Macchine combinatorie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Macchine combinatorie"

Transcript

1 Corso di Calcolatori Elettronici I A.A Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria

2 Analisi e Sintesi di un sistema 1/2 Per analisi di un sistema si intende l'individuazione delle relazioni di causa/effetto tra i segnali di ingresso e uscita, attraverso l'esame di una rappresentazione schematica dei suoi componenti elementari e dei collegamenti che li interconnettono, ovvero: data la rappresentazione schematica del sistema, individuarne il comportamento. Per sintesi di un sistema si intende l'individuazione dei componenti e delle interconnessioni necessarie per realizzarlo seguendo la preassegnata specifica funzionale: data la specifica funzionale individuarne la struttura.

3 Analisi e Sintesi di un sistema 2/2 Analisi Data la descrizione della STRUTTURA (come è fatta) Sintesi Data la descrizione del COMPORTAMENTO (cosa deve fare) Determinarne il COMPORTAMENTO (cosa fa) Determinarne la STRUTTURA (come è fatta)

4 Tassonomia dei circuiti digitali I circuiti digitali possono essere classificati in due categorie Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli ingressi in quello stesso istante. Circuiti sequenziali Il valore delle uscite in un determinato istante dipende sia dal valore degli ingressi in quell istante sia dal valore degli ingressi in istanti precedenti Per definire il comportamento di un circuito sequenziale è necessario tenere conto della storia passata degli ingressi del circuito La definizione di circuito sequenziale implica due concetti: Il concetto di tempo Il concetto di stato

5 Macchine combinatorie Reti logiche con n ingressi x 1, x 2,, x n e m uscite y 1, y 2,, y m che realizzano la corrispondenza: y 1 = f 1 (x 1, x 2,, x n ) y m = f m (x 1, x 2,, x n ) x 1 y 1 x n y m

6 La macchina combinatoria: un esempio Il campanello 1 ingresso (il pulsante), con due possibili valori (premuto, rilasciato) 1 uscita (la suoneria), con due possibili valori (suono, nessun suono) x: pulsante y: suoneria Premuto Suono y = f(x) Rilasciato Nessun suono

7 Macchine combinatorie Ø Una macchina combinatoria è una rete logica con n ingressi (x 1, x 2,, x n ) ed m uscite (y 1, y 2,, y m ) ed è tale che ad ogni insieme di valori degli ingressi corrisponde un preciso insieme di valori delle uscite Ø Il comportamento di una rete combinatoria nxm può essere descritto tramite:» una tabella di verità in cui viene specificato il valore dell uscita per ognuna delle possibili combinazioni dei valori degli ingressi» m funzioni booleane, una per ogni uscita, ciascuna delle quali esprime il valore della corrispondente variabile di uscita in funzione delle n variabili di ingresso

8 I limiti delle macchine reali Tempo di risposta Una rete ideale reagisce istantaneamente ad ogni sollecitazione in ingresso, ovvero U(t)=ω (I(t)) In una rete reale la variazione dell uscita a fronte di una variazione degli ingressi avviene con un ritardo Δ (tempo di risposta): U(t+Δ)= ω(i(t)) I Δ a) U Ritardo puro I ω Δ U b)

9 Il Tempo di risposta Il Tempo di risposta di una macchina è il ritardo d=t f t i con il quale una variazione sull ingresso è seguita da una variazione sull uscita X1 X2 y

10 Macchine combinatorie In una macchina combinatoria i valori delle uscite dipendono esclusivamente dai valori degli ingressi macchina combinatoria ideale: tale dipendenza è istantanea macchina combinatoria reale: presenza di ritardo tra l istante in cui c è una variazione in uno degli ingressi e l istante in cui l effetto di questa variazione si manifesta sulle uscite E importante notare come ciascuna y i può essere decomposta in funzioni componenti due distinte y i possono contenere una identica funzione componente Ciò comporta, ad esempio, una potenziale diminuzione di porte elementari rispetto ad una realizzazione indipendente delle y i

11 Decodificatore (decoder) 1 su m Un decodificatore è una macchina che riceve in ingresso una parola codice (C) su n bit e presenta in uscita la sua rappresentazione decodificata (linee U 0, U N-1 ) su m=2 n bit C o U 0 C n-1 U m-1

12 Decoder 1 su 4 Esempio: decoder 1:4 B A U 0 U 1 U 2 U 3 U 0 = B. A U 1 = B. A U 2 = B. A U 3 = B. A A B

13 Composizione modulare di Decoder 4:16 1 C D A B DEC 2:4 U 0 U 1 U 2 U 3 DEC 2:4 DEC 2:4 DEC 2:4 DEC 2:4 U 0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9 U 10 U 11 U 12 U 13 U 14 U 15

14 Encoder o codificatore Un codificatore riceve in ingresso una rappresentazione decodificata (linee x 0, x m-1 ) e fornisce in uscita una rappresentazione con un codice a lunghezza fissa di n bit L uscita è la parola codice associata a x i se x i =1 ed α=1 (abilitazione) Vincolo su ingressi: x i x j = 0 per i j x 0 x N-1 z o z m-1 α

15 Codificatore a 4 ingressi

16 z 3 = x 8 +x 9 Codificatore z 2 = x 4 +x 5 + x 6 +x 7 z 1 = x 2 +x 3 + x 6 +x 7 z 0 = x 1 +x 3 + x 5 +x 7 +x 9 cifra Espressioni ottenute considerando opportunamente le configurazioni di ingresso dont care CODICE D

17 Arbitro di priorità q Un codificatore può essere preceduto da una rete a priorità che, in caso di più ingressi contemporaneamente alti, filtra quello con priorità assegnata maggiore Rete a priorità n ingressi X i n uscite corrispondenti F i, che rappresentano gli ingressi del codificatore fra gli ingressi è definita una priorità, ad esempio: per fissare le idee «X i è prioritario su X j se i < j» L'uscita Y i è alta se e solo se X i è alto e tutti gli altri ingressi prioritari su X i sono bassi. F F F 1 2 n = = = X X X 1 2 n X X 1 n 1 X 1

18 Arbitro di priorità a 4 ingressi

19 Multiplexer lineare Un Multiplexer lineare (ML) è una macchina con: n ingressi-dati (A 0,,A n-1 ) n segnali binari di selezione (α 0,, α n-1 ), dei quali al più uno è attivo una uscita-dati B, che assume valore A i se è attivo α i neutro se nessuna delle selezioni è attiva A 0 utilizzata quando più linee devono essere convogliate verso un unica linea di uscita (bus) A n-1 MUXL B α 0 α n-1

20 Multiplexer lineare - realizzazioni B = A 0 α 0 + A 1 α A n-1 α n-1, n=4 Realizzazione I Con porte AND e OR Realizzazione II A S Uscita 0 0 z z Con porte 3-state S=1, restituisce il valore di A S=0, restituisce un alta impedenza (apre il circuito)

21 Multiplexer (indirizzabile) Multiplexer Lineare i cui segnali di abilitazione sono collegati con le uscite di un decodificatore A 0 A N-1 MUX B α 0 α N-1 C

22 Demultiplexer lineare Un Demultiplexer Lineare è una macchina con: 1 ingresso-dati B n segnali binari di selezione (α 0,, α n-1 ), dei quali al più uno è attivo n uscite-dati (A 0,,A n-1 ), con A i =B se è attivo α i neutro se nessuna delle selezioni è attiva B DMUXL α 0 α n-1 A 0 A n-1

23 Demultiplexer (indirizzabile) Demultiplexer Lineare i cui segnali di abilitazione sono collegati con le uscite di un decodificatore A 0 B DEMUX A N-1 α 0 α N-1 C

24 Multiplexer binario Se i dati A i e B sono vettori di bit, che viaggiano su un bus si parla genericamente di multiplexer o demultiplexer A 0 A n-1 MUXL B Se i dati A i e B sono singoli bit si parla di multiplexer o demultiplexer binario A 0 A n-1 α 0 α n-1 MUXL B α 0 α n- 1

25 Muxl/Dmuxl: un esempio Supponiamo di avere un centralino telefonico in cui n utenti sorgente vogliono parlare con m utenti destinazione vincolo: l utente di destinazione abilitato deve sentire solo l utente sorgente abilitato A 0 A 1 MUXL DMUXL B 0 B 1 A n Linee di sel. utente sorgente Linee di sel. utente destinaz. B m-1 L utente A 1 è abilitato a parlare con l utente B m-1

26 Half Adder r

27 Full Adder (1/2) r r

28 Full Adder (2/2) R = XYr + XYr + XY r + XYr = XY + Yr + Xr r

29 Full Adder con 2 Half Adder

30 Addizionatore binario E possibile isolare il fattore (a b) Rielaborando le precedenti espressioni è quindi possibile ottenere le seguenti espressioni per l addizionatore completo: S R = ( a b) r = H r = ab + r( a b) = G + rh

31 Addizionatore binario Pertanto, un addizionatore completo può essere ottenuto a partire da due semiaddizionatori: S = ( a b) r = H r R = a b + r ( a b) = G + r H a b HA G = a b H = a b R= G + H r r HA H r S = H r

32 Addizionatore binario: riporto Le diverse componenti dell espressione di R assumono un significato particolare: G = a b riporto generato : indica la creazione di un riporto all interno dell addizionatore binario P = H = a b riporto propagato : indica se, in presenza di un riporto in ingresso, lo stesso verrò propagato in uscita Il riporto in uscita può quindi essere espresso come R=G+Pr

33 Addizionatore binario Per il semiaddizionatore valgono le eguaglianze H = a b = d( a, b) = ab + ab G = a b Similmente per l addizionatore completo valgono le eguaglianze S = a b r = d( a, b, r) = abr + abr + abr + abr R = abr + abr + abr + abr = ab + br + ar = ab + r( a + b)

34 Addizionatori binari n i = r i non-riporto Indica assenza di riporto in ingresso K i = a i b i Riporto killed Indica che, indipendentemente dalla presenza di un riporto entrante, il riporto in uscita sarà comunque zero N i = K i + P i n i Propagazione del non-riporto Indica assenza di riporto in uscita

35 R i X i Y i S i Addizionatori seriali Usa un unico addizionatore operante sulla singola cifra Opera in momenti successivi su cifre diverse degli addendi Richiede un blocco con memoria E lento rispetto ad addizionatori che lavorano in parallelo sulle diverse cifre degli addendi r i Add - Δ mod - b

36 Addizionatore binario parallelo Opera sulle cifre degli addendi in parallelo anche se il riporto deve propagarsi attraverso l intera struttura Richiede un numero maggiore di risorse rispetto all addizionatore seriale X n - 1 Y n - 1 R n - 1 r 2 X 1 Y 1 X Y 0 0 r 1 R =c 0 Add - Add - Add - mod - b mod - b mod - b C= R n - 1 S n - 1 R n - 2 R 1 S 1 R 0 S 0

37 Addizionatore parallelo: tempo di risposta Gli addizionatori ottenuti collegando in cascata n addizionatori di cifra sono anche chiamati addizionatori a propagazione del riporto (carry-ripple o carry-propagate) ε = tempo di risposta di uno stadio Allo stadio i, il riporto uscente o è generato o è ucciso o è propagato Tempo di ritardo complessivo: Limite inferiore ε (in tutti gli stadi il riporto è generato o ucciso) Tempo di ritardo complessivo: Limite superiore nε (un riporto entrante nel primo stadio che è propagato in tutti gli stadi) Tempo di ritardo complessivo = kε (k n), dove k è la più lunga catena di condizioni di propagazione.

38 Porte di parola Porte con abilitazione: B=αA = α AND A Parola: Vettore di bit V = {v o, v 1,, v n } Porta di parola con abiitazione: α V = {α v o,, α v n } Porta generica di parola: A AND B = = {a 0 AND b 0,, a n AND b n }

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Corso di Calcolatori Elettronici I A.A. 20-202 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 5 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di

Dettagli

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I)

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Codifica delle Informazioni T insieme delle informazioni da rappresentare E insieme

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 2007-2008 Logica Combinatoria una rete combinatoria

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

Componenti combinatori

Componenti combinatori Componenti combinatori Reti combinatorie particolari (5.., 5.3-5.8, 5.) Reti logiche per operazioni aritmetiche Decoder ed encoder Multiplexer Dispositivi programmabili: PROM e PLA Reti combinatorie particolari

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/36 Sommario!

Dettagli

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe

Dettagli

Circuiti logici. Parte xxv

Circuiti logici. Parte xxv Parte xxv Circuiti logici Operatori logici e porte logiche....................... 729 Operatori unari....................................... 730 Connettivo AND...................................... 730

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari. Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08

Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari. Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08 Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari Mariagiovanna Sami Corso di reti Logiche 8 Anno 27-8 8 Quali componenti, se non AND e OR (e NOT )? Si è detto inizialmente che

Dettagli

Memorie ROM (Read Only Memory)

Memorie ROM (Read Only Memory) Memorie ROM (Read Only Memory) Considerando la prima forma canonica, la realizzazione di qualsiasi funzione di m variabili richiede un numero di porte AND pari al numero dei suoi mintermini e di prolungare

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Flip-flop Macchine sequenziali

Flip-flop Macchine sequenziali Flip-flop Macchine sequenziali Introduzione I circuiti digitali possono essere così classificati Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

Circuiti integrati. Circuiti integrati

Circuiti integrati. Circuiti integrati Circuiti integrati Circuiti integrati Le porte logiche non vengono prodotte isolatamente, ma sono realizzate su circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 3 I Discip lina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dai docenti: cognome

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Programmazione modulare a.s.2015-2016

Programmazione modulare a.s.2015-2016 Programmazione modulare a.s.015-016 Indirizzo:Informatica \Disciplina: Telecomunicazioni Prof. MAIO Patrizia Rosi Filippo Classe:3 A 3 B Informatica ore settimanali 3 di cui di laboratorio) Libro di testo:telecomunicazioni

Dettagli

1. Operazioni in logica binaria e porte logiche

1. Operazioni in logica binaria e porte logiche 1. Operazioni in logica binaria e porte logiche Espressione di un numero in base 10 (notare a pedice p.es del numero 21); 21 10 =210 1 +110 0 527,98 10 =5 10 2 +2 10 1 +7 10 0 +9 10 1 +8 10 2 407,563 10

Dettagli

Calcolatori Elettronici B a.a. 2006/2007

Calcolatori Elettronici B a.a. 2006/2007 Calcolatori Elettronici B a.a. 2006/2007 RETI LOGICHE: RICHIAMI Massimiliano Giacomin 1 Due tipi di unità funzionali Elementi di tipo combinatorio: - valori di uscita dipendono solo da valori in ingresso

Dettagli

CAPITOLO 1 CIRCUITI COMBINATORI

CAPITOLO 1 CIRCUITI COMBINATORI 1 CAPITOLO 1 CIRCUITI COMBINATORI Con questo capitolo iniziamo lo studio dell elettronica digitale, partendo dalle porte logiche che costituiscono i circuiti digitali più elementari. In altre parole, un

Dettagli

Appunti di reti logiche. Ing. Luca Martini

Appunti di reti logiche. Ing. Luca Martini Appunti di reti logiche Ing. Luca Martini 11 aprile 2003 Capitolo 1 Reti combinatorie Sommario In questo breve documento mostreremo sia alcuni concetti base sulle reti combinatorie, che alcuni dei moduli

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2013/2014 Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre Semplici elementi alla base di sistemi complessi Riccardo Torlone - Corso

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Laurea Specialistica in Informatica

Laurea Specialistica in Informatica Corso di Laurea in FISICA Laurea Specialistica in Informatica Fisica dell informazione 1 Elementi di Architettura degli elaboratori Prof. Luca Gammaitoni Informazioni sul corso: www.fisica.unipg unipg.it/gammaitoni/fisinfoit/gammaitoni/fisinfo

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

Corso di Sistemi di Elaborazione delle informazioni

Corso di Sistemi di Elaborazione delle informazioni Corso di Sistemi di Elaborazione delle informazioni LEZIONE 2 (HARDWARE) a.a. 2011/2012 Francesco Fontanella Tre concetti Fondamentali Algoritmo; Automa (o anche macchina); Calcolo; 2 Calcolatore MACCHINA

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Sottrazione Logica. Sottrattore Parallelo

Sottrazione Logica. Sottrattore Parallelo Sottrazione Logica Il progetto digitale deve provvedere, con sofisticate macchine combinatorie, al supporto di tutte le operazioni aritmetiche; in questa puntata ci occupiamo dei dispositivi chiamati a

Dettagli

Circuiti sequenziali e elementi di memoria

Circuiti sequenziali e elementi di memoria Il Livello Logicoigitale I circuiti sequenziali Corso ACSO prof. Cristina SILVANO Politecnico di Milano Sommario Circuiti sequenziali e elementi di memoria Bistabile SR asincrono Temporizzazione e clock

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Reti sequenziali e strutturazione firmware

Reti sequenziali e strutturazione firmware Architettura degli Elaboratori, a.a. 25-6 Reti sequenziali e strutturazione firmware Alla parte di corso sulle reti sequenziali è apportata una sensibile semplificazione rispetto a quanto contenuto nel

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Laboratorio di Architettura degli Elaboratori - A.A. 2012/13

Laboratorio di Architettura degli Elaboratori - A.A. 2012/13 Università di Udine - Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Laboratorio di Architettura degli Elaboratori - A.A. 2012/13 Circuiti logici, lezione 1 Sintetizzare

Dettagli

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene LIBRI DI TESTO: Autore: Conte/Ceserani/Impallomeni Titolo: ELETTRONICA ED ELETTROTECNICA

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Logica binaria. Porte logiche.

Logica binaria. Porte logiche. Logica binaria Porte logiche. Le porte logiche sono gli elementi fondamentali su cui si basa tutta la logica binaria dei calcolatori. Ricevono in input uno, due (o anche più) segnali binari in input, e

Dettagli

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere:

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Circuiti Addizionatori

Circuiti Addizionatori Circuiti Addizionatori Corso di Reti Logiche, a.a. 2008/09 - ing. Alessandro Cilardo Si ringrazia Dario Socci per il contributo fornito alla realizzazione di queste dispense 1 Circuiti Addizionatori Gli

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

LE RETI COMBINATORIE

LE RETI COMBINATORIE 2-1 CAPITOLO II LE RETI COMBINATORIE 2.1 INTRODUZIONE Le reti combinatorie sono reti logiche caratterizzate dal fatto che lo stato dell'uscita all'istante t dipende solo dallo stato delle entrate allo

Dettagli

Descrizione VHDL di componenti combinatori

Descrizione VHDL di componenti combinatori Descrizione VHDL di componenti combinatori 5 giugno 2003 1 Decoder Il decoder è un componente dotato di N ingressi e 2 N uscite. Le uscite sono poste tutte a 0 tranne quella corrispondente al numero binario

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

Reti logiche e componenti di un elaboratore

Reti logiche e componenti di un elaboratore FONDAMENTI DI INFORMATICA Ing. Davide PIERATTONI Facoltà di Ingegneria Università degli Studi di Udine Reti logiche e componenti di un elaboratore 2000-2007 P.L. Montessoro - D. Pierattoni (cfr. nota di

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

I CIRCUITI SOMMATORI

I CIRCUITI SOMMATORI I CIRCUITI SOMMATORI In elettronica digitale, il poter sommare parole di N bits riveste un ruolo fondamentale. Occorrono pertanto dei circuiti in grado di poter eseguire questa operazione, in maniera più

Dettagli

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin Calcolatori Elettronici A a.a. 2008/2009 RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin 1 Esercizio 1: implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente

Dettagli

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6

Ciclo di Istruzione. Ciclo di Istruzione. Controllo. Ciclo di Istruzione (diagramma di flusso) Lezione 5 e 6 Ciclo di Istruzione Può essere suddiviso in 4 tipi di sequenze di microoperazioni (cioè attività di calcolo aritmetico/logico, trasferimento e memorizzazione dei dati), non tutte necessariamente da realizzare

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Architettura del computer (C.Busso)

Architettura del computer (C.Busso) Architettura del computer (C.Busso) Il computer nacque quando fu possibile costruire circuiti abbastanza complessi in logica programmata da una parte e, dall altra, pensare, ( questo è dovuto a Von Neumann)

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

U 1 . - - . - - Interfaccia. U m

U 1 . - - . - - Interfaccia. U m Introduzione La teoria delle reti logiche tratta problemi connessi con la realizzazione e il funzionamento di reti per l elaborazione dell informazione (il termine logico deriva dalla stretta parentela

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale

Università degli Studi di Cassino e del Lazio Meridionale Università degli Studi di Cassino e del Lazio Meridionale di Calcolatori Elettronici Rappresentazione dei dati numerici Aritmetica dei registri Anno Accademico 2012/2013 Alessandra Scotto di Freca Si ringrazia

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Von Neumann. John Von Neumann (1903-1957)

Von Neumann. John Von Neumann (1903-1957) Linguaggio macchina Von Neumann John Von Neumann (1903-1957) Inventore dell EDVAC (Electronic Discrete Variables AutomaFc Computer), la prima macchina digitale programmabile tramite un soiware basata su

Dettagli

che vengano generati nell ordine corretto i sistema (es., la memoria, l unità aritmetico-

che vengano generati nell ordine corretto i sistema (es., la memoria, l unità aritmetico- Principi di architetture dei calcolatori: l unità di controllo Mariagiovanna Sami L unità di controllo Per eseguire le istruzioni di macchina, occorre che vengano generati nell ordine corretto i segnali

Dettagli

Esercitazione 2 di verifica

Esercitazione 2 di verifica Architettura degli Elaboratori, 27-8 Esercitazione 2 di verifica Soluzione: mercoledì 24 ottobre Una unità di elaborazione U è così definita: Domanda 1 i) possiede al suo interno due componenti logici

Dettagli

6 ARITMETICA: ALGORITMI E CIRCUITI. Mariagiovanna Sami. Franco Fummi 6.1 INTRODUZIONE. Università di Verona. Politecnico di Milano

6 ARITMETICA: ALGORITMI E CIRCUITI. Mariagiovanna Sami. Franco Fummi 6.1 INTRODUZIONE. Università di Verona. Politecnico di Milano 6 6 1 6.1 INTRODUZIONE...2 6.2 LA RAPPRESENTAZIONE DEI NUMERI...3 6.2.1 I NUMERI INTERI POSITIVI...4 6.2.2 I NUMERI RELATIVI...4 6.2.3 I NUMERI REALI...5 6.2.4 CODICI BIUNIVOCI E CODICI RIDONDANTI...6

Dettagli

Circuiti logici combinatori

Circuiti logici combinatori Circuiti logici combinatori - Prof. G. Acciari - M.M. Mano C.R.Kime, RETI LOGICHE IV ed, Pearson Prentice Hall Cap..,.,.6,.7,.8,.9 Ing. G. Acciari - Circuiti Logici (ver..) A.A. / Circuiti logici combinatori

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA A.S. 2011-12 di dipartimento individuale del/i docenti Sarro Alessandro Mete Nicola per la classe 4TIEL 1) PREREQUISITI Concetti di matematica,fisica ed elettrotecnica. 2) SITUAZIONE DI PARTENZA

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Il corso di INFORMATICA

Il corso di INFORMATICA Docente: Maurizio QUARTA Il corso di INFORMATICA BIOTECNOLOGIE 25/6 6 CFU E-mail: maurizio.quarta@unisalento.it m.quarta@alice.it Tel: 832-297532 Ricevimento: martedi dalle 9.3 alle.3 altri giorni per

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Sommario. Addizione naturale

Sommario. Addizione naturale Sommario Introduzione Rappresentazione dei numeri interi positivi Rappresentazione dei numeri interi Operazioni aritmetiche Modulo e segno Addizione e sottrazione urale Addizione e sottrazione in complemento

Dettagli

2.1 Rappresentazione binaria dell informazione I Interruttore I 0 alto 1 1 basso 0

2.1 Rappresentazione binaria dell informazione I Interruttore I 0 alto 1 1 basso 0 Capitolo 2 Bit 2. - Rappresentazione dell informazione 2.2 Codici binari 2.3 - Trasmissione dell informazione 2.4 - Protezione dell informazione Descrizione dei segnali Variabili binarie Bit (binary digit)

Dettagli

Capitolo 2 Tecnologie dei circuiti integrati 33

Capitolo 2 Tecnologie dei circuiti integrati 33 Indice Prefazione XIII Capitolo 1 Circuiti digitali 1 1.1 Introduzione 1 1.2 Discretizzazione dei segnali 4 1.3 L invertitore ideale 6 1.4 Porte logiche elementari 6 1.4.1 Porte elementari come combinazioni

Dettagli

Architettura degli Elaboratori e delle Reti

Architettura degli Elaboratori e delle Reti Architettura degli Elaboratori e delle Reti Pagina lasciata intenzionalmente bianca i Indice 9 Marzo 006... 1 Insiemi... 1 Funzioni booleane... 1 Mintermini... 4 14 Marzo 006... 5 Logica proposizionale...

Dettagli

Macchine sequenziali sincrone. Macchine sincrone

Macchine sequenziali sincrone. Macchine sincrone Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali sincrone Lezione 27 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea in Ingegneria

Dettagli

RETI COMBINATORIE CON USCITE MULTIPLE 1 GENERALITÀ SUI CONVERTITORI DI CODICE Un uso delle porte logiche nei sistemi digitali è quello dei convertitori di codice. I codici più usati comunemente sono: binario,

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.7. Il moltiplicatore binario e il ciclo di base di una CPU

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.7. Il moltiplicatore binario e il ciclo di base di una CPU Lezione n.7 Il moltiplicatore binario e il ciclo di base di una CPU 1 SOMMARIO Architettura del moltiplicatore Architettura di base di una CPU Ciclo principale di base di una CPU Riprendiamo l analisi

Dettagli

Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18

Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18 Corso di Calcolatori Elettronici I A.A. 2010-2011 Il processore Lezione 18 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Calcolatore: sottosistemi Processore o CPU (Central Processing

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Lezione n.19 Processori RISC e CISC

Lezione n.19 Processori RISC e CISC Lezione n.19 Processori RISC e CISC 1 Processori RISC e Superscalari Motivazioni che hanno portato alla realizzazione di queste architetture Sommario: Confronto tra le architetture CISC e RISC Prestazioni

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Lezione 2: Codifica binaria dell informazione. Codifica binaria

Lezione 2: Codifica binaria dell informazione. Codifica binaria Lezione 2: Codifica binaria dell informazione Codifica binaria Elaborazione di dati binari Materiale didattico Lucidi delle lezioni, disponibili al sito: http://wwwinfo.deis.unical.it/~irina Oppure sul

Dettagli

ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI. PROGRAMMA DIDATTICO con riferimento al programma ministeriale

ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI. PROGRAMMA DIDATTICO con riferimento al programma ministeriale ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI ANNO SCOLASTICO 2013-2014 PROGRAMMA DIDATTICO con riferimento al programma ministeriale MATERIA ELETTROTECNICA ED ELETTRONICA

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie Architettura degli elaboratori - modulo A Anno Accademico 2 / 2 Capitolo 6 - Memorie Una cella di memoria in un sistema digitale è un qualcosa in grado di memorizzare il valore booleano che una variabile

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

logiche LE PORTE Nelle prime due lezioni del Corso di Elettronica Digitale (parte terza)

logiche LE PORTE Nelle prime due lezioni del Corso di Elettronica Digitale (parte terza) & imparare & approfondire di GIANLORENZO VALLE Corso di Elettronica Digitale (parte terza) LE PORTE logiche In questa puntata poniamo le prime basi per comprendere meglio il funzionamento delle porte logiche

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

SISTEMI DI TELECOMUNICAZIONI

SISTEMI DI TELECOMUNICAZIONI SISTEMI DI TELECOMUNICAZIONI RETI TELEFONICHE Generalità Nessuna dipendenza dall estensione della rete Copertura locale Interconnessione a lunga distanza Trasporto della voce a commutazione di circuito

Dettagli

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella Corso di Fondamenti di Informatica Codifica di dati e istruzioni Anno Accademico 2010/2011 Francesco Tortorella La codifica dei dati e delle istruzioni La più piccola unità di informazione memorizzabile

Dettagli

CORSO DI ELETTRONICA DEI SISTEMI DIGITALI

CORSO DI ELETTRONICA DEI SISTEMI DIGITALI CORSO DI ELETTRONICA DEI SISTEMI DIGITALI Capitolo 1 Porte logiche in tecnologia CMOS 1.0 Introduzione 1 1.1 Caratteristiche elettriche statiche di un transistore MOS 2 1.1.1 Simboli circuitali per un

Dettagli

Architettura di un calcolatore: introduzione

Architettura di un calcolatore: introduzione Corso di Calcolatori Elettronici I Architettura di un calcolatore: introduzione Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie

Dettagli

Lezione n.9. Introduzione al linguaggio macchina

Lezione n.9. Introduzione al linguaggio macchina Lezione n.9 Autore:Luca Orrù 1 Sommario Esecuzione delle istruzioni Architettura interna ed esterna Linguaggio assembler e modi d indirizzamento Consideriamo ora la singola istruzione e la scomponiamo

Dettagli