c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} ="

Transcript

1 Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta lttroica soo scaditi da u procsso di Poisso co itsità µ.2, fissado l uità di tmpo ugual ad u miuto. Pr ciascu arrivo, c è la possibilità ch si tratti di u mssaggio idsidrato. Valutiamo ch ciò si vrifica co probabilità θ 8 ch vi sia idipdza stocastica fra ciò ch accad pr mssaggi divrsi. Pr t >, idichiamo rispttivamt co N t co M t il umro total di mssaggi d il umro di mssaggi idsidrati arrivati tro il tmpo t, cotati a partir dal tmpo. a Calcolar la probabilità P{N 2 36, N 8 8} b Calcolar la probabilità codizioata c Calcolar la probabilità P{M 2 6 N 2 36} P{M 2 6}. a I virtù dlla proprità di icrmti idipdti di procssi di Poisso, possiamo scrivr P{N 2 36, N 8 8} b P{N 2 36}P{N 8 8 N 2 36} P{N 2 36}P{N 6 2} ! 2! 36! 2! P{M 2 6 N 2 36} θ 6 θ 3 6

2 c Dcompodo l vto M 2 6 lla forma M 2 6 M 2 6 N 2 d ossrvado ch, pr 5, sia ha ovviamt possiamo scrivr PM 2 6 PM 2 6 M 2 6 N 2, 6 P M 2 6 N 2 P N 2 P M 2 6 N 2. 6 Quidi PM ! ! ! ! k 2 k k! !. Di fatto risulta ch la variabil alatoria M 2 sgu ua distribuzio di Poisso di paramtro λ 3, più i gral, si può dimostrar ch il procsso di cotggio {M t } t risulta ssr u procsso di Poisso di itsità.2 8. Esrcizio 2. Sia X, X 2,... ua succssio di variabili alatori idipdti d idticamt distribuit, co distribuzio uiform sull itrvallo,. Utilizzado l approssimazio gaussiaa forita dal Torma di Lidbrg- Lévy, calcolar lim P j X j Il valor attso dll variabili X, X 2,... è ovviamt ugual ad 2. Il momto scodo è dato da x 2 dx 3 2

3 quidi la variaza è ugual a 2. Duqu, pr N fissato, risulta j E X j 2, V ar j X j 2. Possiamo scrivr j X j Z, dov Z risulta ssr ua variabil alatoria di valor attso, di variaza uitaria la cui distribuzio di probabilità covrg alla gaussiaa stadard i virtù dl torma di Lidbrg-Lévy. Si ha quidi P j X j P Z P.282 Z.282 lim P j X j 2Φ idicado al solito co il simbolo Φ la fuzio di ripartizio dlla gaussiaa stadard. Dall rlativ tavol ottiamo quidi Φ lim P j X j Esrcizio 3.{X },,... è ua cata di Markov sullo spazio dgli stati E {, 2, 3, } co matric dll probabilità di trasizio dtrmiata dall sguti codizioi p i,i, pr i E; p,2 p,3 p 2 2, p 23 ; p 3 2, p 32 ; p 2 3, p 2 p 3 6 a Dtrmiar la distribuzio ivariat pr la cata, motivado sistza d uicità. b Calcolar lim P X, X + 2, X +2 3, X +3 3

4 lim P X, X + 3, X +2 2, X +3 Motivar commtar il risultato ottuto c Pr θ, 3, si cosidrio l matrici di trasizio dlla forma P θ θ θ 2θ 2θ 3θ 2θ 3θ 2θ 2 5θ 3θ 2 2 5θ 3θ 2 2 5θ Pr θ, 3 dtrmiar la distribuzio ivariat di P θ, pr la cata di Markov co tal matric di trasizio, dimostrar ch val l uguagliaza. lim P X, X + 2, X +2 3, X +3 lim P X, X + 3, X +2 2, X +3. a I bas ai dati foriti, si ha ch la matric dll probabilità di trasizio è data da La cata di Markov cosidrata, co spazio dgli stati fiito E {, 2, 3, }, è tal ch P 2 ha tutti gli lmti positivi. Duqu sist ua distribuzio ivariat, d è uica i quato la cata è rgolar. Tal distribuzio ivariat, ch idichrmo co π π, π 2, π 3, π si ricava com soluzio dl sistma quazioi dl bilacio global Si otti π 2 π π π π 2 π + π π π 3 π + π π π 2 π + π 2 + π 3 π + π 2 + π 3 + π π, π 2 2, π 3 2, π 3. b Utilizzado la formula dll probabilità compost tdo prst sia la proprità di Markov ch la proprità di rgolarità dlla cat, risulta lim P X, X + 2, X +2 3, X +3.

5 lim PX p 2 p 23 p 3 π p 2 p 23 p 3 76 lim P X, X + 3, X +2 2, X +3 lim PX p 3 p 32 p 2 π p 3 p 32 p Ci possiamo accorgr facilmt ch la distribuzio ivariat π è rvrsibil, risultao cioè soddisfatt l quazioi dl bilacio dttagliato π i p ij π j p ji l uguagliaza fra i du prcdti limiti risulta ua cosguza immdiata dlla rvrsibilità. c Pr qualuqu θ, 3, P θ risulta rgolar si può ioltr ricooscr facilmt ch la distribuzio ivariat π θ risulta rvrsibil. S può ddurr l uguagliaza lim P X, X + 2, X +2 3, X +3 lim P X, X + 3, X +2 2, X +3. Possiamo ifatti scrivr lim P X, X + 2, X +2 3, X +3 lim PX p θ 2 pθ 23 pθ 3 π p θ 2 pθ 23 pθ 3 p θ 2 π 2p θ 23 pθ 3 pθ 2 pθ 32 π 3p θ 3 p θ 2 pθ 32 pθ 3 π lim PX p θ 3 pθ 32 pθ 2 lim P X, X + 3, X +2 2, X +3. 5

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11)

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11) Sri. Studiar il carattr dll sguti sri: ) ) 3) 4) 5) 6) 7) 8) 9) 0) ) ) 3) =4 + ( ) 3 si log ( + si 4 + log λ, λ > 0 si(si )! ( si λ, λ R cos(π) . Stabilir pr quali valori dl paramtro ral λ covrg la sri

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

4. Distribuzioni di probabilità discrete

4. Distribuzioni di probabilità discrete M. Gartto - Statistica. Distribuzioi di probabilità discrt. Distribuzio biomial o di Broulli Il coctto di variabil alatoria prmtt di formular modlli utili allo studio di molti fomi alatori. U primo importat

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

SCHEDA DI LABORATORIO

SCHEDA DI LABORATORIO SEDA DI LABORATORIO LA ARIA ELETTRIA ORSO DI PERFEZIONAMENTO PERORSI DIDATTII DI FISIA E MATEMATIA II DIPARTIMENTO DI FISIA UNIERSITÀ DEGLI STUDI DI SIENA Σιλϖια Χασινι A.A. 2005/06 Schda di laboratorio

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

1. PARTICOLARI DISTRIBUZIONI DI PROBABILITA

1. PARTICOLARI DISTRIBUZIONI DI PROBABILITA PARTICOLARI DISTRIBUZIONI DI PROBABILITA Distribuzio biomial o di Broulli) Immagiiamo di ritr molt volt, ll stss codizioi, ua crta rova, ciascua dll uali ididtmt dall altr) uò ortar a u vto casual A succsso)

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 00 - SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO SPERIMENTALE RISOLUZIONI PROBLEMA Il domiio dlla fuzio l s f ( ) a s D 0; è l isim [ ] > 0 0

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n Esercizi 2 Pietro Caputo 4 dicembre 2006 Esercizio. Siao Y, per =, 2,..., variabili aleatorie co distribuzioe biomiale di parametri e p := λ, per qualche λ > 0. Dimostrare che Y coverge i distribuzioe

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente Soluzioe CPS 22/6/04 I parte 1. Chiamiamo C l eveto l idividuo scelto ha il colesterolo alto, V, O e NL rispettivamete è vegetariao, è oivoro e o magia latticii. I dati soo: P C = 0.4, P O C = 0.75, P

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

APPUNTI DI FISICA. Gli errori

APPUNTI DI FISICA. Gli errori APPUNTI DI FISICA Gli rrori Abbiamo misurato la larghzza dllo stsso baco più prso d ogua più volt. Dall' sprimto ffttuato abbiamo costatato ch l misur ottut soo diffrti, ciò ci fa comprdr ch o riuscirmo

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Il diagramma di dispersione è

Il diagramma di dispersione è y Statistica - o caal (P-Z) - Prof.ssa M. Barbiri - a.a. 005-006 Il diagramma di disprsio L rlazioi tra variabili quatitativ possoo ssr mss i vidza attravrso ua opportua rapprstazio grafica. U diagramma

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Esercizio 2. Date le seguenti serie di trigonometriche [ n n (ii) log

Esercizio 2. Date le seguenti serie di trigonometriche [ n n (ii) log A.A. 2012/2013 I Esercitazioe 24 Aprile 2013 Esercizio 1. Data la fuzioe 2 periodica i R defiita i [ 1, 1) da fx) = x cos πx, x [0, 1), fx) = f x), x [ 1, 0), a) stabilire il tipo di covergeza della serie

Dettagli

Prova d esame di Calcolo delle Probabilità 02/07/2011

Prova d esame di Calcolo delle Probabilità 02/07/2011 Prova d esame di Calcolo delle Probabilità 0/07/0 N. MATRICOLA... COGNOME e NOME... Esercizio Cosideriamo due ure ed ua moeta truccata. La prima ura (ura A) cotiee pallie rosse e 4 biache, la secoda ura

Dettagli

ϕ (non necessariamente in numero finito), e in

ϕ (non necessariamente in numero finito), e in Spazi di uzioi ll sciz gograich, i particolar i godsia, vgoo studiat dll gradzz isich uzioi di puto sulla suprici trrstr, ad smpio il campo dlla gravità o l odulazio dl goid Qust uzioi soo i lia di pricipio

Dettagli

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M.

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M. Secoda rova Itermedia 8 Maggio 09 Elemeti di robabilità e Statistica, Laurea Trieale i Matematica, 08-9 M. omito, M. ossi roblema 0. Sia X, Y ) ua v.a. a valori i co desità dove N è u parametro fissato.

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ (o modulo) - PROVA d esame del 6/06/200 - Laurea Quadrieale i Matematica - (Prof. Nappo) Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo essere giustificate

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: 5 29324 mail: crossi@dis.uibo.it Sistmi mpo-discrti I qusti sistmi i sgali hao com bas

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y.

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y. Laboratorio di Matmatica. 9 novmbr 2011 ẏ t ty = 0 con y(0) = 1 ÿ + 4ẏ = 0 con y(0) = 1 ẏ(0) = 0. 2. Dtrminar i punti critici voncolati pr la funzion il problma max(x + 2y + z) xyz = 2. 3. È data la funzion

Dettagli

Esercizi settimana 10

Esercizi settimana 10 y = = 0 0,5 0,5,5 x Esercizi settimaa 0 Esercizi applicati Esercizio. Siao X ) i.i.d. tali per cui X U0, ), si dimostri che X 0. Soluzioe. Per calcolare la covergeza i legge dobbiamo usare la fuzioe di

Dettagli

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B Probabilità e Statistica Laurea Trieale i Matematica 7/06/204 Soluzioi traccia B Esercizio 2. (Appello completo) Cosideriamo due ure A e B. L ura A cotiee 4 biglie rosse e 2 ere, metre l ura B cotiee biglia

Dettagli

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _ MCCHNE ELETTCHE - ESECZ 6 gaio 9 Cogom Nom: Matricola: Elttrotcica _ Ergtica _ Elttrica.O. _ 6 / 7 CFU _ 9 CFU _ ESECZO N. oasio dlla prova a vuoto su di u trasformator moofas vgoo misurati i sguti valori:

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

all equilibrio: = n diff drift

all equilibrio: = n diff drift ma d q d q diff drift diff drift ε µ ε µ all quilibrio: drift drift diff diff V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta da s vrso V

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Uivrsità i Cassio Corso i Statistica Esrcitazio l /0/008 Dott. Alfoso Piscitlli Esrcizio Il sgut ata st riporta la rilvazio i alcui carattri su u collttivo i 0 soggtti. Soggtto Età Rsiza Rito (Migliaia

Dettagli

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x)

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x) EQUAZIONI DIFFERENZIALI ORDINARIE La stsura di qust disps vata il cotributo di mii carissimi amici Giulia 5 Matto Fracsco ch rigrazio Ua ED ordiaria è ua quazio i cui l icogita è ua fuzio () ch compar

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Esercitazione X Complementi di Probabilità a.a. 2011/2012

Esercitazione X Complementi di Probabilità a.a. 2011/2012 Esercitazioe X Complemeti di Probabilità a.a. 20/202 Argometi: covergeza e TLC. Esercizio. Sia {X k } k ua successioe di v.a. i.i.d. di legge Exp(. Sia G = S,. a Scrivere la fuzioe caratteristica φ di

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL 1/2/2011

CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL 1/2/2011 CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL //0 PRIMA PARTE Esercizio U sitomo S è ricoducibile a tre malattie M, M e M 3 a due a due icompatibili. Sapedo che la probabilità che u idividuo abbia la patologia

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

1 Sulla dimostrazione del TLC

1 Sulla dimostrazione del TLC 1 Sulla dimostrazioe del TLC Lo scopo della seguete variate di dimostrazioe è quello di evitare l uso del logaritmo i campo complesso, o diffi cile ma comuque u po isidioso. Nella dimostrazioe del TLC

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift.

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift. /drift /diff qµ ε d /drift /diff qµ ε d all quilibrio: ma / drift / drift / diff / diff 1 V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itrvalli di cofidza Probabilità tatistica I - a.a. 04/05 - Itrvalli di cofidza Calcolata la stima utual di u aramtro icogito, è ossibil associar a tal stima ua valutazio dll rror commsso? Esist u itrvallo

Dettagli

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof.

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof. Univrsità dgli Studi di Roma La Sapinza Corso di laura in Inggnria Enrgtica Gomtria A.A. 2014-2015 Foglio di srcizi n.5 (prof. Cigliola) Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0), v 2 = (2, 1, 1)

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

La formula di Taylor

La formula di Taylor La rmula di Taylr R.Argilas!! K I qusta dispsa prstiam il calcl di iti utilizzad gli sviluppi di Taylr Mac Lauri. N riprcrrrm la tria rlativa all apprssimazi di ua uzi i quat qusta è artata i maira sddisact

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

ANALISI DELL ASSOCIAZIONE

ANALISI DELL ASSOCIAZIONE ANALISI DELL ASSOCIAZIONE REGRESSIONE LINEARE SEMPLICE Y = a+b + ERRORE i misura lo scostamto di y i dal suo valor attso comot di rror co E( i )=0 V( i ) = cov( i, j ) = 0 r ogi ij. Usualmt i ~ N(0, )

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Disribuzio di probabilià di di oisso Diizio i i La disribuzio di oisso dscriv procssi casuali rari co mdia diia. Si cosidri u vo casual ch si rip u cro umro di vol, o issao a priori, co ua rquza assolua

Dettagli

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI:

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI: DISEQUAZIONI ESPONENZIALI E LOGARITMICHE ) 5 5 < ) > (8) (6) ) log( ) log( 6) 5. 5) < log ( ) 6) log < 7) < 8) 7 7 < 7 9 ) log - < 5 log RISULTATI: ) > - / ) < - o > ) / < o 5 5) / 6) < - o > 7)

Dettagli

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono Prima Prova Itermedia testo co soluzioi 5 Aprile 09 Elemeti di Probabilità e Statistica, Laurea Trieale i Matematica, 08-9 M Romito, M Rossi Problema 0 Ua moeta equa viee laciata fio alla prima volta i

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea i Igegeria Iformatica Ao Accademico 26/27 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Acoa, geaio 27. (8 puti) Si vuole stimare il parametro p di ua legge

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Esercitazione 5 del corso di Statistica 2

Esercitazione 5 del corso di Statistica 2 Esrcitazion 5 dl corso di Statistica 2 Prof. Domnico Vistocco Dott.ssa Paola Costantini 9 Maggio 2008 Esrcizio n Il diamtro in millimtri di bulloni prodotti da un azinda ha una distribuzion normal con

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli