La struttura sub-riemanniana della corteccia visiva

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La struttura sub-riemanniana della corteccia visiva"

Transcript

1 La struttura sub-riemanniana della corteccia visiva G. Citti - A. Sarti Milano, luglio 04

2 Completamento modale e amodale A. Sarti, G. Citti p 1

3 Modelli Fenomenologici Mumford, Nitzberg, Shiota; Ambrosio, Masnou; Morel; Bertalmio; Bellettini; Modelli Neurofisiologici Grossberg, Mingolla; Julesz; Field,Heyes,Hess; Singer; Grey ;Lee Modelli basati sui due approcci Petitot, Tondut A. Sarti, G. Citti p 2

4 Elastiche γ = (x, y) curva regolare γ 1 + k 2, k = y x x y (x 2 + y 2 ) 3/2 Mumford, Nitzberg, Shiota; De Giorgi; Bellettini, Paolini: approssimazione nel senso della Γ convergenza. Modifiche del funzionale: 1 + αφ(k), γ Se φ cresce linearmente, i minimi possono essere continui, o avere spigoli. A. Sarti, G. Citti p 3

5 Lifting di curve: Petitot - Tondut θ (x,y,θ) (x,y) x θ y γ(t) = (x(t), y(t)) x = cos(θ), y = sin(θ) γ(t) = (x(t), y(t), θ(t)) length(γ) = θ (t) = k 1 x 2 + y 2 + θ 2 = + k 2 Le elastiche sono proiezioni 2D di minimi vincolati in 3D. A. Sarti, G. Citti p 4

6 L algebra di rototraslazione lifting e geometria subriemanniana [C. Sarti]: γ (t) = (cos(θ), sin(θ), k) = X 1 + kx 2 dove X 1 = cos(θ) x + sin(θ) y, X 2 = θ X 3 = [X 2, X 1 ] = sin(θ) x + cos(θ) y Vale la proprieta di connettivita d((x, y, θ), ( x, ȳ, θ)) = inf{length(γ) : γ(0) = ( x, ȳ, θ), γ(t ) = (x, y, θ)} [Nagel, Stein, Wainger] γ (t) = (γ 1 X1 + γ 2 X2 ) Le proiezioni 2D delle geodetiche del gruppo sono elastiche A. Sarti, G. Citti p 5

7 The Visual Path A. Sarti, G. Citti p 6

8 Profili recettori delle cellule semplici filtri sensibili all orentazione, a media nulla, e a supporto compatto. X1 X3 y X (x ξ) 2 +(y η) 2 e s G (x,y,θ) (ξ, η) = X 3 (θ) s X 3 (θ) = sin θ ξ + cos θ η A. Sarti, G. Citti p 7

9 La risposta ad una immagine I : M R 2 R + O(x, y, θ) = G (x,y,θ) (ξ, η)i(ξ, η)dξdη = X 3 (θ) e x 2 +y 2 s s I = X 3 (θ)i s A. Sarti, G. Citti p 8

10 Le fibre di cellule semplici Sopra ogni punto c e una intera fibra di cellule semplici: The visual cortex is a contact bundle [Hoffman] F (x, y) = { G(x, y, θ), θ [0, π] } A. Sarti, G. Citti p 9

11 La soppressione dei non massimali O(x, y, θ) = max O(x, y, θ) θ [0,π] Σ = {(x, y, θ) : θ O = 0, θθ O(x, y, θ) < 0} L immagine e liftata ad una superficie θ O = θ (X 3 I s ) = X 1 I s = = < (cos θ, sin θ), I s >= 0 (cos θ, sin θ) e ortogonale al gradiente. Ogni curva di livello e liftata come a pag 4. A. Sarti, G. Citti p

12 Campi di associazione e curve integrali γ (t) = (γ 1 X1 + γ 2 X2 ) γ(0) = (x, y, θ) X 1 = (cos(θ), sin(θ), 0) X 2 = (0, 0, 1) A. Sarti, G. Citti p 11

13 Operatori differenziali Gradiente orizzontale: f CX 1 (Ω, R) X u = (X 1 u, X 2 u) inr 2 S 1 X 3 = [X 1, X 2 ]. Se u C 1 X non esiste X 3u Sezioni del tangente orizzontale f C 1 (Ω, HX) Sublaplaciano div X (f 1, f 2 ) = X 1 f 1 + X 2 f 2 X u = X 2 1 u + X 2 2 u Diffusione lungo le curve integrali dei campi u t = X u A. Sarti, G. Citti p 12

14 distanza: [Nagel, Stein, Weinger], Bibliografia essenziale soluzione fondamentale - stime locali: [Rothshild Stein] [Sanchez Calle] stime gaussiane in gruppi omogenei: [Bonfiglioli, Lanconelli, Uguzzoni] Nonlinear equations [Citti, Lanconelli, Montanari], viscosity solutions [Stroffolini, Manfredi] Teorema di Dini, rettificabilita in gruppi omogenei di passo 2 [B.Franchi, R.Serapioni, F.Serra Cassano] [L.Ambrosio, B.Kirchheim] A. Sarti, G. Citti p 13

15 Algebre nilpotenti e non Ammettono una stratificazione g = V 1 V 2, V 1 = span{x 1, X 2 } V 2 = span{x 3 } and[v 1, V 2 ] = {0}. Dilatazioni δ λ (X 1 ) = λx 1. δ λ (X 3 ) = [λx 1j, λx 1i ] = λ 2 X 3 X 1 = cos(θ) x + sin(θ) y X 2 = θ Non esistono dilatazioni. Se esistessero X 1 = [X 3, X 2 ] = [[X 1, X 2 ], X 2 ] δ λ (X 1 ) = λ 3 X 1. A. Sarti, G. Citti p 14

16 Riduzione al caso nilpotente X 1 ξ = (cos( θ) (θ θ) sin( θ)) x + +(sin( θ) + (θ θ) cos( θ)) y X 2 ξ = θ X 3 ξ = [X 1 ξ, X 2 ξ] = sin( θ) x + cos( θ) y Esiste un cambio di variabile Φ ξ e vettori X 1H = e1 + e 2 e3 X 2H = e2 e 1 e3 generatori dell algebra di Heisenberg, tali che (X i ξu) Φ ξ = X ih (u Φ ξ) dilatazioni approssimate Φ ξ δ λ Φ 1 ξ A. Sarti, G. Citti p 15

17 Parametrice della soluzione fondamentale La soluzione fondamentale di t = ξ = X 2 1 ξ + X2 2 ξ e Γ ξ(z, t; ζ, τ) = Γ H (Φ θ(z), t; Φ θ(ζ), τ), dove Γ H, soluzione fondamentale dell operatore del calore per Heisenberg e nota esplicitamente. Teorema La soluzione fondamentale Γ di t = X soddisfa (Γ Γ ξ)(z, t; ζ, τ) (t τ) 1/2 Γ ξ(z, t; ζ, τ) per z, ζ in un intorno di ξ. Inoltre 0 Γ(z, t; ζ, τ) C ( (t τ) exp Q/2 d2 (z, ζ) ) t τ dove Q = 4, per ogni 0 t τ T, for every z, ζ. A. Sarti, G. Citti p 16

18 Superfici regolari in gruppi omogenei Σ = {(x, y, θ) : v = 0, X v 0} vettore normale X v/ X v Teorema [Franchi Serapioni Serracassano] e definita implicitamente una funzione continua θ. Problema aperto: regolarita di θ Congettura: θ e regolare lungo le proiezioni delle curve orizzontali che giacciono sulla superficie ([Ambrosio Serracassano] nel caso omogeneo) A. Sarti, G. Citti p 17

19 Teorema di Dini in gruppi non omogenei Teorema [ - Manfredini]v C 1 X (Ω), Γ = {(x, y, θ) Ω : v(x, y, θ) = 0, θ v(x, y, θ) > 0} Allora esiste funzione implicita θ Se γ e curva integrale di X 1 + kx 2 di punto iniziale (x, y, θ(x, y)) e γ e la proiezione su R 2, allora esiste X θ (θ(x, y)) = (θ γ) (0) = X 1f(x, y, θ(x, y)) X 2 f(x, y, θ(x, y)) A. Sarti, G. Citti p 18

20 Curvatura di una superficie regolare [C. Sarti]! γ : γ = X θ ( γ) X θ = cos(θ(x, y)) x + sin(θ(x, y)). K X (γ) = γ 1 γ 2 γ 2 γ 1 (γ1 2 + γ2 2 )3/2 ( K X (Σ) = div X (ν X ) = δ ij X ivx j v ) Xi X j v D X v 2 D X v Moto per curvatura: ( v t = δ ij X ivx j v ) D X v 2 X i X j v A. Sarti, G. Citti p 19

21 Il modello di completamento [C. Sarti] u 0 = O t = 0 Σ 0 = {(x, y, θ) : θ u 0 = 0, θθ u 0 < 0} u(, 0) = u 0 δ Σ0 A. Sarti, G. Citti p

22 Il modello di completamento 1) diffusione lungo i campi t u = X u in R 2 S 1 [0, h] u(, 0) = u 0 δ Σ0 2) concentrazione che distrugge la diffusione normale e genera un moto per curvatura Σ 1 (h) = {ξ : νσ0 u(ξ, h) = 0, ν 2 Σ0 u < 0} u 1 (h) : Σ 1 (h) R u 1 (h) = hu(h) Al tempo t, dopo n passi di lunghezza h = t/n abbiamo due successioni Σ n (t), u n (t). Σ n (t) e definita come level set. Σ n (t) Σ(t) moto per curvatura di Σ 0 u n (t) u(t) evoluzione di u 0 Nel caso euclideo [Bence, Merriman, Osher] [Evans] A. Sarti, G. Citti p 21

23 Idea della prova Nel gruppo e definita un operazione di somma che commuta con le derivazioni Teorema Sia ξ 0 = 0 Σ 0, ν 0 la normale a Σ in ξ 0. Sia s R tale che Allora ξ 0 stν Σ 1 s = K X (ξ 0 ) + o(1) as t 0 dove K X (ξ 0 ) e la curvatura di Σ 0 In altre parole l incremento infinitesimo s in direzione normale e pari alla curvatura A. Sarti, G. Citti p 22

24 Dim locally Σ 1 = {θ = h(x, y) : (x, y) Q }, 0 = X 2 u(ξ) = X 2 Γ(ζ 1 ξ, t)u 0 (ζ)dσ(ζ) = Σ usando la parametrice = X 2 Γ ξ0 (ζ 1 ξ, t)u 0 (ζ)dσ(ζ) + O(e t ) Σ C se ν = X 2, ζ = (x, y, θ), ξ = (0, 0, st) (ζ 1 ξ) = (,, θ st), parametrizzando = X 2 Γ ξ0 (x, y, h(x, y) st, t) 1 + h 2 +O(e t ) Q usando le dilatazioni approssimate x = tp y = tq, 0 = X 2 Γ ξ0 (tp, tq, h( tp, tq) st) 1 + h 2 +O(e t ) R 2 imponendo l annullamento dello sviluppo di Taylor s = K(0) + O( t) A. Sarti, G. Citti p 23

25 struttura sub-riemanniana della corteccia V1 Macula cieca A. Sarti, G. Citti p 24

26 A. Sarti, G. Citti p 25

27 A. Sarti, G. Citti p 26

28 A. Sarti, G. Citti p 27

29 Direzioni di ricerca La struttura della corteccia e stata descritta come varieta di contatto definita dalla forma ω = cos(θ)dx + sin(θ)dy E possibile rilevare altre features, per esempio la scala, ovvero la dimensione dei campi recettori. L aggiunta di una variabile ambienta il problema in una varieta simplettica, descritta dalla forma d(e s ω). A. Sarti, G. Citti p 28

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Esame di ammissione al Dottorato in Matematica, XXIV Ciclo Università di Firenze Tema n. 1.

Esame di ammissione al Dottorato in Matematica, XXIV Ciclo Università di Firenze Tema n. 1. Esame di ammissione al Dottorato in Matematica, XXIV Ciclo Università di Firenze Tema n. 1. Esercizio 1. Un punto materiale di massa m si muove su un piano orizzontale, vincolato senza attrito alla curva

Dettagli

Geometria iperbolica - Primo foglio Andrea Petracci

Geometria iperbolica - Primo foglio Andrea Petracci Geometria iperbolica - Primo foglio Andrea Petracci Esercizio 1. Teorema (Hopf-Rinow). Se M è una varietà riemanniana connessa, allora le seguenti affermazioni sono equivalenti: (1) M è completa con la

Dettagli

Prova scritta di Geometria differenziale - 27/9/2012

Prova scritta di Geometria differenziale - 27/9/2012 Prova scritta di Geometria differenziale - 27/9/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

Analisi Matematica T-2 Ingegneria Edile Ravenna 2013/14

Analisi Matematica T-2 Ingegneria Edile Ravenna 2013/14 Analisi Matematica T-2 Ingegneria Edile Ravenna 2013/14 Maria Manfredini, Daniele Morbidelli Informazioni pratiche: Libro di riferimento: Bramanti, Pagani, Salsa, MATEMATICA, Seconda edizione, Zanichelli

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018 Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 28 Esercizio Si consideri la successione di funzioni {f n } n N + definita da f n (x)

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (seconda parte) 1. (a) Se f è una funzione derivabile, allora (b) Se un vettore x R n ha norma nulla, allora x = 0.

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2016/17 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1 Richiami R 2 = x, y R} sono detti vettori Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v In particolare si denota con

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Esercizi 5 soluzioni

Esercizi 5 soluzioni Esercizi 5 soluzioni Alessandro Savo, Geometria Differenziale 27-8 Esercizi su geodetiche e curve su superfici. Esercizio Determinare l area della regione del paraboloide z = x 2 + y 2 compresa tra i piani

Dettagli

Università di Verona Facoltà di Scienze Matematiche, Fisiche e Naturali. Corso di Laurea Triennale in Matematica Applicata

Università di Verona Facoltà di Scienze Matematiche, Fisiche e Naturali. Corso di Laurea Triennale in Matematica Applicata Università di Verona Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Matematica Applicata Soluzioni degli appelli di Analisi Matematica Antonio Marigonda Anni 9-7 ii Soluzioni

Dettagli

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni Università degli Studi di Firenze Anno Accademico 2005/2006 Ingegneria per l Ambiente e il Territorio Corso di Analisi Matematica 2 (IAT) Docente: Francesca Bucci Periodo: II periodo (16 gennaio 2006 17

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/2009)

Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/2009) Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/009) Università di Padova - Lauree in Fisica ed Astronomia - AA 008/09 Cognome-Nome Matr - IN STAMPATELLO SF /

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Analisi Numerica (A.A )

Analisi Numerica (A.A ) Analisi Numerica (A.A. 2014-2015) Appunti delle lezioni: Equazioni differenziali alle derivate parziali del primo ordine 1 Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 24/9/2018.

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x).

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x). Teorema della divergenza Richiami di teoria Operatori divergenza e di Laplace R n un insieme aperto, x = (x 1, x 2,..., x n ). Divergenza Consideriamo un campo vettoriale F : R n R n differenziabile in

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Curve Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Introduzione Le curve sono particolari campi vettoriali Le vedremo

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. Analisi Matematica II, Anno Accademico 17-18. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMMINI ESERCIZIO 1 Un cammino soddisfa le relazioni y = x z, z = y + x 3, essendo

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

! # %# & # & # #( # & % & % ( & )!+!,!++

! # %# & # & # #( # & % & % ( & )!+!,!++ ! # %# & # & # #( # &! # % & % ( & )!+!,!++ ! # % & & ( ) +,.! / ( # / # % & ( % &,. %, % / / 0 & 1.. #! # ) ) + + + +) #!! # )! # # #.. & & 8. 9 1... 8 & &..5.... < %. Α < & & &. & % 1 & 1.. 8. 9 1.

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1. Richiami R 2 = x, y R} sono detti vettori. Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v. In particolare si denota con

Dettagli

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI Sergio Console Derivate parziali (notazione) Data una funzione z = f(x, y), si può pensare di tener fissa la variabile y (considerandola

Dettagli

Superfici (Lezioni vecchie)

Superfici (Lezioni vecchie) Superfici (Lezioni vecchie) Vogliamo estendere le formule di Gauss Green nello spazio. In tal caso la frontiera del dominio sarà data da una superficie. Perciò prima di dimostrare queste formule dovremo

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2018/19 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte II E. Amaldi DEI, Politecnico di Milano 3.3 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi su leggi Gaussiane

Esercizi su leggi Gaussiane Esercizi su leggi Gaussiane. Siano X e Y v.a. indipendenti e con distribuzione normale standard. Trovare le densità di X, X +Y e X, X. Mostrare che queste due variabili aleatorie bidimensionali hanno le

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

PARTE 4: Equazioni differenziali

PARTE 4: Equazioni differenziali PROGRAMMA di Fond. di Analisi Mat. 2 - sett. 1-11 A.A. 2011-2012, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi

Dettagli

Analisi Vettoriale - Primo esonero - 26 ottobre 2006

Analisi Vettoriale - Primo esonero - 26 ottobre 2006 Analisi Vettoriale - Primo esonero - 26 ottobre 26 Esercizio 1. ia F (x, y) = e xy + x 2 y 2x 2y + 1. a) imostrare che l equazione F (x, y) = definisce implicitamente, in un intorno del punto P = (1, ),

Dettagli

Analisi Matematica II. Prove Parziali A.A. 1992/2017

Analisi Matematica II. Prove Parziali A.A. 1992/2017 Complementi di Analisi Polo di Savona Analisi Matematica II Complementi di Analisi Matematica Prove Parziali A.A. 1992/2017 1- PrPzCa.TEX [] Complementi di Analisi Polo di Savona Prima Prova Parziale 92/93

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

La ricerca di punti di estremo assoluto

La ricerca di punti di estremo assoluto La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2009-2010 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 300607 Cognome e nome: Matricola: es es es3 es4 es es6 es7 somma cr 6 6 6 6 6 - - 30 9cr/6cr 3 30 Determinare, nel punto ( 0, 0, z 0 ), l equazione del piano tangente

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione Massimi e Minimi Vincolati La precedente sezione si è chiusa con due interessanti problemi (facoltativi), riconducibili alla ricerca del minimo assoluto per funzioni definite in tutto riguardanti gli estremi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

La struttura modulare della corteccia visiva

La struttura modulare della corteccia visiva La struttura modulare della corteccia visiva Giovanna Citti Università degli studi di Bologna Lavoro in collaborazione con A. Sarti CAMS EHESS Paris Riassunto 1^ parte: Fenomenologia della percezione Struttura

Dettagli

Registro dell insegnamento. Scienze Matematiche Fisiche e Naturali Analisi Matematica IV modulo Settore:... Corsi di studio:...

Registro dell insegnamento. Scienze Matematiche Fisiche e Naturali Analisi Matematica IV modulo Settore:... Corsi di studio:... UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2007/2008 Facoltà: Insegnamento: Scienze Matematiche Fisiche e Naturali Analisi Matematica IV modulo Settore:..........................

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli