Flip-flop Macchine sequenziali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Flip-flop Macchine sequenziali"

Transcript

1 Flip-flop Macchine sequenziali

2 Introduzione I circuiti digitali possono essere così classificati Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli ingressi in quello stesso istante Circuti sequenziali Il valore delle uscite in un determinato istante dipende dal valore degli ingressi in quell istante E dal valore degli ingressi in istanti precedenti

3 Esempio: bistabile X = X 2 = X X 2 Y A B Y 2 A Tabella verità NOR B X = X 2 = X X 2 Y Y 2 Se un ingresso vale allora l uscita vale Se un ingresso vale allora l uscita vale l altro ingresso negato

4 Bistabile X Y A B X = X 2 = X 2 Y 2 X Y X = X 2 = X Y X = X 2 = X 2 Y 2 X 2 Y 2

5 Equazioni bistabile stato attuale, prossimo stato R S S R SR x x = SR + R NOTA Con R=S= il bistabile mantiene lo stato precedente ( =) uesta rete è in grado di memorizzare un bit

6 Bistabile: temporizzazione Reset Set S R - - Non usata Reset Set tempo

7 Bistabile: input ammissibili Con R=S= il bistabile mantiene (hold) lo stato acquisito Con R o S diversi da si cambia lo stato La configurazione di ingresso R=S= non è ammessa, poiché se da questa si passa a R=S= sono possibili due configurazioni per l uscita. La configurazione effettiva non è cioè prevedibile R S Hold Reset Set S R?

8 Sincronizzazione A B A= B= R= = FF S= Al tempo t sia A=, = e = Se i valori A e B cambiano contemporaneamente al tempo t allora, l uscita rimane a Tuttavia nella realtà i cambiamenti di A e B non sono contemporanei: ad esempio può succedere che A cambi prima di B (che cambia a t 2 ) In questo modo si avrà una configurazione temporanea A=B= e commuta a = uando B varia, continuerà ancora a valere = t t t 2

9 Segnale di sincronizzazione Un clock ha le seguenti caratteristiche: E un segnale binario E un segnale periodico (durata T) frequenza del clock f=/t Fronte di discesa Fronte di salita Periodo T In realtà le transizioni -> e -> non sono istantanee

10 Bistabili Sincroni Utilizzano un segnale di controllo CK, detto Clock Livello, chiamati Latch trasparenti L ingresso viene sentito, e l uscita può variare, durante tutto il periodo in cui C= (oppure C=) Fronte di salita, chiamati (positive edge triggered) Flip-Flop L uscita cambia in base al valore dell ingresso in corrispondenza della transizione di C da ad Fronte di discesa (negative edge triggered) Flip-Flop L uscita cambia in base al valore dell ingresso in corrispondenza della transizione di C da ad Master-Slave Flip-Flop Segnale d ingresso campionato su un fronte, uscita cambia sull altro Nota: Spesso letteratura si usa il termine Flip-Flop per indicare in modo generico un bistabile (quindi anche i latch)

11 Esempio, Latch RS R S CK R S CK? CK S R uando CK= allora si ha il consenso alla transizione

12 Perché abilitare sui fronti? Sia d il tempo in cui CK= e t il ritardo di propagazione del FF assumiamo che d>t Esiste un problema nel collegamento in cascata di bistabili. Durante CK= l uscita di FF modifica l uscita di FF2 poiché d>t. In alcuni casi questo non è il comportamento voluto (registri a scorrimento) d Durata clock alto R= FF 2 FF2 CK S= CK t Ritardo di propagazione 2

13 Abilitazione sul fronte di discesa Usando FF con abilitazione sul fronte di discesa si ottiene il comportamento desiderato. Ad ogni ciclo di clock cambia lo stato di un solo flip-flop R= 2 CK S= CK 2

14 Latch D Un solo ingresso più uno di abilitazione Usato come unità elementare di memorizzazione Presenta in uscita ciò che era presente in ingresso quando il era presente il segnale per l abilitazione (CK=) R D CK D CK S CK D

15 Master-Slave Nel caso di master-slave si ha in corrispondenza del fronte di discesa. Master Slave R R R R CK CK CK CK S S S S

16 Registri Un registro è un elemento di memoria in grado di memorizzare un insieme di n bit composto da un insieme di bistabili l informazione memorizzata in un registro prende il nome di parola Scrittura Scrittura Lettura Lettura

17 Registri Modalità di scrittura/lettura dei dati Parallelo Seriale Operazioni sui dati: Scorrimento a destra Scorrimento a sinistra Scorrimento circolare

18 Registro parallelo-parallelo D D D2 D3 D D D D Clock 2 3

19 Registri Un registro è composto da più flip-flop D che utilizzano gli stessi segnali di controllo C C IN IN2 IN3 INn FF FF2 FF3 FFn OUT OUT2 OUT3 OUTn IN(n:) R E G OUT(n:) C IN(4:) xc xd xe xf OUT(4:) xc xd xe xf

20 Barrel Shifter a a a i+ i i- SH d/s z i

21 Registro circolare (n=4) D D D2 D3 Write/Read D D D D Clock

22 Reti sequenziali Il valore in uscita è funzione della sequenza di valori forniti in input fino a quel momento Hanno una memoria Varie classi di reti, vedremo la più semplice Level Level Clocked (LLC) La sequenza è definita mediante un segnale di clock Gli ingressi e le uscite sono a livelli : il livello del segnale d ingresso determina il livello del segnale d uscita L ingresso cambia solo dopo che l uscita è stabile Altre reti (es. ad impulsi )

23 Addizionatore (macchina sequenziale) Al clock i-esimo arriva in ingresso una coppia di bit del numero da sommare; l uscita è pari al bit i-esimo della somma

24 Macchine sequenziali: schema LC LC: circuiti combinatori M: memoria

25 Macchine LLC Ingressi x x 2 x n RETE COMBINATORIA w,d Uscite z z 2 z m La rete combinatoria realizza le funzioni d e w (tabelle di verità) y FF y Rete sincrona LLC (Level Level Clocked) y 2 FF 2 y 2 La macchina cambia stato ad ogni fronte attivo del clock (ogni colpo di clock ) y k Stato Presente FF k y k Stato Futuro Le uscite dipendono dai livelli dei valori d ingresso (non dalle variazioni) Clock f Registri di stato Prima di cambiare nuovamente le uscite diventano stabili

26 Macchina a stati finiti (FSM) FSM = <I,O,S, d,w> I alfabeto finito di ingresso (per comodità I =2 n ) S insieme degli stati, S = 2 k O alfabeto di uscita, O = 2 m d : S x I Æ S, funzione stato successivo w : S Æ O (Moore) oppure w : S x I Æ O (Mealy) funzione di uscita Se serve specificare uno stato iniziale s Œ S, FSM= <I,O,S, d,w,s > Una FSM può essere realizzata come rete LLC

27 Diagramma degli stati Il diagramma degli stati è un grafo orientato etichettato G(V,A,L) i nodi rappresentano gli stati della macchina gli archi le transizioni di stato le etichette le condizioni di transizione Macchina di Mealy: l uscita dipende dallo stato e dall ingresso Macchina di Moore: l uscita dipende solo dallo stato

28 Flip/Flop S-R Ingresso: Set Reset (S-R) solo uno dei due ingressi può essere pari ad uno. Stati:,,, uscita= stato del flip flop: macchina di Moore

29 Riconoscitore di sequenza Macchina che riconosce la sequenza ciao Input: {a,b,c,...,z} Per semplicità assumiamo che il simbolo di negazione su una lettera individui una qualunque lettera tranne la lettera stessa (ad es. a indica b,c,...,z); analogamente per più lettere Uscita: Si, No

30 Diagramma degli stati (Moore) c c c i /no 2/no 3/no 4/no 5/si a o c c,i c c c,a c,o c : aspetto c 2: aspetto i 3: aspetto a, 4: aspetto o; 5: parola completa

31 Diagramma degli stati (Mealy) c,a/no c,i/no c/no c no c/no i/no 2 c/no 3 c/no o/si 4 a/no : attesa c 2: attesa i 3: attesa a 4: attesa o

32 Contatore Up e Down Macchina conta modulo 4 U incrementa di uno D decrementa di uno

33 FSM Esempio evoluzione (Moore) w OUTPUT f INPUT d I I 2 INPUT SP SP S S 2 S 3 SF T d T pff S S 3 SF S 2 Clock f Registri di stato O T w O 2 O 3 OUTPUT I I 2 nd : S x I Æ S s /o s 2 /o 2 s 3 /o 3 w : S Æ O

34 Dalla macchina sequenziale alla rete Per realizzare una macchina sequenziale è necessario Codificare gli insiemi I,S,O con variabili di commutazione Realizzare le funzioni d ed w con reti combinatorie Comportamento temporale delle variabili di ingresso/uscita Ogni circuito digitale risponde ai nuovi valori di ingresso producendo la nuova uscita in modo stabile solo un tempo di ritardo d durante il quale sono esauriti tutti i transitori Considereremo solo la realizzazione di reti di tipo LLC (Level Level Clocked)

35 Dalla macchina alla rete x,x 2,..,x n variabili di ingresso a livelli 2 n I z,x 2,..,z m variabili di uscita a livelli 2 m O y,y 2,..,y k variabili di stato 2 k S Variabile impulsiva, ck, che ha lo scopo di far commutare lo stato

36 Reti LLC La rete sequenziale lavora con le seguenti ipotesi: Variabili d ingresso di tipo a livello (i valori in ingresso rimangono fissi per un periodo T sufficientemente lungo per far assumere all uscita il nuovo valore di regime, ossia T>d) Variabili di uscita a livello Segnale di abilitazione positive or negative edge trigger, o a livello (in quest ultimo caso la variabile di commutazione deve essere pari ad per un periodo di tempo sufficiente per far commutare i flip-flop, ma inferiore al minimo tempo di commutazione dei circuiti combinatori che calcolano lo stato successivo, altrimenti si potrebbero avere più commutazioni)

37 Dal modello strutturale al circuito X d Z X d w Y Y Y ck Y Mealy ck Moore w Z

38 Rete LLC per macchine di Mealy (flip-flop di tipo D) x x 2 x n Ingressi RETE COMBINATORIA w,d z z 2 z m Uscite Stato Presente S y y Stato Successivo S FF y 2 FF 2 y 2 y k FF k y k Registro di stato Clock

39 Esempio: contatore UP-DOWN modulo 4 U U D D D D 3 2 U I={U,D} O={,,2,3} S={,,2,3} ingresso U NOTA: uscita = stato stato 2 3 U D uscita

40 Codifica simboli I x U D S y 2 y 2 3 O z 2 z 2 3 stato ingresso 2 3 U D uscita y 2 y x z 2 z

41 Sintesi funzioni d e w In questo semplice esempio, l uscita è uguale allo stato w(y 2 y )=z 2 z y 2 y x x y 2 y y = y Mappe di Karnaugh y y 2 y 2 y x y 2 =y 2 y x+y 2 y x +y 2 y x + y 2 y x

42 Realizzazione mediante rete combinatoria Ingresso Uscita x RETE COMBINATORIA w z z 2 y FF y y 2 FF 2 y 2 Clock

43 Realizzazione mediante ROM Ingresso Uscita x Memoria ROM z z 2 y 2 y Clock FF FF 2 y y 2 Indirizzo Struttura parola nella ROM y 2 y x y 2 y z 2 z

Livello logico digitale

Livello logico digitale Livello logico digitale circuiti combinatori di base e circuiti sequenziali Half Adder - Semisommatore Ingresso 2 bit, uscita 2 bit A+ B= ------ C S C=AB S=AB + AB=A B A B In Out HA A B C S S HA A C S

Dettagli

Circuiti sequenziali e elementi di memoria

Circuiti sequenziali e elementi di memoria Il Livello Logicoigitale I circuiti sequenziali Corso ACSO prof. Cristina SILVANO Politecnico di Milano Sommario Circuiti sequenziali e elementi di memoria Bistabile SR asincrono Temporizzazione e clock

Dettagli

Flip-flop, registri, la macchina a stati finiti

Flip-flop, registri, la macchina a stati finiti Architettura degli Elaboratori e delle Reti Lezione 9 Flip-flop, registri, la macchina a stati finiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell nformazione Università degli Studi di

Dettagli

Architettura dei Calcolatori Reti Sequenziali Sincrone

Architettura dei Calcolatori Reti Sequenziali Sincrone Architettura dei Calcolatori Reti Sequenziali Sincrone Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Reti Sequenziali Sincrone Sommario: Introduzione, tipi e definizione Condizioni per il corretto

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

FSM: Macchine a Stati Finiti

FSM: Macchine a Stati Finiti FSM: Macchine a Stati Finiti Sommario Introduzione Automi di Mealy Automi di Moore Esempi Introduzione Metodo per descrivere macchine di tipo sequenziale Molto utile per la descrizione di Unità di controllo

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ) dove: I è l insieme finito dei simboli d ingresso

Dettagli

Reti sequenziali. Esempio di rete sequenziale: distributore automatico.

Reti sequenziali. Esempio di rete sequenziale: distributore automatico. Reti sequenziali 1 Reti sequenziali Nelle RETI COMBINATORIE il valore logico delle variabili di uscita, in un dato istante, è funzione solo dei valori delle variabili di ingresso in quello stesso istante.

Dettagli

Macchine sequenziali sincrone. Macchine sincrone

Macchine sequenziali sincrone. Macchine sincrone Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali sincrone Lezione 27 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea in Ingegneria

Dettagli

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin Calcolatori Elettronici A a.a. 2008/2009 RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin 1 Esercizio 1: implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

Verifica di Sistemi. 2. Il latch SR a porte NOR non accetta la condizione: a. S=0, R=0 b. S=1, R=1 c. S=0, R=1 d. S=1, R=0

Verifica di Sistemi. 2. Il latch SR a porte NOR non accetta la condizione: a. S=0, R=0 b. S=1, R=1 c. S=0, R=1 d. S=1, R=0 Verifica di Sistemi 1.Qual è la differenza tra un latch asincrono e un Flip Flop? a. Il latch è abilitato da un segnale di clock b. Il latch ha gli ingressi asincroni perché questi ultimi controllano direttamente

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

I CONTATORI SINCRONI

I CONTATORI SINCRONI I CONTATORI SINCRONI Premessa I contatori sincroni sono temporizzati in modo tale che tutti i Flip-Flop sono commutato ( triggerati ) nello stesso istante. Ciò si realizza collegando la linea del clock

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Appunti di reti logiche. Ing. Luca Martini

Appunti di reti logiche. Ing. Luca Martini Appunti di reti logiche Ing. Luca Martini 11 aprile 2003 Capitolo 1 Reti combinatorie Sommario In questo breve documento mostreremo sia alcuni concetti base sulle reti combinatorie, che alcuni dei moduli

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Macchine a stati finiti G. MARSELLA UNIVERSITÀ DEL SALENTO

Macchine a stati finiti G. MARSELLA UNIVERSITÀ DEL SALENTO Macchine a stati finiti 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Al più alto livello di astrazione il progetto logico impiega un modello, la cosiddetta macchina a stati finiti, per descrivere

Dettagli

CAPITOLO 2 CIRCUITI SEQUENZIALI

CAPITOLO 2 CIRCUITI SEQUENZIALI 34 CAPITOLO 2 CIRCUITI SEQUENZIALI I circuiti sequenziali sono caratterizzati dal fatto che, in un dato istante, le uscite non dipendono solo dai livelli logici presenti sugli ingressi nello stesso istante

Dettagli

Registri. «a2» 2013.11.11 --- Copyright Daniele Giacomini -- appunti2@gmail.com http://informaticalibera.net

Registri. «a2» 2013.11.11 --- Copyright Daniele Giacomini -- appunti2@gmail.com http://informaticalibera.net «a2» 2013.11.11 --- Copyright Daniele Giacomini -- appunti2@gmail.com http://informaticalibera.net Registri Registri semplici....................................... 1823 Registri a scorrimento..................................

Dettagli

Circuiti integrati. Circuiti integrati

Circuiti integrati. Circuiti integrati Circuiti integrati Circuiti integrati Le porte logiche non vengono prodotte isolatamente, ma sono realizzate su circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o

Dettagli

Esercitazione RSS FONDAMENTI DI INFORMATICA B. Università degli studi di Parma Dipartimento di Ingegneria dell informazione DIDATTICA A DISTANZA

Esercitazione RSS FONDAMENTI DI INFORMATICA B. Università degli studi di Parma Dipartimento di Ingegneria dell informazione DIDATTICA A DISTANZA Esercitazione RSS FONDAMENTI DI INFORMATICA B DIDATTICA A DISTANZA Università degli studi di Parma Dipartimento di Ingegneria dell informazione tutore: Ing. A. Tibaldi 6 maggio 2002 INDICE 1 Indice 1 Macchine

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 3 I Discip lina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dai docenti: cognome

Dettagli

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND.

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND. 1 Elementi di memoria: flip-flop e registri Porte logiche elementari CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Livello fisico

Dettagli

Laurea Specialistica in Informatica

Laurea Specialistica in Informatica Corso di Laurea in FISICA Laurea Specialistica in Informatica Fisica dell informazione 1 Elementi di Architettura degli elaboratori Prof. Luca Gammaitoni Informazioni sul corso: www.fisica.unipg unipg.it/gammaitoni/fisinfoit/gammaitoni/fisinfo

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Controllo Remoto tramite Telefono Cellulare

Controllo Remoto tramite Telefono Cellulare I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it A.S. 2009/2010 LABORATORIO DI TELECOMUNICAZIONI

Dettagli

I Bistabili. Maurizio Palesi. Maurizio Palesi 1

I Bistabili. Maurizio Palesi. Maurizio Palesi 1 I Bistabili Maurizio Palesi Maurizio Palesi 1 Sistemi digitali Si possono distinguere due classi di sistemi digitali Sistemi combinatori Il valore delle uscite al generico istante t* dipende solo dal valore

Dettagli

Macchine a stati finiti sincrone

Macchine a stati finiti sincrone Macchine a stati finiti sincrone Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Macchine a stati finiti Dall

Dettagli

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA.

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA. a Esercizio 1. Sintetizzare un circuito sequenziale sincrono in base alle specifiche temporali riportate nel seguito. Il circuito riceve in input solo il segnale di temporizzazione (CK) e produce tre uscite,

Dettagli

Calcolatori Elettronici B a.a. 2006/2007

Calcolatori Elettronici B a.a. 2006/2007 Calcolatori Elettronici B a.a. 2006/2007 RETI LOGICHE: RICHIAMI Massimiliano Giacomin 1 Due tipi di unità funzionali Elementi di tipo combinatorio: - valori di uscita dipendono solo da valori in ingresso

Dettagli

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie apitolo 6 Reti asincrone Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie Reti sequenziali asincrone (comportamento) Elaborazione asincrona - Ogni nuovo ingresso determina: una

Dettagli

CONTATORI ASINCRONI. Fig. 1

CONTATORI ASINCRONI. Fig. 1 CONTATORI ASINCRONI Consideriamo di utilizzare tre Flip Flop J K secondo lo schema seguente: VCC Fig. 1 Notiamo subito che tuttigli ingressi J K sono collegati alle Vcc cioe allo stato logico 1, questo

Dettagli

Reti sequenziali e strutturazione firmware

Reti sequenziali e strutturazione firmware Architettura degli Elaboratori, a.a. 25-6 Reti sequenziali e strutturazione firmware Alla parte di corso sulle reti sequenziali è apportata una sensibile semplificazione rispetto a quanto contenuto nel

Dettagli

Programmazione modulare a.s.2015-2016

Programmazione modulare a.s.2015-2016 Programmazione modulare a.s.015-016 Indirizzo:Informatica \Disciplina: Telecomunicazioni Prof. MAIO Patrizia Rosi Filippo Classe:3 A 3 B Informatica ore settimanali 3 di cui di laboratorio) Libro di testo:telecomunicazioni

Dettagli

Circuiti sequenziali

Circuiti sequenziali Circuiti sequenziali - I circuiti sequenziali sono caratterizzati dal fatto che, in un dato istante tn+1 le uscite dipendono dai livelli logici di ingresso nell'istante tn+1 ma anche dagli stati assunti

Dettagli

PROGRAMMAZIONE MODULARE

PROGRAMMAZIONE MODULARE PROGRAMMAZIONE MODULARE ANNO SCOLASTICO 2013-2014 Indirizzo: ELETTROTECNICA - SIRIO Disciplina: ELETTRONICA Classe: 3^ Sezione: AES Numero di ore settimanali: 2 ore di teoria + 2 ore di laboratorio Modulo

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Elementi di memoria Sommario Elementi di memoria LATCH FLIP-FLOP 25/06/2010 Corso di Reti Logiche 2009/10 2 Elementi di memoria I circuiti elettronici

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale Corso di Calcolatori Elettronici Elementi di memoria e Registri

Università degli Studi di Cassino e del Lazio Meridionale Corso di Calcolatori Elettronici Elementi di memoria e Registri di assino e del Lazio Meridionale orso di alcolatori Elettronici Elementi di memoria e Registri Anno Accademico Francesco Tortorella Elementi di memoria Nella realizzazione di un sistema digitale è necessario

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino di assino orso di alcolatori Elettronici I Elementi di memoria e registri Anno Accademico 27/28 Francesco Tortorella Elementi di memoria Nella realizzazione di un sistema digitale è necessario utilizzare

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

Macchine a Stati finiti

Macchine a Stati finiti Macchine a Stati finiti Prof. Alberto Borghese Dipartimento di Scienze dell nformazione borghese@di.unimi.it Università degli Studi di Milano Riferimento al Patterson: Sezione B.0 /3 Sommario Macchine

Dettagli

Reti sequenziali. Nord

Reti sequenziali. Nord Reti sequenziali Nord Ovest Est Semaforo a due stati verde/rosso Sud Vogliamo definire un circuito di controllo per produrre due segnali NS ed EO in modo che: Se NS è on allora il semaforo è verde nella

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6 Ciclo di Istruzione Può essere suddiviso in 4 tipi di sequenze di microoperazioni (cioè attività di calcolo aritmetico/logico, trasferimento e memorizzazione dei dati), non tutte necessariamente da realizzare

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

I bistabili ed il register file

I bistabili ed il register file I bistabili ed il register file Prof. Alberto Borghese ipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano 1/32 Sommario I problemi dei latch trasparenti sincroni

Dettagli

Esercizi sulle Reti Sequenziali Sincronizzate

Esercizi sulle Reti Sequenziali Sincronizzate Esercizi sulle Reti Sequenziali Sincronizzate Corso di Laurea di Ing. Gestionale e di Ing. delle Telecomunicazioni A.A. 27-28 1. Disegnare il grafo di stato di una RSS di Moore avente tre ingressi A, B,

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

T9 REGISTRI, CONTATORI, MEMORIE A SEMICONDUTTORE

T9 REGISTRI, CONTATORI, MEMORIE A SEMICONDUTTORE T9 REGISTRI, CONTATORI, MEMORIE A SEMICONDUTTORE T9.1 I registri integrati hanno spesso una capacità di 4 bit o multipla di 4 bit. Nel linguaggio informatico un gruppo di 4 bit viene detto: [a] byte....

Dettagli

Classe III specializzazione elettronica. Elettrotecnica e elettronica

Classe III specializzazione elettronica. Elettrotecnica e elettronica Classe III specializzazione elettronica Elettrotecnica e elettronica Macro unità n 1 Sistema binario e porte logiche Sistema di numerazione binario: conversioni binario-decimale e decimale-binario Porte

Dettagli

39 Il linguaggio grafico a contatti

39 Il linguaggio grafico a contatti 39 Il linguaggio grafico a contatti Diagramma a contatti, ladder, diagramma a scala sono nomi diversi usati per indicare la stessa cosa, il codice grafico per la programmazione dei PLC con il linguaggio

Dettagli

Circuiti sequenziali. Circuiti sequenziali e applicazioni

Circuiti sequenziali. Circuiti sequenziali e applicazioni Circuiti sequenziali Circuiti sequenziali e applicazioni Circuiti sequenziali Prima di poter parlare delle memorie è utile dare un accenno ai circuiti sequenziali. Per circuiti sequenziali intendiamo tutti

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Chapter 1. Circuiti sequenziali: macchine a stati

Chapter 1. Circuiti sequenziali: macchine a stati Chapter 1 Circuiti sequenziali: macchine a stati Nella prima parte del corso ci siamo occupati dei circuiti combinatori. In un circuito combinatorio con un ouput Z funzione degli input X 1 ; : : : X n,

Dettagli

Reti logiche e componenti di un elaboratore

Reti logiche e componenti di un elaboratore FONDAMENTI DI INFORMATICA Ing. Davide PIERATTONI Facoltà di Ingegneria Università degli Studi di Udine Reti logiche e componenti di un elaboratore 2000-2007 P.L. Montessoro - D. Pierattoni (cfr. nota di

Dettagli

Cenni alle reti logiche. Luigi Palopoli

Cenni alle reti logiche. Luigi Palopoli Cenni alle reti logiche Luigi Palopoli Reti con reazione e memoria Le funzioni logiche e le relative reti di implementazione visto fino ad ora sono note come reti combinatorie Le reti combinatorie non

Dettagli

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori Reti Sequenziali Reti Sequenziali Corso di Architetture degli Elaboratori Caratteristiche 1 Caratteristiche delle reti sequenziali Reti combinatorie: il valore in uscita è funzione (con il ritardo indotto

Dettagli

Corso di Laurea in Informatica Architetture degli Elaboratori

Corso di Laurea in Informatica Architetture degli Elaboratori Corso di Laurea in Informatica Architetture degli Elaboratori Corsi A e B Esonero del 25 maggio 2005 Esercizio 1 (punti 3) Una scheda di memoria di un telefono cellulare mette a disposizione 8Mbyte di

Dettagli

Memorie ROM (Read Only Memory)

Memorie ROM (Read Only Memory) Memorie ROM (Read Only Memory) Considerando la prima forma canonica, la realizzazione di qualsiasi funzione di m variabili richiede un numero di porte AND pari al numero dei suoi mintermini e di prolungare

Dettagli

Macchine combinatorie

Macchine combinatorie Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Analisi e Sintesi di un sistema 1/2 Per analisi di

Dettagli

Esercitazione 2 di verifica

Esercitazione 2 di verifica Architettura degli Elaboratori, 27-8 Esercitazione 2 di verifica Soluzione: mercoledì 24 ottobre Una unità di elaborazione U è così definita: Domanda 1 i) possiede al suo interno due componenti logici

Dettagli

Flip-flop e loro applicazioni

Flip-flop e loro applicazioni Flip-flop e loro applicazioni Reti sequenziali elementari (6) L'elemento bistabile Latch o flip-flop trasparenti Temporizzazione dei flip-flop trasparenti Architettura master-slave Flip-flop non trasparenti

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA A.S. 2011-12 di dipartimento individuale del/i docenti Sarro Alessandro Mete Nicola per la classe 4TIEL 1) PREREQUISITI Concetti di matematica,fisica ed elettrotecnica. 2) SITUAZIONE DI PARTENZA

Dettagli

Flip flop: tempificazione latch ed edge-triggered

Flip flop: tempificazione latch ed edge-triggered Corso di Calcolatori Elettronici I A.A. 2010-2011 Flip flop: tempificazione latch ed edge-triggered Lezione 23-26 Università degli Studi di Napoli Federico II Facoltà di Ingegneria I flip flop - 1 Generalità

Dettagli

Architettura del computer (C.Busso)

Architettura del computer (C.Busso) Architettura del computer (C.Busso) Il computer nacque quando fu possibile costruire circuiti abbastanza complessi in logica programmata da una parte e, dall altra, pensare, ( questo è dovuto a Von Neumann)

Dettagli

Esercizi Logica Digitale,Circuiti e Bus

Esercizi Logica Digitale,Circuiti e Bus Esercizi Logica Digitale,Circuiti e Bus Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 214/214 1 2 Esercizio 1 Si consideri la funzione booleana di 3 variabili G(a,b, c) espressa dall equazione seguente:

Dettagli

Reti Logiche T. Esercizi reti sequenziali sincrone

Reti Logiche T. Esercizi reti sequenziali sincrone Reti Logiche T Esercizi reti sequenziali sincrone ESERCIZIO N. Si esegua la sintesi di una rete sequenziale sincrona caratterizzata da un unico segnale di ingresso (X) e da un unico segnale di uscita (Z),

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

Testi di Esercizi e Quesiti 1

Testi di Esercizi e Quesiti 1 Architettura degli Elaboratori, 2009-2010 Testi di Esercizi e Quesiti 1 1. Una rete logica ha quattro variabili booleane di ingresso a 0, a 1, b 0, b 1 e due variabili booleane di uscita z 0, z 1. La specifica

Dettagli

Latch pseudo-statico. Caratteristiche:

Latch pseudo-statico. Caratteristiche: Facoltà di gegneria q Caratteristiche: - circuiti più semplici rispetto a quelli di tipo statico - carica (dato) immagazzinata soggetta a leakage necessità di refresh periodico - dispositivi ad alta impedenza

Dettagli

Modelli per le macchine digitali

Modelli per le macchine digitali Reti sequenziali Modelli per le macchine digitali Ingressi Uscite i(t 0 ) i(t n ) MACCHINA DIGITALE u(t 0 ) u(t n ) TEMPO In generale l uscita di una macchina in un certo istante temporale dipenderà dalla

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ ) dove: I è l insieme finito dei simboli d ingresso

Dettagli

Circuiti sincroni Circuiti sequenziali: i bistabili

Circuiti sincroni Circuiti sequenziali: i bistabili Architettura degli Elaboratori e delle Reti Lezione 8 Circuiti sincroni Circuiti sequenziali: i bistabili Proff. A. Borghese, F. Pedersini ipartimento di Scienze dell Informazione Università degli Studi

Dettagli

I Indice. Prefazione. Capitolo 1 Introduzione 1

I Indice. Prefazione. Capitolo 1 Introduzione 1 I Indice Prefazione xi Capitolo 1 Introduzione 1 Capitolo 2 Algebra di Boole e di commutazione 7 2.1 Algebra di Boole.......................... 7 2.1.1 Proprietà dell algebra.................... 9 2.2

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Introduzione. Sintesi Sequenziale Sincrona. Modello del circuito sequenziale. Progetto e strumenti. Il modello di un circuito sincrono può essere

Introduzione. Sintesi Sequenziale Sincrona. Modello del circuito sequenziale. Progetto e strumenti. Il modello di un circuito sincrono può essere Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone di Macchine Senza Processo di Ottimizzate a Livello Comportamentale Sintesi comportamentale e architettura generale Diagramma

Dettagli

GARA NAZIONALE DI ELETTRONICA E TELECOMUNICAZIONI. PROVA SCRITTA. 7 maggio 2013

GARA NAZIONALE DI ELETTRONICA E TELECOMUNICAZIONI. PROVA SCRITTA. 7 maggio 2013 Istituto Statale di Istruzione Secondaria Superiore ETTORE MAJORANA 24068 SERIATE (BG) Via Partigiani 1 -Tel. 035-297612 - Fax 035-301672 e-mail: majorana@ettoremajorana.gov.it - sito internet: www.ettoremajorana.gov.it

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno Gli elementi di memoria: i bistabili I registri Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08 08 Circuiti sequenziali Nei circuiti sequenziali il valore delle uscite in un dato istante dipende

Dettagli

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Reti Sequenziali Asincrone Sommario: Definizione Condizioni di pilotaggio

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici RETI SEQUENZIALI : ESERCIZI Massimiliano Giacomin 1 Implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente il suo stato secondo una regola

Dettagli

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30 Elementi di Architettura e Sistemi Operativi Bioinformatica - Tiziano Villa 22 Giugno 2012 Nome e Cognome: Matricola: Posta elettronica: problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema

Dettagli

Architettura degli Elaboratori e delle Reti

Architettura degli Elaboratori e delle Reti Architettura degli Elaboratori e delle Reti Pagina lasciata intenzionalmente bianca i Indice 9 Marzo 006... 1 Insiemi... 1 Funzioni booleane... 1 Mintermini... 4 14 Marzo 006... 5 Logica proposizionale...

Dettagli

Corso di Reti Logiche. Macchine Sequenziali. Dipartimento di Informatica e Sistemistica Università degli Studi di Napoli Federico II

Corso di Reti Logiche. Macchine Sequenziali. Dipartimento di Informatica e Sistemistica Università degli Studi di Napoli Federico II Corso di Reti Logiche Macchine Sequenziali Dipartimento di Informatica e Sistemistica Università degli Studi di Napoli Federico II 1 Macchine sequenziali Š Includono il fattore tempo nel funzionamento

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

INTRODUZIONE ALLE MACCHINE A STATI

INTRODUZIONE ALLE MACCHINE A STATI Architettura degli Elaboratori I INTRODUZIONE ALLE MACCHINE A STATI Filippo Mantovani Corso di Laurea in Informatica Università degli Studi di Ferrara Ferrara, 08 Maggio 2008 Tante parti, un unico scopo...

Dettagli