SISTEMI A TEMPO DISCRETO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI A TEMPO DISCRETO"

Transcript

1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel cristian.secchi@unimore.it Richiami di Controlli Automatici Il comportamento ingresso-uscita dei sistemi a tempo continuo può essere descritto da equazioni differenziali, che in generale hanno la forma: Molti sistemi di interesse possono essere descritti da equazioni differenziali lineari a parametri concentrati caratterizzate dalla seguente forma semplificata. I sistemi descritti da queste equazioni sono detti sistemi Lineari Tempo Invarianti (LTI). Se il sistema che si sta modellando è caratterizzato da un solo ingresso e una sola uscita, si parlerà di sistemi single input single output (SISO). CD Pag.

2 Richiami di Controlli Automatici Nel corso di Controlli Automatici sono stati trattati sistemi LTI SISO. E possibile passare da una rappresentazione nel dominio dei tempi a una nel dominio complesso e viceversa tramite le operazioni di Trasformata e Antitrasformata di Laplace. L L! Il vantaggio principale nel passare al dominio complesso è che un equazione differenziale viene trasformata in un equazione algebrica più semplice da gestire. CD Richiami di Controlli Automatici Un sistema LTI-SISO può essere descritto nel dominio complesso tramite una Funzione di Trasferimento. La rappresentazione mediante funzione di trasferimento è molto comoda e ha consentito di sviluppare un analisi approfondita del comportamento del sistema, un analisi delle specifiche e svariate tecniche per il progetto di controllori. CD Pag. 2

3 Richiami di Controlli Automatici Lo schema di controllo finale è: r(t) e(t) G c (s) u(t) G p (s) y(t) - Sia il plant che il controllore sono rappresentati da funzioni di trasferimento e, quindi, sono sistemi a tempo continuo. Ma l azione di controllo deve essere implementata su un calcolatore che è un sistema a tempo discreto Occorre sviluppare un framework per la modellazione dei sistemi discreti in modo da poter costruire un azione di controllo che sia implementabile su di un sistema a microprocessore. CD Descrizione di Sistemi a tempo discreto SISTEMI TEMPO-CONTINUI Equazioni differenziali A/D SISTEMI TEMPO-DISCRETI Equazioni alle differenze Trasformata di Laplace D/A Trasformata Z CD Pag. 3

4 Equazioni alle differenze Si supponga di voler elaborare una sequenza di dati discreti e k =e(kt), con k=0,,2,, per ottenere una sequenza u k =u(kt). Elaborazione In generale: Se la funzione f() è lineare e dipendente solo da un valore finito di valori passati di u k ed e k, l elaborazione può essere rappresentata da: equazione lineare alle differenze di ordine n CD Equazioni alle differenze Come per le equazioni differenziali lineari, esiste un metodo per trovare la soluzione in forma chiusa di un equazione alle differenze lineare. Tuttavia, nell ambito dei controlli digitali, ci interesserà molto di più ottenere una forma ricorsiva : e k µp Memoria u k- u k-2 u k-3 u k-n u k e k- e k-2 e k-3 u k-m Ad ogni istante k, dato un ingresso e k è possibile calcolare, usando i dati in memoria, l uscita u k. CD Pag. 4

5 La trasformata Z La trasformata Z è un metodo utilizzato per studiare i sistemi discreti. Essa rappresenta essenzialmente l'analogo della trasformata di Laplace per i sistemi continui. DEFINIZIONE: Sia data una sequenza di valori x k R, definita per k = 0,, 2, e nulla per k < 0. La Z-trasformata (unilatera) della sequenza x k è la funzione di variabile complessa z definita come: La Z-trasformata è definita in una regione del piano complesso z detta dominio di convergenza, cioè nell'insieme dei punti z per i quali la serie converge. CD La trasformata Zeta Nel caso in cui la sequenza di valori x k sia ottenuta campionando uniformemente con periodo T un segnale continuo descritto dalla funzione x(t), t 0, si avrà che x k = x(kt) (o più semplicemente x k = x(k), k = t/t = 0,, 2, ) e corrispondentemente si scriverà DIPENDE DAL PERIODO (T) DI CAMPIONAMENTO CD Pag. 5

6 La Z-trasformata Nell ambito dei controlli digitali, X(z) avrà spesso un espressione razionale fratta: p, p 2,, p n sono i poli di X(z) mentre z,z 2,,z m sono gli zeri di X(z) CD02 -- La Z-trasformata Raccogliendo z n sia al numeratore che al denominatore si ottiene una rappresentazione più utilizzata nelle applicazioni controllistiche in cui compaiono solo potenze di z - : CD Pag. 6

7 La Z-trasformata Funzioni elementari Impulso discreto unitario. Sia data la funzione, detta anche funzione delta di Kronecker δ 0 (t): Gradino unitario. Sia data la funzione Serie convergente per z > CD La Z-trasformata Funzioni elementari Rampa unitaria. Si consideri la funzione rampa unitaria: Poichè x(kt) = kt, k = 0,, 2,, la Z-trasformata è Serie convergente per z > CD Pag. 7

8 La Z-trasformata Funzioni elementari Funzione potenza a k. Sia data la funzione: a costante reale o complessa Dalla definizione si ha Serie convergente per z > a CD La Z-trasformata Le trasformate delle funzioni di maggior interesse sono solitamente riportate in tabelle che vengono consultate per la determinazione di Z- trasformate di funzione generiche, in modo analogo a quanto avviene per le tabelle delle trasformate di Laplace. Tramite le tabelle si possono determinare le Z-trasformate di funzioni di maggior complessità, scomponendo tali funzioni in somme di funzioni più semplici e ricomponendo successivamente le corrispondenti Z-trasformate. Esempio: Determinare la Z-trasformata di CD Pag. 8

9 Tabelle delle Z-Trasformate CD Tabelle delle Z-Trasformate CD Pag. 9

10 La Z-trasformata Dato un segnale x(t) e il periodo di campionamento T, si ottiene una unica X(z) A una X(z) possono corrispondere molte funzioni continue x(t) Questa ambiguità non sussiste se sono verificate le condizioni restrittive su T del teorema di Shannon CD Teoremi e proprietà principali Linearità: La Z trasformata è un operatore lineare CD Pag. 0

11 Teoremi e proprietà principali Teorema della traslazione nel tempo: Sia dato un segnale x(t), nullo per t<0, e sia X(z) = Z[x(t)]. Per n = 0,, 2, si ha che: ritardo anticipo In pratica spesso si scrive, con un certo abuso di notazione: Ingegneria e Tecnologie dei Sistemi di Controllo CD Teoremi e proprietà principali Teorema del valore iniziale: Se X(z) = Z[x(t)] ed esiste allora il valore iniziale x(0) di x(t) è dato da: Infatti si ha che: Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag.

12 Teoremi e proprietà principali Teorema del valore finale: Sia X(z) = Z[x(t)] e siano tutti i poli di X(z) entro al cerchio unitario, con al più un polo semplice in z =. Allora il valore finale di x(k), cioè il valore di x(k) per k! è dato da: CD Teoremi e proprietà principali Esempio: Si consideri il segnale descritto da X(kT) = 0, ,.2500,.6250,.825,.9063,.953,.9766,.9883,.994,.997,.9985,.9993,.9996,.9998,.9999, , ,. (T = sec) CD Pag. 2

13 Teoremi e proprietà principali Differenziazione complessa Da cui si deduce che: Questa relazione permette di calcolare Z-trasformate di funzioni a partire da Z-trasformate già note. CD Teoremi e proprietà principali Esempio: Gradino unitario. La Z-trasformata del gradino unitario è Si può usare il teorema della differenziazione complessa per calcolare la Z-trasformata della rampa unitaria x(kt) = kt: CD Pag. 3

14 Teoremi e proprietà principali Integrazione complessa: Si consideri la sequenza dove x(k)/k è finito per k=0 e sia Z[x(k)]=X(z). La Z-trasformata di x (k)/k è data da: CD Teoremi e proprietà principali Teorema della convoluzione reale: Siano date due funzioni x (t) e x 2 (t), con x (t) = x 2 (t) = 0 per t< 0, e siano X (z) e X 2 (z) le corrispondenti Z-trasformate. Allora: CD Pag. 4

15 La antitrasformata Z X(z) x(k) La relazione tra X(z) e x(k) è biunivoca: è possibile ottenere la sequenza di dati x(k) a partire dalla X(z) e viceversa. L antitrasformata Z permette di passare da una Z-trasformata X(z) alla corrispondente sequenza x(k). Esistono diversi metodi per antitrasformare una funzione X(z) Metodo della lunga divisione Metodo computazionale Metodo della scomposizione in fratti semplici Metodo dell integrale di inversione CD La antitrasformata Z x(k) x(t) La corrispondenza tra la sequenza campionata x k e il segnale originale x(t) NON è biunivoca. Se è soddisfatto il Teorema di Shannon sul campionamento, la funzione continua x(t) può essere determinata univocamente a partire dalla sequenza x k. CD Pag. 5

16 La antitrasformata Z Il metodo computazionale Si consideri ad esempio la seguente Z trasformata: Essa può essere riscritta come: Dove U(z) è la Z-trasformata dell impulso unitario discreto e vale CD La antitrasformata Z Il metodo computazionale Considerando l operatore z - come un ritardo unitario possiamo riscrivere l espressione precedente sotto forma di equazione alle differenze: da cui Le condizioni iniziali, necessarie per risolvere l equazione alle differenze, sono: CD Pag. 6

17 La antitrasformata Z Il metodo computazionale La soluzione dell equazione alle differenze ci dà i termini della sequenza x (kt) Il vantaggio di questo metodo è che l equazione alle differenze da risolvere per trovare la sequenze può essere facilmente scritta in forma ricorsiva in qualsiasi linguaggio di programmazione. CD La antitrasformata Z fratti semplici E l analogo nel discreto della tecnica della scomposizione in fratti semplici utilizzate con le trasformate di Laplace. Infatti, poichè la Z-trasformata è un operatore lineare, è possibile scomporre l'espressione di una X(z) in termini elementari, dai quali si può ricavare l'antitrasformata tramite tabelle, e sommare i vari elementi così ottenuti. In gerale, sia data una Z-trasformata: Per prima cosa occorre calcolare i poli, le radici del polinomio A(z) e riscrivere X(z) come: CD Pag. 7

18 La antitrasformata Z fratti semplici CASO : Tutti i poli di X(z) sono semplici In questo caso si pone: dove i coefficienti c i sono detti residui e sono dati da: CD La antitrasformata Z fratti semplici Se in X(z) vi è almeno uno zero nell origine, si usa X(z)/z: Quando sono presenti poli complessi coniugati, i coefficienti c i sono anch'essi complessi. In questo caso si ricorre alle formule di Eulero per ottenere funzioni trigonometriche a coefficienti reali. L espressione della sequenza x(k) è in forma chiusa ed è data da: CD Pag. 8

19 La antitrasformata Z fratti semplici CASO 2 Vi sono poli multipli in X(z) o in X(z)/z Siamo nella situazione in cui si ha: Possiamo scrivere Dove i residui si calcolano mediante la seguente formula: CD La antitrasformata Z fratti semplici Esempio: Calcolare l'antitrasformata della funzione I due poli risultano z = e z 2 = 0.6. Inoltre, la X(z) puo` essere scritta come Si utilizza quindi la X(z)/z da cui Dalle tabelle si ha quindi che CD Pag. 9

20 La antitrasformata Z fratti semplici Esempio: Antitrasformare la funzione Si ha che e quindi e CD Funzioni di Trasferimento Discrete Considereremo sistemi discreti lineari con un ingresso e un uscita a y k u k + a y 2 S k + + an yk n = bu k + b2uk + + y k b u n Elaborazione Discreta k m Applicando la Z trasformata ad entrambi i membri e sfruttando la linearità dell operatore, si ottiene: n m ( a + a2z + + anz ) Y ( z) = ( b + b2 z + + bn z ) U ( z) CD Pag. 20

21 Funzioni di Trasferimento Discrete Y( z) ( b G z) = = U ( z) ( a + b 2 ( + a2z z + + bn z + + a z G(z) è la funzione di trasferimento del sistema a tempo discreto. Analogamente a quanto succede per i sistemi tempo continui: La sua espressione non dipende dall ingresso, ma è data dalle proprietà del sistema Lega la trasformata Z dell uscita a quella dell ingresso tramite Y(z)=G(z)U(z) E uno strumento molto utile per l analisi di un sistema discreto e per la sintesi di un controllore E razionale fratta e, quindi, molti degli strumenti introdotti per l analisi dei sistemi tempo continui possono essere utilizzati, con opportune modifiche, per i sistemi discreti Le radici del polinomio al denominatore sono dette poli mentre quelle del polinomio al numeratore sono dette zeri. L equazione che si ottiene ponendo uguale a zero il polinomio al denominatore è detta equazione caratteristica. n m n ) ) CD Funzioni di Trasferimento Discrete La funzione di trasferimento può essere interpretata come la Z- trasformata della risposta impulsiva Y ( z) = G( z) U( z) = G( z) Z[ δ ( k)] = G( z) = G( z) La risposta nel tempo discreto è data dalla sommatoria di convoluzione tra l ingresso e la risposta impulsiva del sistema, detta anche sequenza ponderatrice y( k) = Z [ Y( z)] = Z [ G( z) U( z)] Ricordando il teorema della convoluzione reale si ha che: y( k) = k h= 0 g h u k Queste proprietà sono analoghe a quelle della funzione di trasferimento nel dominio di Laplace h CD Pag. 2

22 Funzioni di Trasferimento Discrete E possibile rappresentare un sistema a tempo discreto come un blocco con un ingresso e un uscita. U(z) Y(z) G(z) Un sistema discreto può essere rappresentato dall interconnessione di più blocchi. Le regole di riduzione per gli schemi a blocchi di sistemi discreti sono le stesse che valgono per gli schemi a blocchi di sistemi continui Serie Parallelo Retroazione U(z) G (z) Y(z) G 2 (z) C(z) U(z) G (z) G 2 (z) + + Y(z) U(z) + - G (z) G 2 (z) Y(z) U(z) C(z) H(z) H ( z) = G ( z) G2 ( z) U(z) Y(z) H(z) H ( z) = G ( z) + G2 ( z) U(z) Y(z) H(z) G ( z) H ( z) = + G ( z) G ( z) CD Stabilità nei sistemi discreti Analogamente al caso tempo continuo, la stabilità di un sistema tempo discreto è legata alla risposta impulsiva del sistema. Un sistema discreto si dice: Stabile, se la risposta del sistema all impulso discreto rimane limitata Asintoticamente stabile, se è stabile e la risposta del sistema converge asintoticamente a 0 Instabile, se non è stabile Analogamente al caso tempo continuo, la stabilità asintotica e la stabilità ingresso-limitato uscita-limitata coincidono Nelle applicazioni pratiche si è tipicamente interessati alla asintotica stabilità CD Pag. 22

23 Stabilità nei sistemi discreti Analogamente al caso tempo-continuo, il carattere di convergenza della risposta impulsiva dipende solamente dalla posizione dei poli della funzione di trasferimento che rappresenta il sistema tempo discreto. Se il sistema è descritto da una funzione di trasferimento del tipo: con A(z) e B(z) primi tra loro B( z) G ( z) = A( z) Il sistema è asintoticamente stabile se tutte le radici del polinomio A(z), cioè i poli del sistema, sono entro il cerchio unitario che ha centro nell origine del piano z, ossia se p i < per ogni i Il sistema è stabile se tutti i poli con modulo unitario ( p i =) sono semplici (ossia hanno molteplicità ), mentre tutti i rimanenti poli sono entro il cerchio unitario Il sistema è instabile se almeno un polo ha modulo strettamente maggiore di uno oppure se esiste un polo con modulo unitario e molteplicità maggiore di La posizione degli zeri NON influisce sulla stabilità del sistema. CD Stabilità nei sistemi discreti - Esempi G( z) = z 0.5 G( z) = z CD Pag. 23

24 Stabilità nei sistemi discreti - Esempi G( z) = z G( z) = z CD Stabilità nei sistemi discreti - Esempi ( z) = z 2 0. G( z) = ( z ) G 2 CD Pag. 24

25 Stabilità nei sistemi discreti L uscita del sistema poteva essere ottenuta direttamente antitrasformando la G(z) Il fatto che la regione di stabilità sia il cerchio unitario, dipende dal fatto che l antritrasformata di G(z) è composta da termini in cui compaiono funzioni potenza anziché esponenziali come nel caso tempo continuo. CD Determinazione della stabilità Per determinare la stabilità è sufficiente verificare la posizione delle radici dell equazione caratteristica rispetto al cerchio unitario. Se l equazione è data da: è possibile n n z + a z + + an = 0 trovare le radici dell equazione mediante un programma di analisi numerica (es. Matlab à roots([ a,,a n ]) usare criteri che consentono di determinare la stabilità del sistema senza dover risolvere l equazione caratteristica Criterio di Routh e trasformazione bilineare Criterio di Jury (vedi Bonivento-Zanasi-Melchiorri Cap. 4) CD Pag. 25

26 Criterio di Routh Data un equazione polinomiale di grado n, il criterio di Routh consente di determinare, senza dover risolvere l equazione, se tutte le radici hanno parte reale negativa. Nei sistemi continui, ciò è sufficiente per determinare se un sistema è asintoticamente stabile ma questo non è più vero per i sistemi discreti. L idea è quella di trasformare, mediante una trasformazione bilineare, la funzione data G(z) in un altra funzione G(w) di variabile complessa w tale da permettere l applicazione a quest ultima il criterio di Routh. CD Criterio di Routh Si utilizza la seguente trasformazione bilineare + w z = w z w = z + La prima equazione trasforma infatti il cerchio unitario in z nel semipiano sinistro del piano w (permettendo quindi l applicazione del criterio di Routh), mentre la seconda equazione effettua la trasformazione inversa. Verificare che il sistema G(w) abbia tutti i poli a parte reale negativa equivale a verificare che il sistema G(z) abbia tutti i poli all interno del cerchio unitario e che, quindi, sia asintoticamente stabile. CD Pag. 26

27 Criterio di Routh Ponendo w=σ+jω, si può facilmente vedere che il cerchio unitario viene mappato nel semipiano sinistro tramite la trasformazione bilineare + w z = w + σ + jω = < σ jω da cui ( + σ ) ( σ ) ω 2 + ω < ( σ ) + ω < ( σ ) + ω + σ < 0 In modo analogo, è possibile mostrare che i punti sul cerchio unitario vengono mappati sull asse immaginario e che i punti esterni al cerchio unitario vengono mappati nel semipiano destro del piano di Gauss. CD Criterio di Routh Per testare la stabilità di una funzione di trasferimento G(z): Si considera l equazione caratteristica del sistema n n P( z) = z + az an z + a = Si effettua la trasformazione bilineare per mappare il piano z nel piano w n 0 + w w n + w + a w n a n + w + a w n = 0 da cui si ottiene una nuova equazione polinomiale in w n n Q( w) = q0w + qw qn w + q = n 0 CD Pag. 27

28 Pag. 28 CD in virtù delle proprietà della trasformazione bilineare, radici di Q(w) a parte reale positiva, nulla, negativa corrispondono rispettivamente a radici di P(z) a modulo maggiore, uguale, minore di. Applicando il criterio di Routh, si determina la posizione delle radici di Q(w) e, di conseguenza, la stabilità di G(z). Criterio di Routh CD Esempio 2 ) ( = z z z z z G Sia dato un sistema discreto rappresentato da: Applicando la trasformazione bilineare all equazione caratteristica, si ottiene 2 ) ( = w w w w w w w Q da cui 5 3 ) ( = w w w w Q

29 Esempio Applicando il criterio di Routh, si ottiene: /3 0 5 da cui si conclude che, essendo presente una sola variazione di segno in prima colonna, il sistema ha un polo instabile. CD Sistemi a tempo discreti Sono definiti in un insieme discreto dei tempi e possono essere rappresentati da un equazione alle differenze La trasformata Z è l analogo discreto della trasformata di Laplace e consente di definire il concetto di funzione di trasferimento per i sistemi discreti. Le regole di interconnessione per i sistemi discreti sono le stesse che valgono per i sistemi continui La stabilità di un sistema discreto è legata alla molteplicità e alla posizione dei poli della sua funzione di trasferimento rispetto al cerchio unitario. CD Pag. 29

30 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel cristian.secchi@unimore.it Pag. 30

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI L DEI SISTEMI DISCRETI Ing. Cristian Secchi Tel. 0522 522235 e-mail:

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Controllo Digitale a.a. 2007-2008 Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Ing. Federica Pascucci Equazioni alle differenze (ricorsive) f legame tra le sequenze {e k } ed

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%20industriale.htm ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA Ing. Luigi Biagiotti Tel. 051

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm La determinazione dell'evoluzione

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

SISTEMI A TEMPO DISCRETO

SISTEMI A TEMPO DISCRETO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte II Sistemi lineari a tempo discreto

Dettagli

La trasformata di Laplace e un OPERATORE funzionale

La trasformata di Laplace e un OPERATORE funzionale FA-es Parte 1L 1 Trasformate di Laplace Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Metodi per risolverle??? FA-es Parte 1L 2 La trasformata di Laplace

Dettagli

Proprieta. Proprieta. Proprieta. Proprieta. 1. Linearita : 3. Trasformata della derivata: 2. Trasformata dell integrale:

Proprieta. Proprieta. Proprieta. Proprieta. 1. Linearita : 3. Trasformata della derivata: 2. Trasformata dell integrale: FA-es Parte 1L 1 FA-es Parte 1L 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti)

Dettagli

Soluzione nel dominio del tempo

Soluzione nel dominio del tempo Soluzione nel dominio del tempo Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Antitrasformate CA 2017 2018 Prof. Laura Giarré 1 Risposta nel dominio trasformato Ricordo che

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici Evoluzione forzata di un equazione differenziale: la trasformata di Laplace Y(s) del segnale di uscita y(t) è uguale al prodotto della trasformata di Laplace X(s)

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione Segnali e trasformate DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm TRASFORMATE DI LAPLACE Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. a gradoni Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale

Dettagli

TRASFORMATA di LAPLACE. Prof. Laura Giarré

TRASFORMATA di LAPLACE. Prof. Laura Giarré TRASFORMATA di LAPLACE Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Trasformate di Laplace Gli esempi visti di sistemi dinamici hanno mostrato che la loro evoluzione nel

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Università di Pisa - Registro lezioni.

Università di Pisa - Registro lezioni. Page 1 of 8 Registri a.a. 2012/2013 DATI REGISTRO insegnamento corso di studi responsabile docenti totale ore nota AUTOMATICA (cod. 093II) IEL-L - INGEGNERIA ELETTRONICA Alberto Landi Alberto Landi 61

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

INTRODUZIONE AL CONTROLLO DIGITALE

INTRODUZIONE AL CONTROLLO DIGITALE CONTROLLI AUTOMATICI LS Ingegneria Informatica INTRODUZIONE AL CONTROLLO DIGITALE Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 051 2093034 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Concetti di base sulla trasformata zeta

Calcolo del movimento di sistemi dinamici LTI. Concetti di base sulla trasformata zeta Calcolo del movimento di sistemi dinamici LTI Concetti di base sulla trasformata zeta Concetti di base sulla trasformata zeta Definizione e proprietà Principali trasformate Scomposizione in fratti semplici

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010 COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 6 Febbraio Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale: d 3 y(t) dt 3

Dettagli

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti 4 Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti P-4.1: Dopo aver diviso per 0.5, cioè il coefficiente di, l equazione alle differenze finite data, si ottengono le strutture

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Luigi

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Sistemi Elementari Cesare Fantuzzi

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 213 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 1 (s.1)(s + 1) 2 s(s +.1) 2 (s

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Capitolo Trasformata di Laplace

Capitolo Trasformata di Laplace Capitolo Trasformata di Laplace. Segnali lo studio dei sistemi. Trasformata di Laplace.3 Antitrasformata di Laplace.4 Antitrasformata di Laplace: metodo delle frazioni parziali . SEGNALI PER LO STUDIO

Dettagli

CRITERIO DI ROUTH-HURWITZ

CRITERIO DI ROUTH-HURWITZ CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html CRITERIO DI ROUTH-HURWITZ Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2008/2009 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica Funzione di risposta armonica - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L La funzione di risposta armonica DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 1 febbraio 18 - Quiz Per ciascuno dei

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

Circuiti per la multimedialità

Circuiti per la multimedialità Università di Roma La Sapienza Laurea in Ingegneria delle Comunicazioni Circuiti per la multimedialità Raffaele Parisi Capitolo 2. Sintesi di circuiti a tempo discreto a partire da circuiti analogici.

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Trasformata di Laplace Antitrasformata Dominio Tempo

Trasformata di Laplace Antitrasformata Dominio Tempo Capitolo Come abbiamo visto nella lezione, il calcolo della risposta di un sistema nel dominio del tempo richiede la soluzione di equazioni differenziali. Quindi bisogna trasformare il problema matematico,

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Stabilità

Proprietà Strutturali dei Sistemi Dinamici: Stabilità Proprietà Strutturali dei Sistemi Dinamici: Stabilità Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 2012 1 Stabilità Consideriamo il sistema

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 8 giugno 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Una delle proprietà fondamentali di un sistema è la stabilità. Esistono due tipi di stabilità:

Una delle proprietà fondamentali di un sistema è la stabilità. Esistono due tipi di stabilità: Chapter 1 Stabilità di sistemi lineari Una delle proprietà fondamentali di un sistema è la stabilità. Esistono due tipi di stabilità: 1. stabilità rispetto alle condizioni iniziali; 2. stabilità ingresso/uscita.

Dettagli

Invito alla lettura. Simboli e notazioni

Invito alla lettura. Simboli e notazioni Indice Generale Invito alla lettura Simboli e notazioni xiii xv 1 Automatica, ieri e oggi 1 1.1 Le disavventure di Sir Shovell................... 1 1.2 Missioni cometarie......................... 1 1.3

Dettagli

03. Trasformate di Laplace

03. Trasformate di Laplace Controlli Automatici 03. Trasformate di Laplace Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

CRITERIO DI ROUTH-HURWITZ

CRITERIO DI ROUTH-HURWITZ CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CRITERIO DI ROUTH-HURWITZ HURWITZ Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Cognome Nome Matricola Corso

Cognome Nome Matricola Corso Fondamenti di Controlli Automatici - A.A. 212/13 6 novembre 213 - Quiz di Teoria Cognome Nome Matricola Corso Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 18 Settembre 2012

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 18 Settembre 2012 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 8 Settembre Esercizio. (pt.) Sia G(s) = (s +.)(s s + ) s (s ) la funzione di trasferimento di un modello ingresso/uscita,

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli