrbuzo ch hao adamto omtrco S applca pr dtrmar

Dettagli

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del Soluzion rcizio L quazioni dinamich dl itma ono: art lttrica: di v Ri + L + ω dt dov ω è la forza controlttromotric. art mccanica: dω J ϑ βω + i dt dϑ ω dt dov Jl M è il momnto d inrzia dl itma a du ma.

Dettagli

La distribuzione Normale

La distribuzione Normale Matatca Fca cla 5G La dtrbuzo oral Fracco Fotaa otaa@lcorrar.t paga La dtrbuzo oral Mda dvazo tadard Codrao rultat pr ua varabl alatora. Il valor do ott co la da arttca d valor qut oo ugualt rqut ugualt

Dettagli

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift.

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift. /drift /diff qµ ε d /drift /diff qµ ε d all quilibrio: ma / drift / drift / diff / diff 1 V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

TRIESTE - via Fabio Severo, 14/B CORSO DESTINATARI DATA ORA SEDE. UDINE - Sede: P.Le XXVI Luglio, 9 CORSO DESTINATARI DATA ORA SEDE

TRIESTE - via Fabio Severo, 14/B CORSO DESTINATARI DATA ORA SEDE. UDINE - Sede: P.Le XXVI Luglio, 9 CORSO DESTINATARI DATA ORA SEDE CALENDARIO CORSI SICUREZZA DATORI DI LAVORO/RSPP AGGIORNAMENTI- TRIESTE UDINE Corsi BASE pr basso rischio (16 or) TRIESTE - via Fabio Corso pr datori di rischio (16 or) ( Corso pr datori di rischio (16

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma 1) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione Si può arrivar allo sviluppo i sri di Fourir ach pr sgali apriodici? RASFORMAA DI FOURIER rasormaa di Fourir: diizio Dao u sgal apriodico, sso può ssr scrio mdia la ormula dov d d L du quazioi si chiamao

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Tensioni variabili nel tempo e Oscilloscopio

Tensioni variabili nel tempo e Oscilloscopio ensioni variabili nel tempo e Oscilloscopio RIASSUNO: ensioni variabili e periodiche Ampiezza, valor medio, ed RMS Generatori di forme d onda ensioni sinusoidali Potenza : valore medio e valore efficace

Dettagli

FORMULARIO CAPITOLO 3 V.06 09/06/2005

FORMULARIO CAPITOLO 3 V.06 09/06/2005 FORMULARIO CAPITOLO 3 V.6 9/6/5 PULE-AMPLITUDE MODULATIO (PAM Campioameto aturale Campioameto itataeo CAMPIOAMETO ATURALE w w( t ( t + t k T (Treo di impuli ciacuo co durata τ Π k τ T B (Frequeza di campioameto

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 14 Lezione 15

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 14 Lezione 15 Argomnto 8 ion 4 ion 5 Francca Apollonio Dipartimnto nggnria Elttronica E-mail: in di tramiion Formalimo utiliato pr lo tudio di fnomni di propagaion: toria dll lin di tramiion a toria dll lin di tramiion

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

all equilibrio: = n diff drift

all equilibrio: = n diff drift ma d q d q diff drift diff drift ε µ ε µ all quilibrio: drift drift diff diff V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta da s vrso V

Dettagli

L elevata tensione applicata agli elettrodi provoca una corrente. Il flusso di elettroni, urtando gli atomi del gas, li ionizza o li eccita.

L elevata tensione applicata agli elettrodi provoca una corrente. Il flusso di elettroni, urtando gli atomi del gas, li ionizza o li eccita. Sorg Lampada ad arco ad ala prssio di xo L lvaa sio applicaa agli lrodi provoca ua corr. Il flusso di lroi, urado gli aomi dl gas, li ioizza o li ccia. Il dcadimo o la ricombiazio io-lro grao l missio

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Disribuzio di probabilià di di oisso Diizio i i La disribuzio di oisso dscriv procssi casuali rari co mdia diia. Si cosidri u vo casual ch si rip u cro umro di vol, o issao a priori, co ua rquza assolua

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

SISTEMA DI SICUREZZA ABB

SISTEMA DI SICUREZZA ABB SISTEMA DI SICUREZZA ABB Fium vno 17 Fbbraio 2014 1 CARATTERISTICHE COMPONENTI ABB Cnral di comando conrollo DomuLink GSM DTL0301 crificaa com cnral di icurzza pr impiani anifuro nza fili; ripond a u l

Dettagli

Regime finanziario dell interesse semplice: formule inverse

Regime finanziario dell interesse semplice: formule inverse Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Il modello relazionale dei dati e stato introdotto da Codd. nel 1970 (E.F. Codd, \A relational model of data for large

Il modello relazionale dei dati e stato introdotto da Codd. nel 1970 (E.F. Codd, \A relational model of data for large Modello Relazionale Il modello relazionale dei dati e stato introdotto da Codd nel 1970 (E.F. Codd, \A relational model of data for large shared data banks", Comm. of the ACM, 1970) ed e basato sul concetto

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

LISTE, INSIEMI, ALBERI E RICORSIONE

LISTE, INSIEMI, ALBERI E RICORSIONE LISTE, INSIEMI, ALBERI E RICORSIONE Settimo Laboratorio LISTE E RICORSIONE SVUOTALISTA: CONSIDERAZIONI Per svuotare una lista si devono eliminare i singoli nodi allocati con la malloc... Come fare? Per

Dettagli

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova ELETTRONIC per Ingegneria Biomedica Prof. Sergio Cova BLOCCO MPLIFICTORE v i È un circuito integrato v i v v v i quindi v i mplificatore ideale resistenza di ingresso corrente assorbita dagli ingressi

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Come deve essere fatto il blocco G affinche il sistema sia di tipo K?

Come deve essere fatto il blocco G affinche il sistema sia di tipo K? # CONDIZIONI SULLE TRASFERENZE ASSOCIATE A PARTI DEL SISTEMA AFFINCHE QUESTO SIA DI TIPO # Fino a ora abbiao ainato la F. i T. W(, print globalnt la rlazion ingro-ucita, nza tnr conto lla truttura fback

Dettagli