Un esempio: Il letto di un fiume è posto lungo la parabola di equazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Un esempio: Il letto di un fiume è posto lungo la parabola di equazione"

Transcript

1 Massimi e Minimi Vincolati La precedente sezione si è chiusa con due interessanti problemi (facoltativi), riconducibili alla ricerca del minimo assoluto per funzioni definite in tutto riguardanti gli estremi relativi è stato possibile in quanto. L uso (tra gli altri) di risultati è un insieme aperto e di conseguenza tutti i suoi punti sono punti interni. Ci sono però problemi altrettanto interessanti di ricerca di minimo (o massimo) assoluto (qui di seguito se ne dà un esempio) per i quali il citato teorema non è utilizzabile. R R Un esempio: Il letto di un fiume è posto lungo la parabola di equazione y = x. Se ci troviamo nel punto (,3), qual è la nostra distanza dal fiume? Qual è il punto del fiume più vicino alla nostra posizione? Formalizzazione del problema: Essendo ( ) f( x, y) = ( x ) + ( y 3) la distanza del punto (,3) dal generico punto ( x, y ) del piano, il secondo quesito posto si può formalizzare nel seguente modo: Trovare il (punto di) minimo assoluto della funzione f ( xy, ) (o equivalentemente della funzione {(, ) (. ) } [ ] f( x, y) = ( x ) + ( y 3) ) sull insieme ( ) Osservazione: E = x y Φ x y = y x = - Non appena si trova ( x, y punto di minimo assoluto (di (, ) la risposta al primo quesito. Soluzione: Il generico punto del fiume (e quindi dell insieme sua distanza (al quadrato) dal punto (1). f xy o di [ (, )] E ) ha coordinate f xy ), f ( x, y è ( x, x ) e allora la (,3) è ( )( (, )) ( ) ( F x = f x x = x + x 3). Il problema posto è stato così ricondotto alla ricerca del minimo assoluto di una funzione di una sola variabile, che non presenta particolari difficoltà. Osservazione: Si noti, nella procedura utilizzata, l importanza dell essere l insieme E il grafico di una funzione. Gli argomenti che seguono tra l altro hanno lo scopo di rimuovere questa forte restrizione. Definizione: Siano f ( xy, ) e Φ ( x, y) due funzioni elementari. Il problema di individuare eventuali punti di minimo e/o di massimo (e quindi dell eventuale valore minimo e/o massimo), assoluti o ( ) Essendo f( x, y) e l applicazione t t crescente su estremi assoluti su un fissato insieme E. [ [ 18, +, le funzioni (, ) f xy e [ ] f ( xy, ) hanno gli stessi

2 relativi, della funzione f ( xy, ) sull insieme {(, ) (, ) } E = x y Φ x y =, dicesi problema di ricerca di estremi vincolati della funzione z = f( x, y) soggetta al vincolo Φ ( xy, ) =. Osservazione: Come è gia stato segnalato, se l insieme E {( x, y) ( x, y) } = Φ = è il grafico di una funzione y = ϕ( x) (risp. x = ψ ( y) ) il problema della ricerca degli estremi vincolati, si riduce a trovare gli estremi della funzione di una sola variabile Analogamente se parametrica rt ( ) E f ( x, ϕ ( x)) (risp. f ( ψ ( y), y) ). è il sostegno di una curva parametrizzata regolare con rappresentazione, allora il problema si riduce a trovare gli estremi della funzione Al fine di esaminare il caso in cui l insieme E {( x, y) ( x, y) } descritti nella precedente osservazione si premette la seguente f ( rt ( )). = Φ = non sia di uno dei due tipi Definizione: Sia ( x, y E(o equivalentemente Φ ( x, y =. Si dice che l equazione Φ ( xy, ) = definisce implicitamente la funzione y = ϕ( x) (risp. x = ψ ( y) ) in un intorno del punto ( x, y se a) y ϕ( x) = è definita in un intorno ] x δ, x δ [ + di y ); intorno ] y δ, y δ [ b) ϕ ( x = y(risp. ψ ( y = x; c) ( x, ϕ( x)) Φ = per x ] x δ, x δ [ + di x (risp. x = ψ ( y) è definita in un + (risp. ( ψ ( y), y) dunque il grafico della funzione ϕ (risp. ψ ) è contenuto in E. Φ = per y ] y δ, y δ [ + ) e Il seguene teorema, del quale sarà omessa la dimostrazione, dà una condizione sufficiente perché l equazione prefissato punto. Φ ( xy, ) = definisca una funzione y = ϕ( x) oppure x = ψ ( y) in un intorno di un Teorema: Sia Φ ( x, y) una funzione elementare e ( x, y un punto del suo dominio tale che Φ ( x, y =. Se Φ( x, y allora l equazione Φ ( xy, ) = definisce implicitamente una funzione derivabile, in un intorno di ( x, y ; in particolare se f ( x, y ), allora Φ ( xy, ) = definisce implicitamente una (unica) funzione y = ϕ( x) a) 19

3 derivabile, tale che f ( x, y ) b) ( x, ϕ( x)) ( x, y ϕ ( x) = x (in particolare si ha ϕ ( x = x ); ( x, ϕ( x)) ( x, y. Osservazione: La rappresentazione della derivata ϕ ( x) si deduce utilizzando il seguente argomento. Essendo Φ ( x, ϕ( x)) = in un intorno di x, in detto intorno si ha Φ( x, ϕ( x)) è ortogonale a (1, ϕ ( x)) d Φ ( x, ϕ( x)) = Φ( x, ϕ( x)) (1, ϕ ( x)) = dx ( x, ϕ( x)) + ( x, ϕ( x)) ϕ ( x) = x y e dalla seconda uguaglianza segue la rappresentazione della derivata prima di y = ϕ( x). La prima affermazione sarà invece utilizzata più avanti. Teorema (condizione necessaria per gli estremi vincolati): Sia z = f( x, y) una funzione differenziabile in un aperto A, ( x, y) Se ( x, y R è tale che Φ ( x, y = (cioè ( x, y E); Φ una funzione differenziabile e E {( x, y) ( x, y) } = Φ =. Φ( x, y (, (cioè ( x, y non è un punto critico della funzione Φ ( x, y) ); ( x, y è un estremo relativo (vincolato) della funzione z = f( x, y) su ; E ( ) allora esiste λ R tale che f ( x, y ) = λ Φ ( x, y ). ( ( x, y dicesi punto stazionario vincolato, che, in generale, non è un punto stazionario). Dimostrazione: Se è ( x, y, il precedente teorema assicura l esistenza della funzione y = ϕ( x) definita implicitamente dall equazione Φ ( xy, ) = in un intorrno di ( x, y. Allora la funzione f ( x, ϕ ( x)) (definita in un intorno di x ) ha in x un estremo relativo e pertanto si ha df ( x, ϕ( x)) dx x= x ( f x y ϕ x ) = (, ) (1, ( )) =. Essendo, come è stato già osservato, anche Φ( x, ϕ( x)) (1, ϕ ( x)) = per ogni x, si ha che i due vettori (in ) R f x y (, ) e Φ ( x, y sono ortogonali allo stesso vettore (1, ϕ ( x), donde sono ( ) cioè esiste δ > tale che per ogni ( x, y) B(( x, y, δ ) E si ha f ( x, y f( x, y) (risp. f ( xy, ) f( x, y ).

4 tra loro paralleli e quindi l asserto. (Si procede in modo pressochè analogo se è ( x, y. x Una riformulazione del precedente risultato è contenuto nella seguente Osservazione: Se f ( xy, ) e Φ ( x, y) sono funzioni differenziabili in un aperto A allora gli estremi relativi di f ( xy, ) su E = {( x, y) Φ ( x, y) = } (estremi vincolati con vincolo Φ ( xy, ) = ) sono da ricercare tra le soluzioni di uno dei seguenti sistemi Φ ( xy, ) = ( xy, ) = x ( xy, ) = y oppure f ( x, y) = λ ( x, y) x x f ( x, y) = λ ( x, y ) per qualche λ R. y y Φ ( xy, ) = Le soluzioni del secondo sistema sono i punti stazionari della funzione nelle tre variabili ( x, y, λ ) Lxy (,, λ) = f( xy, ) λφ ( xy, ), denominata funzione Lagrangiana del problema di estremo vincolato, mentre il parametro λ dicesi moltiplicatore di Lagrange. Esercizi: 1) Trovare il minimo e il massimo assoluto della funzione x y E = ( x, y) R + 1=. 4 9 f ( xy, ) x 3y = + sull insieme Soluzione: Intanto la funzione f ( xy, ) è continua e per il teorema di Weierstrass ha minimo e massimo assoluto sull insieme E che evidentemnete è chiuso e limitato. I punti di minimo e di massimo (assoluti) sono anche di minimo e massimo relativi e quindi o sono punti critici della funzione sistema x y Φ ( xy, ) = + 1 (si vede immediatamente che non ha punti critici) o soluzioni del 4 9 x(4 λ) = λ = 4 x= λx/ x= = λy/ 9 λy = λ =... y =. 8 x y y =± 3 1 x y non ha soluzioni + = = 4 9 1

5 Gli unici punti candidati ad essere punti di minimo o massimo assoluto sono (,3) e (, 3) ; essendo f (,3) = 9 e f (, 3) = 9, il primo è il valore massimo assoluto e il secondo il valore minimo assoluto. Osservazione: Essendo θ [, π ] E il sostegno della curva con rappresentazione parametrica x = cosθ, y = 3sinθ, il problema può anche essere risolto considerando la funzione di una sola variabile f (cos θ,3sin θ) = 4cos θ + 9sinθ e cercando per questa i punti di minimo e massimo assoluti. Si vede immediatamente che gli unici punti stazionari sono θ = π / e θ = 3 π /in corrispondenza dei quali si hanno i punti (,3) e (, 3) e i corrispondenti valori 9 e 9. ) Trovare i punti di minimo e massimo assoluti della funzione f ( xy, ) x y = + soggetta al 3/ 3/ vincolo x + y = 1. Soluzione: Intanto il vincolo è un insieme chiuso limitato (si prova facilmente) e su di esso non ci sono punti critici, pertanto i punti di minimo e massimo assoluti sono tra le soluzioni del sistema 3 x = λ x 3 y = λ y, 3/ 3/ x + y = 1 /3 /3 che sono (,1), ( 1, e (, ) e quindi Osservazione: I punti (,1) e (1, sono punti che soddisfano il vincolo, ma si trovano sulla frontiera dell insieme di definizione della funzione 3/ 3/ Φ ( xy, ) = x + y 1, pertanto vanno presi in considerazione come possibili estremi assoluti indipendentemente dal fatto che essi siano punti stazionari della lagrangiana. 3) Trovare il minimo e massimo assoluto della funzione sull insieme E {( x, y) 4x y 1} = + =. f xy x y x y (, ) = ) Trovare il minimo e massimo assoluto della funzione f( x, y) = x y+ y /5 sull insieme chiuso e limitato 4 {(, ) 1} E = x y x + y =. 5) Trovare gli estremi assoluti della funzione 4 {(, ) } E = x y x x + y =. f ( xy, ) x y = + sull insieme (chiuso e limitato) 6) Trovare la minima e la massima distanza dell origine dalla linea di livello 5x + 6xy+ 5y = 8.

6 7) Trovare il minimo e massimo assoluto (esistono?) della funzione sull insieme D {( x, y) x y 1} =. f ( xy, ) = x+ y xy 8) Trovare il minimo e massimo assoluto (esistono?) della funzione sull insieme D {( x, y) x 4y 1} = +. f ( xy, ) = 4x + y 9) (Facoltativo) Trovare il minimo e massimo della funzione a) sull insieme E {( x, y) 4x y 4} = + ; f xy x y x y (, ) = b) sull insieme F limitato dal quadrato avente come verici opposti i punti (, e (3,3). Soluzione: a) Intanto la funzione f ( xy, ) è continua sull insieme E, che è chiuso e limitato, allora dotata di valore minmo e di valore massimo (per il teorema di Weierstrass). I corrispondenti punti di minimo e di massimo se sono interni ad E sono punti stazionari, altrimenti se sono sulla frontiera sono estremi vincolati; in definitiva essi sono da ricercare tra i punti stazionari di f ( xy, ) che sono interni ad 8x = 1 ( la cui soluzione è (,) y 4= 4 ) che però non è interno ad E ; E ; e quindi si considera il sistema i punti critici della funzione Φ ( xy, )( = 4x + y 4) (non ci sono punti critici); i punti stazionari vincolati sono Essendo 8x = 8λx 4 x(1 λ) = 1 4 x(1 λ) = 1 y 4= λy y(1 λ) = 8x= y le cui soluzioni 4x + y = 4 4x + y = 4 4x + y = ( ±, ± ) (si noti che non si riporta il valore di λ ) f (, ) = 5 e secondo è il valore massimo. b) In questo caso il punto stazionario 1 (,) f (, ) = 5+ 4 il primo è il valore minimo e il della funzione f ( xy, ) è interno ad sua frontiera è l unione dei seguenti grafici di funzione di una sola variabile: y = per x [,3], y = 3 per x [,3], x= per y [,3], x 3 per y [,3] Su questi ultimi la funzione f ( xy, ) diventa rispettivamente =. F. Però la f( x, 4x x 1 per x [,3] = + e quindi i possibili punti estremi sono 1 (,, (,, (3,; 4 3

7 f( x,3) 4x x per x [,3] = e quindi i possibili punti estremi sono f(, y) y 4y 1 per y [,3] 1 (,3), (,3), (3,3) ; 4 = e quindi i possibili punti estremi sono (,), (,, (,3) ; = + e quindi i possibili punti estremi sono (3,), (3,, (3,3). f(3, y) y 4y 31 per y [,3] Essendo 1 13 f (,) =, f (, =, f (, = 1, si ha

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Sia f una funzione differenziabile, definita su un aperto A di R N. Se K è un sottoinsieme chiuso e limitato di A, per il teorema di Weierstrass f assume massimo e minimo su

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esercizio 1. Sia A il cerchio aperto del piano di centro l origine e raggio 1. Sia f(x, y) una

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange 4 7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange Sia f (,,, n ) una funzione delle n variabili,,, n, supponiamo che esse non siano indipendenti, cioè che siano legate da p < n equazioni: ϕ(,,,

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

si dirà campo vettoriale (stazionario). j il campo vettoriale si dice piano. Invece la espressione

si dirà campo vettoriale (stazionario). j il campo vettoriale si dice piano. Invece la espressione Campi Vettoriali e Forme Differenziali Prima Parte Tutte le funzioni presenti in questo capitolo sono per ipotesi sufficientemente regolari Terminologia e Notazioni: In questo capitolo ogni funzione si

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni 1 lezione. Martedí 27 settembre. 2 ore. Richiami sulle applicazioni lineari tra spazi vettoriali di dimensione finita. Il teorema di rappresentazione.

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019 I ANALISI MATEMATICA ING ENERGETICA prof Daniele Andreucci Prova tecnica del //9 Si consideri la funzione x+yarctg x 3 y fx,y = x +y, x,y,,, x,y =, A Si dimostri che f è differenziabile in, B Si dimostri

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1. Richiami R 2 = x, y R} sono detti vettori. Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v. In particolare si denota con

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) ai quesiti degli esercizi del 12.X.2018 1. (a) Ω è aperto, Ω = {0, 1, 2}, Ω = Ω, Ω = [0, 1]

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1 Richiami R 2 = x, y R} sono detti vettori Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v In particolare si denota con

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Quarto appello Esercizio Analisi Matematica 2 - a.a. 29/2 Sia Γ = { (,y,z) R 3 : 2 + y 2 = z 2, y 2 + (z 2) 2 = }.. Provare che tutti i punti di Γ sono regolari. 2. Determinare lo spazio tangente a Γ nel

Dettagli

Analisi 2 Fisica e Astronomia

Analisi 2 Fisica e Astronomia Analisi Fisica e Astronomia Appello scritto del 8 Luglio 0. Soluzione Esercizio 7 pti Sia α > 0 un parametro e consideriamo la curva piana γ : [0, ] R γt = t cos, t sin, se t 0, ], e γ0 = 0, 0. t α t α

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Esercizi V settimana

Esercizi V settimana Esercizi V settimana 6 ottobre 018 1. Dire se e dove la funzione F (x, y) = ( xy, y ) x definisce un diffeomorfismo localmente. Determinare quindi gli insiemi A, B R tali che F : A B sia un diffeomorfismo

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

La ricerca di punti di estremo assoluto

La ricerca di punti di estremo assoluto La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione. Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio 218 1) Data la funzione f(, ) = 4 + 4 4 2 7 a) Studiare l esistenza e la natura degli estremi liberi della funzione. b) Trovare il massimo

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (26/06/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (26/06/203) Università di Verona - Laurea in Biotecnologie

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

p 1 : x + y + z = 0, p 2 : x y 2z = 1 Soluzione: Punto-retta

p 1 : x + y + z = 0, p 2 : x y 2z = 1 Soluzione: Punto-retta ANALISI VETTORIALE Soluzione esercizi 12 novembre 2010 3.1. Esercizio. Determinare la distanza del punto Q = (3, 4) dalla retta r : x + y = 3, ovvero determinare il minimo della funzione f(x, y) = (x 3)

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Siano f, g C 1 (A) dove A è un sottoinsieme aperto di R 2, poniamo E 0 = {(x, y) A : g(x, y) = 0}. In questa nota si studia l ottimizzazione della funzione f ristretta all insieme E 0. Definizione 1. Un

Dettagli

Istituzioni di Analisi 2 (programma, domande ed esercizi)

Istituzioni di Analisi 2 (programma, domande ed esercizi) Istituzioni di Analisi programma, domande ed esercizi) nona settimana Argomenti trattati Dal libro di testo: 3. punti critici vincolati), 3.3. estremi assoluti), 0.3. e 0.3. solo la definizione di compatto

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare.

LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare. LEZIONE 36 36.1. La definizione di superficie. In questo paragrafo iniziamo a dare alcuni esempi di superfici ed a definire alcuni oggetti ad esse naturalmente associati. Come già fatto per le curve, considereremo

Dettagli

Ottimizzazione vincolata

Ottimizzazione vincolata Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Esame di Analisi Matematica 2 18/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 18/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 8/7/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Cognome in STAMPATELLO):... Nome in STAMPATELLO):... CFU:... Esercizio. Sia f : R 2 R una funzione

Dettagli

Primi esercizi sulla ricerca di punti di estremo assoluto

Primi esercizi sulla ricerca di punti di estremo assoluto Primi esercizi sulla ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Esercizi su estremi assoluti (I) Analisi II 1 / 42 Richiami

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

I TEOREMI DEL CALCOLO DIFFERENZIALE

I TEOREMI DEL CALCOLO DIFFERENZIALE I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile:

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile: Estremi vincolati Un problema di ottimizzazione vincolata consiste nella ricerca degli estremanti di una funzione in presenza di un vincolo, cioè limitatamente ad un certo sottoinsieme del dominio di f:

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

Funzioni di più variabili

Funzioni di più variabili Funzioni di più variabili Dr. Daniele Toffoli Dipartimento di Scienze Chimiche e Farmaceutiche, UniTS Dr. Daniele Toffoli (DSCF, UniTS) Concetti di calcolo 1 / 48 Outline 1 Generalità e rappresentazioni

Dettagli

= 2x 2λx = 0 = 2y 2λy = 0

= 2x 2λx = 0 = 2y 2λy = 0 ESERCIZI SULLA OTTIMIZZAZIONE VINCOLATA ESERCIZIO Determinare i punti di massimo e minimo di f x, y = x y soggetta al vincolo x + y = Il vincolo è chiuso e limitato (circonferenza di raggio ) e la funzione

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE L'ipotesi di razionalità implica che un decisore cerchi di individuare la migliore tra tutte le alternative a sua disposizione. Problemi di ottimizzazione =

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Analisi II, a.a Soluzioni 5

Analisi II, a.a Soluzioni 5 Analisi II, a.a. 2017-2018 Soluzioni 5 1) Sia E un sottoinsieme chiuso e limitato di R n e x R n un punto qualunque. Chiamiamo d(x, E) = inf{d(x, y): y E} la distanza di x da E. Dimostrare che esiste un

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange. 1. Determinare i punti di massimo e di minimo assoluto della funzione

Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange. 1. Determinare i punti di massimo e di minimo assoluto della funzione Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange 1. Determinare i punti di massimo e di minimo assoluto della funzione f(x,y) = x 2 +y 2 xy +x+y A := {(x,y) R 2, x 0,y 0,x+y 3} 2. Determinare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019 I.1 ANALISI MATEMATICA ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del /1/19 1. Si consideri la funzione x +y, x,y,, fx,y = [ln1+x +y ] 1, x,y =,. A Si dimostri che f è continua in,. B Si dimostri

Dettagli

2 Forma canonica metrica delle ipequadriche

2 Forma canonica metrica delle ipequadriche 26 Trapani Dispensa di Geometria, 1 Iperquadriche Sia A una matrice reale simmetrica n n, non nulla, sia b un vettore colonnna in R n e sia c R. L insieme delle soluzioni in R n dell equazione X t AX +

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

Analisi Matematica 2. Continuità, derivabilità e differenziabilità

Analisi Matematica 2. Continuità, derivabilità e differenziabilità Docente: E. G. Casini Università degli Studi dell Insubria DIPATIMENTO DI SCIENZA E ALTA TECNOLOGIA Corso di Studio in Matematica e Fisica Analisi Matematica ichiami di Teoria ed Esercizi con Svolgimento

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare A. Agnetis 1 Richiami su condizioni di Karush-Kuhn-Tucker e convessità Si consideri il problema di ottimizzazione vincolata: min f(x) (1) x X R

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

1 Esercitazione sul metodo dei moltiplicatori di Lagrange

1 Esercitazione sul metodo dei moltiplicatori di Lagrange Corso di Analisi e Geometria. Maggio 011 (Docenti: F. Lastaria, M. Citterio, M. Saita). 1 Esercitazione sul metodo dei moltiplicatori di Lagrange 1.1 Massimi e minimi di una funzione su una varietà Sia

Dettagli