Macchine combinatorie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Macchine combinatorie"

Transcript

1 Corso di Calcolatori Elettronici I A.A Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria

2 Analisi e Sintesi di un sistema 1/2 Per analisi di un sistema si intende l'individuazione delle relazioni di causa/effetto tra i segnali di ingresso e uscita, attraverso l'esame di una rappresentazione schematica dei suoi componenti elementari e dei collegamenti che li interconnettono, ovvero: data la rappresentazione schematica del sistema, individuarne il comportamento. Per sintesi di un sistema si intende l'individuazione dei componenti e delle interconnessioni necessarie per realizzarlo seguendo la preassegnata specifica funzionale: data la specifica funzionale individuarne la struttura.

3 Analisi e Sintesi di un sistema 2/2 Analisi Data la descrizione della STRUTTURA (come è fatta) Sintesi Data la descrizione del COMPORTAMENTO (cosa deve fare) Determinarne il COMPORTAMENTO (cosa fa) Determinarne la STRUTTURA (come è fatta)

4 Tassonomia dei circuiti digitali I circuiti digitali possono essere classificati in due categorie Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli ingressi in quello stesso istante. Circuiti sequenziali Il valore delle uscite in un determinato istante dipende sia dal valore degli ingressi in quell istante sia dal valore degli ingressi in istanti precedenti Per definire il comportamento di un circuito sequenziale è necessario tenere conto della storia passata degli ingressi del circuito La definizione di circuito sequenziale implica due concetti: Il concetto di tempo Il concetto di stato

5 Macchine combinatorie Reti logiche con n ingressi x 1, x 2,, x n e m uscite y 1, y 2,, y m che realizzano la corrispondenza: y 1 = f 1 (x 1, x 2,, x n ) y m = f m (x 1, x 2,, x n ) x 1 y 1 x n y m

6 La macchina combinatoria: un esempio Il campanello 1 ingresso (il pulsante), con due possibili valori (premuto, rilasciato) 1 uscita (la suoneria), con due possibili valori (suono, nessun suono) x: pulsante y: suoneria Premuto Suono y = f(x) Rilasciato Nessun suono

7 Macchine combinatorie Ø Una macchina combinatoria è una rete logica con n ingressi (x 1, x 2,, x n ) ed m uscite (y 1, y 2,, y m ) ed è tale che ad ogni insieme di valori degli ingressi corrisponde un preciso insieme di valori delle uscite Ø Il comportamento di una rete combinatoria nxm può essere descritto tramite:» una tabella di verità in cui viene specificato il valore dell uscita per ognuna delle possibili combinazioni dei valori degli ingressi» m funzioni booleane, una per ogni uscita, ciascuna delle quali esprime il valore della corrispondente variabile di uscita in funzione delle n variabili di ingresso

8 I limiti delle macchine reali Tempo di risposta Una rete ideale reagisce istantaneamente ad ogni sollecitazione in ingresso, ovvero U(t)=ω (I(t)) In una rete reale la variazione dell uscita a fronte di una variazione degli ingressi avviene con un ritardo Δ (tempo di risposta): U(t+Δ)= ω(i(t)) I Δ a) U Ritardo puro I ω Δ U b)

9 Il Tempo di risposta Il Tempo di risposta di una macchina è il ritardo d=t f t i con il quale una variazione sull ingresso è seguita da una variazione sull uscita X1 X2 y

10 Macchine combinatorie In una macchina combinatoria i valori delle uscite dipendono esclusivamente dai valori degli ingressi macchina combinatoria ideale: tale dipendenza è istantanea macchina combinatoria reale: presenza di ritardo tra l istante in cui c è una variazione in uno degli ingressi e l istante in cui l effetto di questa variazione si manifesta sulle uscite E importante notare come ciascuna y i può essere decomposta in funzioni componenti due distinte y i possono contenere una identica funzione componente Ciò comporta, ad esempio, una potenziale diminuzione di porte elementari rispetto ad una realizzazione indipendente delle y i

11 Decodificatore (decoder) 1 su m Un decodificatore è una macchina che riceve in ingresso una parola codice (C) su n bit e presenta in uscita la sua rappresentazione decodificata (linee U 0, U N-1 ) su m=2 n bit C o U 0 C n-1 U m-1

12 Decoder 1 su 4 Esempio: decoder 1:4 B A U 0 U 1 U 2 U 3 U 0 = B. A U 1 = B. A U 2 = B. A U 3 = B. A A B

13 Composizione modulare di Decoder 4:16 1 C D A B DEC 2:4 U 0 U 1 U 2 U 3 DEC 2:4 DEC 2:4 DEC 2:4 DEC 2:4 U 0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9 U 10 U 11 U 12 U 13 U 14 U 15

14 Encoder o codificatore Un codificatore riceve in ingresso una rappresentazione decodificata (linee x 0, x m-1 ) e fornisce in uscita una rappresentazione con un codice a lunghezza fissa di n bit L uscita è la parola codice associata a x i se x i =1 ed α=1 (abilitazione) Vincolo su ingressi: x i x j = 0 per i j x 0 x N-1 z o z m-1 α

15 Codificatore a 4 ingressi

16 z 3 = x 8 +x 9 Codificatore z 2 = x 4 +x 5 + x 6 +x 7 z 1 = x 2 +x 3 + x 6 +x 7 z 0 = x 1 +x 3 + x 5 +x 7 +x 9 cifra Espressioni ottenute considerando opportunamente le configurazioni di ingresso dont care CODICE D

17 Arbitro di priorità q Un codificatore può essere preceduto da una rete a priorità che, in caso di più ingressi contemporaneamente alti, filtra quello con priorità assegnata maggiore Rete a priorità n ingressi X i n uscite corrispondenti F i, che rappresentano gli ingressi del codificatore fra gli ingressi è definita una priorità, ad esempio: per fissare le idee «X i è prioritario su X j se i < j» L'uscita Y i è alta se e solo se X i è alto e tutti gli altri ingressi prioritari su X i sono bassi. F F F 1 2 n = = = X X X 1 2 n X X 1 n 1 X 1

18 Arbitro di priorità a 4 ingressi

19 Multiplexer lineare Un Multiplexer lineare (ML) è una macchina con: n ingressi-dati (A 0,,A n-1 ) n segnali binari di selezione (α 0,, α n-1 ), dei quali al più uno è attivo una uscita-dati B, che assume valore A i se è attivo α i neutro se nessuna delle selezioni è attiva A 0 utilizzata quando più linee devono essere convogliate verso un unica linea di uscita (bus) A n-1 MUXL B α 0 α n-1

20 Multiplexer lineare - realizzazioni B = A 0 α 0 + A 1 α A n-1 α n-1, n=4 Realizzazione I Con porte AND e OR Realizzazione II A S Uscita 0 0 z z Con porte 3-state S=1, restituisce il valore di A S=0, restituisce un alta impedenza (apre il circuito)

21 Multiplexer (indirizzabile) Multiplexer Lineare i cui segnali di abilitazione sono collegati con le uscite di un decodificatore A 0 A N-1 MUX B α 0 α N-1 C

22 Demultiplexer lineare Un Demultiplexer Lineare è una macchina con: 1 ingresso-dati B n segnali binari di selezione (α 0,, α n-1 ), dei quali al più uno è attivo n uscite-dati (A 0,,A n-1 ), con A i =B se è attivo α i neutro se nessuna delle selezioni è attiva B DMUXL α 0 α n-1 A 0 A n-1

23 Demultiplexer (indirizzabile) Demultiplexer Lineare i cui segnali di abilitazione sono collegati con le uscite di un decodificatore A 0 B DEMUX A N-1 α 0 α N-1 C

24 Multiplexer binario Se i dati A i e B sono vettori di bit, che viaggiano su un bus si parla genericamente di multiplexer o demultiplexer A 0 A n-1 MUXL B Se i dati A i e B sono singoli bit si parla di multiplexer o demultiplexer binario A 0 A n-1 α 0 α n-1 MUXL B α 0 α n- 1

25 Muxl/Dmuxl: un esempio Supponiamo di avere un centralino telefonico in cui n utenti sorgente vogliono parlare con m utenti destinazione vincolo: l utente di destinazione abilitato deve sentire solo l utente sorgente abilitato A 0 A 1 MUXL DMUXL B 0 B 1 A n Linee di sel. utente sorgente Linee di sel. utente destinaz. B m-1 L utente A 1 è abilitato a parlare con l utente B m-1

26 Half Adder r

27 Full Adder (1/2) r r

28 Full Adder (2/2) R = XYr + XYr + XY r + XYr = XY + Yr + Xr r

29 Full Adder con 2 Half Adder

30 Addizionatore binario E possibile isolare il fattore (a b) Rielaborando le precedenti espressioni è quindi possibile ottenere le seguenti espressioni per l addizionatore completo: S R = ( a b) r = H r = ab + r( a b) = G + rh

31 Addizionatore binario Pertanto, un addizionatore completo può essere ottenuto a partire da due semiaddizionatori: S = ( a b) r = H r R = a b + r ( a b) = G + r H a b HA G = a b H = a b R= G + H r r HA H r S = H r

32 Addizionatore binario: riporto Le diverse componenti dell espressione di R assumono un significato particolare: G = a b riporto generato : indica la creazione di un riporto all interno dell addizionatore binario P = H = a b riporto propagato : indica se, in presenza di un riporto in ingresso, lo stesso verrò propagato in uscita Il riporto in uscita può quindi essere espresso come R=G+Pr

33 Addizionatore binario Per il semiaddizionatore valgono le eguaglianze H = a b = d( a, b) = ab + ab G = a b Similmente per l addizionatore completo valgono le eguaglianze S = a b r = d( a, b, r) = abr + abr + abr + abr R = abr + abr + abr + abr = ab + br + ar = ab + r( a + b)

34 Addizionatori binari n i = r i non-riporto Indica assenza di riporto in ingresso K i = a i b i Riporto killed Indica che, indipendentemente dalla presenza di un riporto entrante, il riporto in uscita sarà comunque zero N i = K i + P i n i Propagazione del non-riporto Indica assenza di riporto in uscita

35 R i X i Y i S i Addizionatori seriali Usa un unico addizionatore operante sulla singola cifra Opera in momenti successivi su cifre diverse degli addendi Richiede un blocco con memoria E lento rispetto ad addizionatori che lavorano in parallelo sulle diverse cifre degli addendi r i Add - Δ mod - b

36 Addizionatore binario parallelo Opera sulle cifre degli addendi in parallelo anche se il riporto deve propagarsi attraverso l intera struttura Richiede un numero maggiore di risorse rispetto all addizionatore seriale X n - 1 Y n - 1 R n - 1 r 2 X 1 Y 1 X Y 0 0 r 1 R =c 0 Add - Add - Add - mod - b mod - b mod - b C= R n - 1 S n - 1 R n - 2 R 1 S 1 R 0 S 0

37 Addizionatore parallelo: tempo di risposta Gli addizionatori ottenuti collegando in cascata n addizionatori di cifra sono anche chiamati addizionatori a propagazione del riporto (carry-ripple o carry-propagate) ε = tempo di risposta di uno stadio Allo stadio i, il riporto uscente o è generato o è ucciso o è propagato Tempo di ritardo complessivo: Limite inferiore ε (in tutti gli stadi il riporto è generato o ucciso) Tempo di ritardo complessivo: Limite superiore nε (un riporto entrante nel primo stadio che è propagato in tutti gli stadi) Tempo di ritardo complessivo = kε (k n), dove k è la più lunga catena di condizioni di propagazione.

38 Porte di parola Porte con abilitazione: B=αA = α AND A Parola: Vettore di bit V = {v o, v 1,, v n } Porta di parola con abiitazione: α V = {α v o,, α v n } Porta generica di parola: A AND B = = {a 0 AND b 0,, a n AND b n }

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Corso di Calcolatori Elettronici I A.A. 20-202 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 5 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di

Dettagli

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I)

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Codifica delle Informazioni T insieme delle informazioni da rappresentare E insieme

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 2007-2008 Logica Combinatoria una rete combinatoria

Dettagli

Componenti combinatori

Componenti combinatori Componenti combinatori Reti combinatorie particolari (5.., 5.3-5.8, 5.) Reti logiche per operazioni aritmetiche Decoder ed encoder Multiplexer Dispositivi programmabili: PROM e PLA Reti combinatorie particolari

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

Circuiti logici. Parte xxv

Circuiti logici. Parte xxv Parte xxv Circuiti logici Operatori logici e porte logiche....................... 729 Operatori unari....................................... 730 Connettivo AND...................................... 730

Dettagli

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Memorie ROM (Read Only Memory)

Memorie ROM (Read Only Memory) Memorie ROM (Read Only Memory) Considerando la prima forma canonica, la realizzazione di qualsiasi funzione di m variabili richiede un numero di porte AND pari al numero dei suoi mintermini e di prolungare

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

1. Operazioni in logica binaria e porte logiche

1. Operazioni in logica binaria e porte logiche 1. Operazioni in logica binaria e porte logiche Espressione di un numero in base 10 (notare a pedice p.es del numero 21); 21 10 =210 1 +110 0 527,98 10 =5 10 2 +2 10 1 +7 10 0 +9 10 1 +8 10 2 407,563 10

Dettagli

Sottrazione Logica. Sottrattore Parallelo

Sottrazione Logica. Sottrattore Parallelo Sottrazione Logica Il progetto digitale deve provvedere, con sofisticate macchine combinatorie, al supporto di tutte le operazioni aritmetiche; in questa puntata ci occupiamo dei dispositivi chiamati a

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Circuiti Addizionatori

Circuiti Addizionatori Circuiti Addizionatori Corso di Reti Logiche, a.a. 2008/09 - ing. Alessandro Cilardo Si ringrazia Dario Socci per il contributo fornito alla realizzazione di queste dispense 1 Circuiti Addizionatori Gli

Dettagli

LE RETI COMBINATORIE

LE RETI COMBINATORIE 2-1 CAPITOLO II LE RETI COMBINATORIE 2.1 INTRODUZIONE Le reti combinatorie sono reti logiche caratterizzate dal fatto che lo stato dell'uscita all'istante t dipende solo dallo stato delle entrate allo

Dettagli

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere:

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene LIBRI DI TESTO: Autore: Conte/Ceserani/Impallomeni Titolo: ELETTRONICA ED ELETTROTECNICA

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

U 1 . - - . - - Interfaccia. U m

U 1 . - - . - - Interfaccia. U m Introduzione La teoria delle reti logiche tratta problemi connessi con la realizzazione e il funzionamento di reti per l elaborazione dell informazione (il termine logico deriva dalla stretta parentela

Dettagli

Circuiti logici combinatori

Circuiti logici combinatori Circuiti logici combinatori - Prof. G. Acciari - M.M. Mano C.R.Kime, RETI LOGICHE IV ed, Pearson Prentice Hall Cap..,.,.6,.7,.8,.9 Ing. G. Acciari - Circuiti Logici (ver..) A.A. / Circuiti logici combinatori

Dettagli

Logica binaria. Porte logiche.

Logica binaria. Porte logiche. Logica binaria Porte logiche. Le porte logiche sono gli elementi fondamentali su cui si basa tutta la logica binaria dei calcolatori. Ricevono in input uno, due (o anche più) segnali binari in input, e

Dettagli

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6 Ciclo di Istruzione Può essere suddiviso in 4 tipi di sequenze di microoperazioni (cioè attività di calcolo aritmetico/logico, trasferimento e memorizzazione dei dati), non tutte necessariamente da realizzare

Dettagli

Laboratorio di Architettura degli Elaboratori - A.A. 2012/13

Laboratorio di Architettura degli Elaboratori - A.A. 2012/13 Università di Udine - Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Laboratorio di Architettura degli Elaboratori - A.A. 2012/13 Circuiti logici, lezione 1 Sintetizzare

Dettagli

Sommario. Addizione naturale

Sommario. Addizione naturale Sommario Introduzione Rappresentazione dei numeri interi positivi Rappresentazione dei numeri interi Operazioni aritmetiche Modulo e segno Addizione e sottrazione urale Addizione e sottrazione in complemento

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

2.1 Rappresentazione binaria dell informazione I Interruttore I 0 alto 1 1 basso 0

2.1 Rappresentazione binaria dell informazione I Interruttore I 0 alto 1 1 basso 0 Capitolo 2 Bit 2. - Rappresentazione dell informazione 2.2 Codici binari 2.3 - Trasmissione dell informazione 2.4 - Protezione dell informazione Descrizione dei segnali Variabili binarie Bit (binary digit)

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

che vengano generati nell ordine corretto i sistema (es., la memoria, l unità aritmetico-

che vengano generati nell ordine corretto i sistema (es., la memoria, l unità aritmetico- Principi di architetture dei calcolatori: l unità di controllo Mariagiovanna Sami L unità di controllo Per eseguire le istruzioni di macchina, occorre che vengano generati nell ordine corretto i segnali

Dettagli

Descrizione VHDL di componenti combinatori

Descrizione VHDL di componenti combinatori Descrizione VHDL di componenti combinatori 5 giugno 2003 1 Decoder Il decoder è un componente dotato di N ingressi e 2 N uscite. Le uscite sono poste tutte a 0 tranne quella corrispondente al numero binario

Dettagli

Architettura del computer (C.Busso)

Architettura del computer (C.Busso) Architettura del computer (C.Busso) Il computer nacque quando fu possibile costruire circuiti abbastanza complessi in logica programmata da una parte e, dall altra, pensare, ( questo è dovuto a Von Neumann)

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.7. Il moltiplicatore binario e il ciclo di base di una CPU

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.7. Il moltiplicatore binario e il ciclo di base di una CPU Lezione n.7 Il moltiplicatore binario e il ciclo di base di una CPU 1 SOMMARIO Architettura del moltiplicatore Architettura di base di una CPU Ciclo principale di base di una CPU Riprendiamo l analisi

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

Lezione n.19 Processori RISC e CISC

Lezione n.19 Processori RISC e CISC Lezione n.19 Processori RISC e CISC 1 Processori RISC e Superscalari Motivazioni che hanno portato alla realizzazione di queste architetture Sommario: Confronto tra le architetture CISC e RISC Prestazioni

Dettagli

Von Neumann. John Von Neumann (1903-1957)

Von Neumann. John Von Neumann (1903-1957) Linguaggio macchina Von Neumann John Von Neumann (1903-1957) Inventore dell EDVAC (Electronic Discrete Variables AutomaFc Computer), la prima macchina digitale programmabile tramite un soiware basata su

Dettagli

Reti sequenziali e strutturazione firmware

Reti sequenziali e strutturazione firmware Architettura degli Elaboratori, a.a. 25-6 Reti sequenziali e strutturazione firmware Alla parte di corso sulle reti sequenziali è apportata una sensibile semplificazione rispetto a quanto contenuto nel

Dettagli

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella Corso di Fondamenti di Informatica Codifica di dati e istruzioni Anno Accademico 2010/2011 Francesco Tortorella La codifica dei dati e delle istruzioni La più piccola unità di informazione memorizzabile

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Il corso di INFORMATICA

Il corso di INFORMATICA Docente: Maurizio QUARTA Il corso di INFORMATICA BIOTECNOLOGIE 25/6 6 CFU E-mail: maurizio.quarta@unisalento.it m.quarta@alice.it Tel: 832-297532 Ricevimento: martedi dalle 9.3 alle.3 altri giorni per

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA A.S. 2011-12 di dipartimento individuale del/i docenti Sarro Alessandro Mete Nicola per la classe 4TIEL 1) PREREQUISITI Concetti di matematica,fisica ed elettrotecnica. 2) SITUAZIONE DI PARTENZA

Dettagli

Macchine sequenziali sincrone. Macchine sincrone

Macchine sequenziali sincrone. Macchine sincrone Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali sincrone Lezione 27 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea in Ingegneria

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

RETI COMBINATORIE CON USCITE MULTIPLE 1 GENERALITÀ SUI CONVERTITORI DI CODICE Un uso delle porte logiche nei sistemi digitali è quello dei convertitori di codice. I codici più usati comunemente sono: binario,

Dettagli

Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18

Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18 Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Calcolatore: sottosistemi Processore o CPU (Central Processing

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Lezione n.9. Introduzione al linguaggio macchina

Lezione n.9. Introduzione al linguaggio macchina Lezione n.9 Autore:Luca Orrù 1 Sommario Esecuzione delle istruzioni Architettura interna ed esterna Linguaggio assembler e modi d indirizzamento Consideriamo ora la singola istruzione e la scomponiamo

Dettagli

Dispense di elettronica digitale per il corso di LAB 2 B

Dispense di elettronica digitale per il corso di LAB 2 B Dispense di elettronica digitale per il corso di LAB 2 B Prof. Flavio Fontanelli Versione 1.2 5 aprile 2006 Copyright 2000-2005. Questo documento è protetto dalla legge sul diritto di autore, e di proprietà

Dettagli

SISTEMI DI TELECOMUNICAZIONI

SISTEMI DI TELECOMUNICAZIONI SISTEMI DI TELECOMUNICAZIONI RETI TELEFONICHE Generalità Nessuna dipendenza dall estensione della rete Copertura locale Interconnessione a lunga distanza Trasporto della voce a commutazione di circuito

Dettagli

Università di Roma La Sapienza Dipartimento INFOCOM

Università di Roma La Sapienza Dipartimento INFOCOM Università di Roma La Sapienza Dipartimento INFOCOM Corso di Reti di Telecomunicazioni Raccolta di esercizi relativi agli appelli d esame degli Anni Accademici 1998-1999, 1999-2000, 2000-2001 e 2001-2002.

Dettagli

Esercizio sugli automi di Moore

Esercizio sugli automi di Moore Esercizio sugli automi di Moore 1. Sintesi di un automa di Moore: Gestione di Parcheggio. Si vuole costruire una rete sequenziale che controlli un parcheggio dotato di tre posti auto: Semaforo Entrata

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

appunti di CALCOLATORI ELETTRONICI I

appunti di CALCOLATORI ELETTRONICI I copyright (c) 2005 stefano frangioni. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Testi di Esercizi e Quesiti 1

Testi di Esercizi e Quesiti 1 Architettura degli Elaboratori, 2009-2010 Testi di Esercizi e Quesiti 1 1. Una rete logica ha quattro variabili booleane di ingresso a 0, a 1, b 0, b 1 e due variabili booleane di uscita z 0, z 1. La specifica

Dettagli

Introduzione. Università degli studi di Cassino. Ing. Saverio De Vito e-mail: saverio.devito@portici.enea.it Tel.: +39 081 7723364

Introduzione. Università degli studi di Cassino. Ing. Saverio De Vito e-mail: saverio.devito@portici.enea.it Tel.: +39 081 7723364 Università degli studi di Cassino Corso di Laurea in Ingegneria della Produzione Industriale Corso di Informatica Applicata Introduzione Ing Saverio De e-mail: saveriodevito@porticieneait Tel: +39 8 7723364

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Lezione 2: Codifica binaria dell informazione. Codifica binaria

Lezione 2: Codifica binaria dell informazione. Codifica binaria Lezione 2: Codifica binaria dell informazione Codifica binaria Elaborazione di dati binari Materiale didattico Lucidi delle lezioni, disponibili al sito: http://wwwinfo.deis.unical.it/~irina Oppure sul

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

logiche LE PORTE Nelle prime due lezioni del Corso di Elettronica Digitale (parte terza)

logiche LE PORTE Nelle prime due lezioni del Corso di Elettronica Digitale (parte terza) & imparare & approfondire di GIANLORENZO VALLE Corso di Elettronica Digitale (parte terza) LE PORTE logiche In questa puntata poniamo le prime basi per comprendere meglio il funzionamento delle porte logiche

Dettagli

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie Architettura degli elaboratori - modulo A Anno Accademico 2 / 2 Capitolo 6 - Memorie Una cella di memoria in un sistema digitale è un qualcosa in grado di memorizzare il valore booleano che una variabile

Dettagli

"Elettronica di Millman 4/ed" Jacob Millman, Arvin Grabel, Pierangelo Terreni Copyright 2008 The McGraw-Hill Companies srl. 16 to 1 MUX.

Elettronica di Millman 4/ed Jacob Millman, Arvin Grabel, Pierangelo Terreni Copyright 2008 The McGraw-Hill Companies srl. 16 to 1 MUX. Copyright 008 The McGraw-Hill Companies srl Esercizi Cap 6 6 Disegnare lo schema a blocchi di una OM 04 x 4 bit con un indirizzamento bidimensionale a) Quante porte NAND sono necessarie? b) Quanti transistori

Dettagli

Microcontrollore. Ora invece passiamo a spiegare come funzionano i convertitori A/D interni ai microcontrollori

Microcontrollore. Ora invece passiamo a spiegare come funzionano i convertitori A/D interni ai microcontrollori Microcontrollore Il microcontrollore è un sistema a microprocessore completo,integrato in un unico chip, progettato per avere la massima autosufficienza e versatilità. Infatti visto il loro prezzo esiguo,

