INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti"

Transcript

1 INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: mail: crossi@dis.uibo.it

2 Sistmi mpo-discrti I qusti sistmi i sgali hao com bas l isim di umri itri: soo squ di umri adimsioali Possoo o mo rapprstar sgali ral-tim. I qusto caso l associaio co il tmpo è ottuta facdo corrispodr ad ogi itro u itrvallo tmporal uttavia, la squa potrbb o avr alcua rlaio co il tmpo (squa di dati su u dispositivo di mmoria) U sistma discrto è u algoritmo matmatico ch trasforma la squa di igrsso i qulla di uscita Cosidrrmo sistmi liari shift-ivariati (tmpo ivariati) ( ) y( ) LSI 2

3 3 Covoluio tmpo discrta L impulso tmpo discrto è dfiito com la sua La risposta dl sistma all impulso vi idicata co h(). S il sistma è liar ivariat, si driva ua rlaio gral tra igrsso uscita δ h h h y δ δ Covoluio discrta

4 Covoluio tmpo discrta Il gradio uitario tmpo discrto è dfiito com la sua u ( ) < La risposta dl sistma al gradio si ricava tramit covoluio a ( ) u( ) h( ) h( ) ch stabilisc la rlaio tra risposta all impulso d la gradio. I maira ivrsa si ha h ( ) a( ) a( ) 4

5 Rlaioi frquiali Si scgli ua fuio armoica tmpo discrta, ottuta pr campioamto di u sgal armoico co priodo t t Il rciproco di è dtta frqua di campioamto la pulsaio corrispodt pulsaio di campioamto f 2π f 2π s s s Nl caso di u sgal tmpo ral, la frqua d il priodo hao il sigificato usual di umro di cicli ll uità di tmpo o priodo di campioamto Nl caso di squ grich, o è possibil dfiir com soo stati grati i campioi ua siusoid a 2 H campioata a H forisc la stssa squa di ua siusoid a H campioata a 5 H si itroduc la frqua ormaliata ch dfiisc qual è l agolo tra du campioi succssivi dll oscillaio armoica 5

6 Rlaioi frquiali L uscita dl sistma pr u igrsso armoico è data da ( ) h( ) h( ) y Il trmi ch moltiplica l igrsso ( ) + H h( ) è la trasformata di Fourir dlla risposta all impulso. Esso modifica sia l ampia ch la fas dl sgal di igrsso rapprsta il guadago lo sfasamto dl sistma alla frqua data La trasformata dlla risposta all impulso fuio dlla frqua idtifica duqu il comportamto frquial dl sistma 6

7 rasformata di Fourir di ua squa La trasformata di Fourir di ua squa è dfiita com ( ) + X ( ) rapprsta lo spttro dlla squa umrica Dalla coosca dllo spttro, è possibil risalir alla squa di parta tramit la trasformaio ivrsa + π ( ) X 2π π d Codiio cssaria sufficit affichè la squa sia ral è X X 7

8 Rlaioi frquiali La risposta frquial, ssdo fuio di u spoial immagiario, è u fuio priodica co priodo 2π s Ciò si può ach ituir dal fatto ch l squ, drivati dal campioamto di siusoidi divrs ( + ) ( 2π s + ) soo idtich pr ogi valor di. La risposta dl sistma discrto a tali squ dv quidi ssr la stssa, pr tutt l frqu + s 8

9 Rlaioi frquiali Nl caso di squa di igrsso grica si ha Y ( ) y( ) ( ) h( ) ( h ) m ( ) ( ) h m X H m La trasformata dll uscita è il prodotto dlla trasformata dll igrsso dlla risposta frquial 9

10 La trasformata Z Pr sgali quali il gradio uitario o ua siusoid ifiita, la trasformata di Fourir o covrg Aalogamat a quato visto pr la trasformata di Laplac pr i sgali tmpo cotiui, pr squ ull pr idici gativi si dfiisc ua uova trasformata aggiugdo u fattor di smoramto pr garatir la covrga σ rasformata Z uilatral X, σ ( ) X ( ) ( ) ( σ + ) ( σ + )

11 rasformat lmtari rasformata dll impulso rasformata dl gradio rasformata dll spoial X δ X u a a X u a X u α α α

12 Proprità dlla Z-trasformata Il torma di covoluio: la trasformata dlla covoluio di du squ è data dal + prodotto dll trasformat c C ( ) a( ) b( ) ( ) A( ) B( ) y ( ) ( ) h( ) ( ) h( ) y( ) X ( ) H ( ) Y ( ) ( ) X ( ) H ( ) Y 2

13 Proprità dlla Z-trasformata Il torma dllo shift: la trasformata di ua squa ritardata di d campioi è data da I particolar, il trmi X d d ( ) ( d ) d ( ) X ( ) idtifica u ritardo uitario, d è chiamato oprator di ritardo. Esso costituisc l lmto di bas pr la costruio di algoritmi digitali di filtraggio cotrollo 3

14 orma di covoluio - smpio Si cosidri u sistma co risposta impulsiva a h u a cui vi applicato u gradio uitario. Si otti Prodotto dll trasformat Espasio i fratti smplici Atitrasformaio Risultato Y Y y y ( ) ( ) a a ( a ) a a 2 a a ( ) u( ) u( ) ( ) u( ) a ( ) ( + ) a a a a 4

15 Esmpio stp rsp impuls rsp iput stp a

16 2 Esmpio Ampia risposta frquial 5 priodica Mag (db) 5-5 passa basso frqua ormaliata 6

17 Stabilità Si carattria la stabilità igrsso/uscita (BIBO) dato u igrsso limitato si vuol ottr ua uscita limitata ( ) X ma y( ) + ( ) h( ) < B Vrificato s solo s + h( ) M < Il sistma è BIBOO stabil s solo s la risposta impulsiv è assolutamt sommabil. La sommatoria rapprsta la orma L dlla squa 7

18 Guadago dl sistma Podo lla trasformata di Fourir dlla risposta impulsiva si otti ua sprssio pr il guadago i cotiua + h( ) H U altra sprssio util si otti calcolado l ampia dlla trasformata d itgrado sul priodo 2π/ h 2 π ( ) H 2 π d Essa forisc il guadago quadratico mdio dl sistma. La sommatoria al primo mmbro è dfiita com l rgia associata alla squa. La rlaio prcdt forisc u mtodo pr calcolarla a partir dallo spttro dlla squa 8

19 9 Equaioi all diffr Si dfiisc quaio all diffr l sprssio La Z-trasformata dll sprssio prcdt da + M N b y a y N N N N M N b y a b y a b y a y

20 2 Equaioi all diffr Si otti quidi L quaio all diffr rapprsta quidi u sistma LSI co fuio di trasfrimto data da H() Si oti la prsa dl trmi autorgrssivo prmtt di rapprstar co ua sprssio fiita sistmi LSI co risposta all impulso ifiita (ifiiti trmii divrsi da ro) + + N M N N a b X Y H X b Y a Y

21 Poli ri dlla Fd Aalogamt al caso cotiuo, si dfiiscoo i poli gli ri dlla Fd com gli ri rispttivamt dl domiator dl umrator dlla Fd i qusto caso sparisc il vicolo N > M pr la fisica raliabilità N M H b 2 K M ( )( 2 ) K ( N ) Valgoo tutt l cosidraioi fatt pr la Fd di u sistma LI l domiio s ri poli soo rali o a coppi complss coiugat scomposiio i cascata com prodotto di trmii lmtari dl primo o scodo ordi scomposiio i paralllo com somma di trmii lmtari dl primo o scodo ordi 2

22 Stabilità l domiio frquial Dalla scomposiio i paralllo si otti N N H ( ) A A la risposta all impulso dl sistma si otti atitrasformado N h A u( ) La risposta all impulso è duqu data dalla somma di N rispost impulsiv di sistmi dl primo ordi Il sistma è stabil s solo s la orma L dlla risposta all impulso è limitata, qusto è vrificato s solo s ogi sigola risposta impulsiva ha orma limitata h M < A S < 22

23 Stabilità l domiio frquial Si otti quidi la codiio di stabilità A A S < < Il sistma è stabil BIBO s solo s tutti i poli soo cotuti sl crchio uitario Il sistma è itramt stabil ma o asitoticamt stabil s solo s sistoo poli smplici sul crchio uitario Il sistma è istabil s solo s sistoo poli al di fuori dl crchio uitario /o poli multipli sul crchio uitario Itgrator dicrto y( ) y( ) + ( ) H ( ) 23

24 Efftti di poli ri - polo ll origi Data la Fd corrispodt al ritardo uitario H ( ) si otti H b( ) τ ( ) g Nl caso di ritardo suprior si otti d H d H b d τ d g 24

25 25 Efftti di poli ri - polo grico Data la Fd corrispodt ad u sistma co sigolo polo si otti r r H ϕ ϕ + + ϕ ϕ ϕ ϕ r r H r r r H cos 2 s cos 2 2

26 Efftti di poli ri - polo grico Il guadago varia tra u massimo d u miimo dati da ma H ( ) mi H ( ) > r > + r Ampia (db) Ampia dlla Fd dl polo grico r r. r.2 r.4 r.6 r.8 r Frqua ormaliata Il guadago divta maggior all avviciarsi dl polo al crchio uitario Il picco si vrifica ad u agolo di fas pari all agolo dl polo Il grafico riporta gli adamti pr u polo stabil (risposta frquial di u polo istabil?) 26

27 Efftti di poli ri - polo grico Il ritrdo di fas è dato da r + s b arc ta r cos ( ϕ ) ϕ fas ( ) Ritardo di fas dl polo grico r r. r.2 r.4 r.6 r.8 r Si oti la liarità dl ritardo di fas pr poli ll origi o sul crchio uitario Il grafico riporta gli adamti pr u polo stabil Frqua ormaliata 27

28 Efftti di poli ri - polo ral Ampia dlla Fd co polo ral r r. r.2 r.4 r.6 r.8 r Ampia (db) Frqua ormaliata 28

29 Efftti di poli ri - polo ral 2 5 Ritrado di fas - polo ral r r. r.2 r.4 r.6 r.8 r 5 Fas ( ) Frqua ormaliata 29

30 3 Efftti di poli ri - ro grico Data la Fd corrispodt ad u sistma co u sigolo ro si otti r r H ϕ ϕ cos s arc ta cos 2 s cos ϕ ϕ ϕ ϕ ϕ ϕ r r b r r H r r r H

31 Efftti di poli ri - ro grico Il guadago varia tra u massimo d u miimo dati da ma > H ( ) + r mi H ( ) r > A part il fattor di guadago dato r, ri a distaa r o /r hao lo stsso adamto Il guadago divta maggior all allotaarsi dllo ro dal crchio uitario 3

32 Efftti di poli ri - ro grico Il ritrdo di fas è dato da r s b arc ta r cos ( ϕ ) ϕ Aticipo di fas pr ri all itro dl crchio uitario Zri all stro dl cchio uitario tdoo ad aumtar il ritardo di fas (ritardo di gruppo positivo) 32

33 Sistmi a fas miima I sistmi LSI co ri all itro dl crchio uitario si dicoo a fas miima raliao lo stsso adamto dll ampia dlla Fd risptto a uo ro posto allo stsso agolo ma a distaa rcirpoca co il miimo ritardo di fas ( ϕ ) ϕ r r r filtri cotrollori soo smpr a fas miima s il plat è a fas o miima, il problma di cotrollo è più complicato problmi di stabilità s si crca u buo isguimto dl rifrimto 33

34 INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti - Fi Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: mail: crossi@dis.uibo.it

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti IGEGERIA E ECOLOGIE DEI SISEMI DI COROLLO su sistemi lieari discreti Prof. Carlo Rossi DEIS - Uiversità di Bologa el: 5 93 email: crossi@deis.uio.it Sistemi empo-discreti I questi sistemi i segali hao

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

misura il grado si similarità di una sequenza con sé stessa. Quando n = 0, si ottiene il valore dell energia:

misura il grado si similarità di una sequenza con sé stessa. Quando n = 0, si ottiene il valore dell energia: OMPEDIO TEORIO DI ELABORAZIOE UMERIA DEI SEGALI TELEDIDATTIA A.A. 9/ /9. Sgali umrici Scomposiio i as quaratura part ral, part immagiaria ] I ] Q ] Sgali PARI : ] *-] Sgal DISPARI: ] - *-] Prioicità ovoluio

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

Argomenti introduttivi

Argomenti introduttivi Apputi di Elaborazio umrica di sgali Prmss sui sistmi liari... Risposta all impulso... Sviluppo i sri di Fourir...4 Dimostrazio dlla formula di cofficiti dllo sviluppo di Fourir pr (t) ral 5 rasformata

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

M. Usai Circuiti digitali 7_3 1

M. Usai Circuiti digitali 7_3 1 Stima dllo spttro I molt applicazioi si è itrssati al calcolo dllo spttro di u sgal campioato: spttro di dsità di rgia o; spttro di dsità di potza. La FFT può ssr utilizzata a qusto scopo. Occorr cosidrar

Dettagli

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11)

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11) Sri. Studiar il carattr dll sguti sri: ) ) 3) 4) 5) 6) 7) 8) 9) 0) ) ) 3) =4 + ( ) 3 si log ( + si 4 + log λ, λ > 0 si(si )! ( si λ, λ R cos(π) . Stabilir pr quali valori dl paramtro ral λ covrg la sri

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rapprstati da quazioi diffrziali liari a cofficiti costati di ordi : a d y(t dy(t d x(t dx(t + a + ay(t b + b

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

APPUNTI DI FISICA. Gli errori

APPUNTI DI FISICA. Gli errori APPUNTI DI FISICA Gli rrori Abbiamo misurato la larghzza dllo stsso baco più prso d ogua più volt. Dall' sprimto ffttuato abbiamo costatato ch l misur ottut soo diffrti, ciò ci fa comprdr ch o riuscirmo

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x)

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x) EQUAZIONI DIFFERENZIALI ORDINARIE La stsura di qust disps vata il cotributo di mii carissimi amici Giulia 5 Matto Fracsco ch rigrazio Ua ED ordiaria è ua quazio i cui l icogita è ua fuzio () ch compar

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione Si può arrivar allo sviluppo i sri di Fourir ach pr sgali apriodici? RASFORMAA DI FOURIER rasormaa di Fourir: diizio Dao u sgal apriodico, sso può ssr scrio mdia la ormula dov d d L du quazioi si chiamao

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Lezione 3. Movimento ed Equilibrio. F. Previdi - Fondamenti di Automatica - Lez. 3 1

Lezione 3. Movimento ed Equilibrio. F. Previdi - Fondamenti di Automatica - Lez. 3 1 Lio 3. Movimo d Eqilibrio F. Prvidi - Fodami di Aomaica - L. 3 Schma dlla lio. Movimo dllo sao dll scia (gral). (Movimo di) Eqilibrio (gral) 3. Sismi LTI 4. Eqilibrio di sismi LTI 5. Movimo di sismi LTI

Dettagli

Lo strato Fisico Parte 2

Lo strato Fisico Parte 2 3/3/ Fracsca Cuomo Lo srao Fisico Par Rapprsazio di sgali orma dl campioamo Sgal aalogico Sgal mpo-coiuo adamo l mpo di ua gradzza prurbaa x ( x (, < < Esmpi Voc, mpraura ambi, musica, lvisio, sio d uscia

Dettagli

Seminario. tenuto dalla prof. Mariangela Usai. II parte. (ultimo aggiornamento 14/04/2016)

Seminario. tenuto dalla prof. Mariangela Usai. II parte. (ultimo aggiornamento 14/04/2016) Smiario Aalii di traitori circuitali co il imulator Ppic. tuto dalla prof. Mariagla Uai Facoltà di Iggria dll Uivrità dgli Studi di Cagliari II part Studio di traitori co il mtodo dll traformat di Laplac

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 00 - SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO SPERIMENTALE RISOLUZIONI PROBLEMA Il domiio dlla fuzio l s f ( ) a s D 0; è l isim [ ] > 0 0

Dettagli

Capitolo 2 - DFT (parte I)

Capitolo 2 - DFT (parte I) Apputi di Elaborazio umrica di sgali apitolo - DF (part I DF (Discrt im Fourir rasorm... DF (Discrt Fourir rasorm...5 Itroduzio...5 Formul di trasormazio atitrasormazio...9 Vriica dlla ormula di atitrasormazio...

Dettagli

Algoritmo di Mallat

Algoritmo di Mallat ... Algoritmo di Mallat Partdo dalla famiglia di wavlt discrt diadich dal loro comportamto i frquza al variar dll idic di scala, Mallat suggrisc di dcomporr u sgal utilizzado du famigli di fuzioi wavlt:

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

Definizione e proprietà dei numeri complessi

Definizione e proprietà dei numeri complessi umr complss Dfo proprtà d umr complss Rapprstao gomtrca d umr complss Espoal d u umro complsso Cougao d u umro complsso Radc -sm dll utà Dfo proprtà d umr complss U umro complsso é ua coppa ordata d umr

Dettagli

Risposta al gradino di un circuito RLC

Risposta al gradino di un circuito RLC Ripota al gradio di circito RL Si motra i fig. il circito i am. Fig. ircito RL ri da valtar pr tr divri valori di R. Idichiamo co Vi la tio di igro dl grator co V la tio di cita prlvata l codator. Alla

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

ϕ (non necessariamente in numero finito), e in

ϕ (non necessariamente in numero finito), e in Spazi di uzioi ll sciz gograich, i particolar i godsia, vgoo studiat dll gradzz isich uzioi di puto sulla suprici trrstr, ad smpio il campo dlla gravità o l odulazio dl goid Qust uzioi soo i lia di pricipio

Dettagli

SCHEDA DI LABORATORIO

SCHEDA DI LABORATORIO SEDA DI LABORATORIO LA ARIA ELETTRIA ORSO DI PERFEZIONAMENTO PERORSI DIDATTII DI FISIA E MATEMATIA II DIPARTIMENTO DI FISIA UNIERSITÀ DEGLI STUDI DI SIENA Σιλϖια Χασινι A.A. 2005/06 Schda di laboratorio

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

Fourier Transform. Filtraggio

Fourier Transform. Filtraggio Furir Trasfrm Albrt Brghs Uivrsità dgli Studi di Mila Labratri di Sistmi Itlligti Appliati (AIS-Lab) Dipartimt di Siz dll Ifrmazi brghs@dsi.uimi.it /36 Filtraggi Rimuvr rumr. Esaltar alu arattristih dll

Dettagli

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre Rgistro dll attività Aalisi _ lttroici _ Lorztti Elisabtta _ sttmbr - dicmbr 5 Corso di Aalisi Doct Prof. ssa Elisabtta Lorztti Part torica applicativa. Gli isimi. Rlazioi tra gli isimi. L'isim vuoto l'isim

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rarstati da quazioi diffrziali liari a cofficiti costati di ordi : d y(t dy(t d x(t dx(t a + a + ay(t b + b +

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

Rappresentazione algebrica dei numeri complessi.

Rappresentazione algebrica dei numeri complessi. Rapprstazio algbrica di umri complssi. I umri complssi soo u'stsio di umri rali ata iizialmt pr costir di trovar tutt l soluzioi dll quazioi poliomiali. Ad smpio, l'quazio x - 1 o ha soluzioi rali, prché

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Il diagramma di dispersione è

Il diagramma di dispersione è y Statistica - o caal (P-Z) - Prof.ssa M. Barbiri - a.a. 005-006 Il diagramma di disprsio L rlazioi tra variabili quatitativ possoo ssr mss i vidza attravrso ua opportua rapprstazio grafica. U diagramma

Dettagli

1/14. Lezione XV. Programma lezione XV

1/14. Lezione XV. Programma lezione XV Programma lzio XV 1/1 L origi dlla mccaica quatistica: Plack il corpo ro D Brogli l od di matria Itsità prssio di radiazio di u fascio di fotoi L itrazio od.m. matria: assorbimto d missio Radiazio matria

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

Analisi di Fourier e campionamento a

Analisi di Fourier e campionamento a Analisi di Fourir campionamnto a 6.0 Introduzion Quando si studiano squnz di input discrt nl tmpo, la toria dl trattamnto di sgnali discrti nl tmpo, è una toria a s stant ch non ncssita di rifrimnti dirtti

Dettagli

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift.

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift. /drift /diff qµ ε d /drift /diff qµ ε d all quilibrio: ma / drift / drift / diff / diff 1 V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta

Dettagli

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI:

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI: DISEQUAZIONI ESPONENZIALI E LOGARITMICHE ) 5 5 < ) > (8) (6) ) log( ) log( 6) 5. 5) < log ( ) 6) log < 7) < 8) 7 7 < 7 9 ) log - < 5 log RISULTATI: ) > - / ) < - o > ) / < o 5 5) / 6) < - o > 7)

Dettagli

all equilibrio: = n diff drift

all equilibrio: = n diff drift ma d q d q diff drift diff drift ε µ ε µ all quilibrio: drift drift diff diff V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta da s vrso V

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Analisi spettrale delle serie temporali

Analisi spettrale delle serie temporali Aalisi spttral dll sri tporali Traduzio i italiao, rdatta d adattata da Fdrico Lobardo, dal tsto i ligua grca tratto da: Koutsoyiais, D., Lctur ots o Stochastic Mthods i Watr Rsourcs, Editio 3, pags, Natioal

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Uivrsità i Cassio Corso i Statistica Esrcitazio l /0/008 Dott. Alfoso Piscitlli Esrcizio Il sgut ata st riporta la rilvazio i alcui carattri su u collttivo i 0 soggtti. Soggtto Età Rsiza Rito (Migliaia

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Sssio straordiaria 8 Lico di ordiamto ESAME DI STATO DI LICEO SCIENTIFICO Corso di ordiamto sssio straordiaria 8 Sssio straordiaria 8 Lico di ordiamto PROBLEMA Puto. Il passaggio pr A(-) comporta la codizio

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti sori gali Rumor - Pro.. Cova - allo /07/04 - P ag. PROBLEM Quadro di dati gal: P amizza da misurar P 5 µs costat di tmo dll sozial R ms itrvallo tra u imulso il succssivo Rumor: u 50 /(Hz) / (uilatra)

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

4. Distribuzioni di probabilità discrete

4. Distribuzioni di probabilità discrete M. Gartto - Statistica. Distribuzioi di probabilità discrt. Distribuzio biomial o di Broulli Il coctto di variabil alatoria prmtt di formular modlli utili allo studio di molti fomi alatori. U primo importat

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1 ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 7 PIANO NAZIONALE INFORMATICA Problma Puo Pr sudiar la moooia dlla fuzio I g( ) g ( ) a la a la l a (a a ). Essdo, pr iposi, a >, occorr disigur i sgui

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

Richiami di analisi armonica. F. Previdi - Controllo digitale - Richiami di analisi armonica 1

Richiami di analisi armonica. F. Previdi - Controllo digitale - Richiami di analisi armonica 1 Richiami di analisi armonica F. Prvidi - Controllo digital - Richiami di analisi armonica Schma dlla lzion. Introduzion. Sri di Fourir 3. Sviluppo di Fourir 4. Trasormazion di Fourir (di sgnali a tmpo

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4 Matatica pr la uova aturità scitifica A. Brardo M. Pdo 99 Qustioario Qusito Illustrar il tora di d L Hôpital applicarlo pr diostrar ch: 4 li = a +. Tora di D L Hôpital S l fuzioi f() g() soo drivabili

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Capitolo 3 (II) - Sistemi tempo-discreti

Capitolo 3 (II) - Sistemi tempo-discreti Apputi di Elborio umric di sgli Cpitolo 3 (II) - Sistmi tmpo-discrti Sistm sigolo polo... Squ di du cmpioi... Squ simmtric di tr cmpioi...8 Filtri umrici fs rigorosmt lir... Esmpi... Implmtio...7 Esmpio:

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Filtri a tempo discreto: Introduzione

Filtri a tempo discreto: Introduzione October, 23 Filtri a tempo discreto: Itroduioe Filtri a memoria fiita L uscita y è otteuta combiado valori passati dell igresso x e dell uscita y N k a k y k M r b r x r Si suppoe x moolatera x Il filtro

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Disribuzio di probabilià di di oisso Diizio i i La disribuzio di oisso dscriv procssi casuali rari co mdia diia. Si cosidri u vo casual ch si rip u cro umro di vol, o issao a priori, co ua rquza assolua

Dettagli