Dettagli

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Dispense Introduzione al calcolatore Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Nota: Queste dispense integrano e non sostituiscono quanto scritto sul libro di testo. 1 Sistemi di

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici ISA di riferimento: MIPS Massimiliano Giacomin 1 DOVE CI TROVIAMO Livello funzionale Livello logico Livello circuitale Livello del layout istruzioni macchina, ISA Reti logiche:

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Flip-flop, registri, la macchina a stati finiti

Flip-flop, registri, la macchina a stati finiti Architettura degli Elaboratori e delle Reti Lezione 9 Flip-flop, registri, la macchina a stati finiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell nformazione Università degli Studi di

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Università degli Studi di Messina Facolta di Ingegneria - 98100 Messina Tel. (090) 393229 - Fax (090) 393502 Fondamenti di Informatica Ing. delle Tecnologie Industriali Docente: Ing. Mirko Guarnera 1 Sistemi

Dettagli

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch.

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch. Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE Comunicazione importante dalla prossima settimana, la lezione del venerdì si terrà: dalle 15:00 alle 17.15 in aula 311 l orario

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema

Trasmissione Dati. Trasmissione Dati. Sistema di Trasmissione Dati. Prestazioni del Sistema I semestre 03/04 Trasmissione Dati Trasmissione Dati Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Ogni tipo di informazione può essere rappresentata come insieme

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Maglia ad aggancio di fase analogica Generalità

Maglia ad aggancio di fase analogica Generalità Maglia ad aggancio di fase analogica Generalità E un circuito elettronico progettato per generare un'onda di una specifica frequenza, sincronizzata con un'onda di alore dierso, fornita in ingresso. L anello

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

CPU. Maurizio Palesi

CPU. Maurizio Palesi CPU Central Processing Unit 1 Organizzazione Tipica CPU Dispositivi di I/O Unità di controllo Unità aritmetico logica (ALU) Terminale Stampante Registri CPU Memoria centrale Unità disco Bus 2 L'Esecutore

Dettagli

Aritmetica binaria sui numeri relativi (somme e sottrazioni) e Unità aritmetiche

Aritmetica binaria sui numeri relativi (somme e sottrazioni) e Unità aritmetiche Aritmetica binaria sui numeri relativi (somme e sottrazioni) e Unità aritmetiche Esercizi da laboratorio ed esercizi per l esame 30 ottobre 20 Reti Logiche Numeri relativi: rappresentazione in complemento

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

La microarchitettura. Didattica della strumentazione digitale e sistemi a microprocessore anno accademico 2006 2007 pagina 1

La microarchitettura. Didattica della strumentazione digitale e sistemi a microprocessore anno accademico 2006 2007 pagina 1 La microarchitettura. anno accademico 2006 2007 pagina 1 Integer Java virtual machine Ogni microprocessore può avere una microarchitettura diversa, ma la modalità di funzionamento per certi aspetti è generale.

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

Laboratorio di Informatica Corso di Laurea in Matematica A.A. 2007/2008

Laboratorio di Informatica Corso di Laurea in Matematica A.A. 2007/2008 Laboratorio di Informatica Corso di Laurea in Matematica A.A. 2007/2008 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 11/01/08 Nota Questi lucidi sono

Dettagli

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Classe IIIG Il recupero estivo nella materia sarà valutato con un test scritto, durante i giorni dedicati

Dettagli

Università degli studi di Lecce

Università degli studi di Lecce Università degli studi di Lecce Tesina di elettronica 2 Studente: Distante Carmelo Facoltà: Ingegneria Informatica teledidattica Generatore di Numeri casuali Anno Accademico 2002/2003 Generatore di numeri

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof.

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof. Interfacce di Comunicazione Università degli studi di Salerno Laurea in Informatica I semestre 03/04 Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ 2 Trasmissione

Dettagli

Informatica B a.a 2005/06 (Meccanici 4 squadra) PhD. Ing. Michele Folgheraiter

Informatica B a.a 2005/06 (Meccanici 4 squadra) PhD. Ing. Michele Folgheraiter Informatica B a.a 2005/06 (Meccanici 4 squadra) Scaglione: da PO a ZZZZ PhD. Ing. Michele Folgheraiter Architettura del Calcolatore Macchina di von Neumann Il calcolatore moderno è basato su un architettura

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli