Cristian Secchi Pag. 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cristian Secchi Pag. 1"

Transcript

1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel Richiami di Controlli Automatici Il comportamento ingresso-uscita dei sistemi a tempo continuo può essere descritto da equazioni differenziali, che in generale hanno la forma: Molti sistemi di interesse possono essere descritti da equazioni differenziali lineari a parametri concentrati caratterizzate dalla seguente forma semplificata. I sistemi descritti da queste equazioni sono detti sistemi Lineari Tempo Invarianti (LTI). Se il sistema che si sta modellando è caratterizzato da un solo ingresso e una sola uscita, si parlerà di sistemi single input single output (SISO). CD Pag. 1

2 Richiami di Controlli Automatici Nel corso di Controlli Automatici sono stati trattati sistemi LTI SISO. E possibile passare da una rappresentazione nel dominio dei tempi a una nel dominio complesso e viceversa tramite le operazioni di Trasformata e Antitrasformata di Laplace. Il vantaggio principale nel passare al dominio complesso è che un equazione differenziale viene trasformata in un equazione algebrica più semplice da gestire. CD Richiami di Controlli Automatici Un sistema LTI-SISO può essere descritto nel dominio complesso tramite una Funzione di Trasferimento. La rappresentazione mediante funzione di trasferimento è molto comoda e ha consentito di sviluppare un analisi approfondita del comportamento del sistema, un analisi delle specifiche e svariate tecniche per il progetto di controllori. CD Pag. 2

3 Richiami di Controlli Automatici Lo schema di controllo finale è: r(t) e(t) G c (s) u(t) G p (s) y(t) - Sia il plant che il controllore sono rappresentati da funzioni di trasferimento e, quindi, sono sistemi a tempo continuo. Ma l azione di controllo deve essere implementata su un calcolatore che è un sistema a tempo discreto Occorre sviluppare un framework per la modellazione dei sistemi discreti in modo da poter costruire un azione di controllo che sia implementabile su di un sistema a microprocessore. CD Descrizione di Sistemi a tempo discreto SISTEMI TEMPO-CONTINUI Equazioni differenziali A/D SISTEMI TEMPO-DISCRETI Equazioni alle differenze Trasformata di Laplace D/A Trasformata Z CD Pag. 3

4 Equazioni alle differenze Si supponga di voler elaborare una sequenza di dati discreti e k =e(kt), con k=0,1,2,, per ottenere una sequenza u k =u(kt). Elaborazione In generale: Se la funzione f() è lineare e dipendente solo da un valore finito di valori passati idi u k ed e k, l elaborazione l può essere rappresentata da: equazione lineare alle differenze di ordine n CD Equazioni alle differenze Come per le equazioni differenziali lineari, esiste un metodo per trovare la soluzione in forma chiusa di un equazione alle differenze lineare. Tuttavia, nell ambito dei controlli digitali, ci interesserà molto di più ottenere una forma ricorsiva : e k μp Memoria u k-1 u k-2 u k-3 u k-n e k-1 e k-2 e k-3 u k-m u k Ad ogni istante k, dato un ingresso e k è possibile calcolare, usando i dati in memoria, l uscita u k. CD Pag. 4

5 La trasformata Z La trasformata Z è un metodo utilizzato per studiare i sistemi discreti. Essa rappresenta essenzialmente l'analogo della trasformata di Laplace per i sistemi continui. DEFINIZIONE: Sia data una sequenza di valori x k R, definita per k = 0, 1, 2, e nulla per k < 0. La Z-trasformata (unilatera) della sequenza x k è la funzione di variabile complessa z definita come: La Z-trasformata è definita in una regione del piano complesso z detta dominio di convergenza, cioè nell'insieme dei punti z per i quali la serie converge. CD La trasformata Zeta Nel caso in cui la sequenza di valori x k sia ottenuta campionando uniformemente con periodo T un segnale continuo descritto dalla funzione x(t), t 0, si avrà che x k = x(kt) (o più semplicemente x k = x(k), k = t/t = 0, 1, 2, ) e corrispondentemente si scriverà DIPENDE DAL PERIODO (T) DI CAMPIONAMENTO CD Pag. 5

6 La Z-trasformata Nell ambito dei controlli digitali, X(z) avrà spesso un espressione razionale fratta: p 1, p 2,, p n sono i poli di X(z) mentre z 1,z 2,,z m sono gli zeri di X(z) CD La Z-trasformata Raccogliendo z n sia al numeratore che al denominatore si ottiene una rappresentazione più utilizzata nelle applicazioni controllistiche in cui compaiono solo potenze di z -1 : CD Pag. 6

7 La Z-trasformata Funzioni elementari Impulso discreto unitario. Sia data la funzione, detta anche funzione delta di Kronecker δ 0 (t): Gradino unitario. Sia data la funzione Serie convergente per z > 1 CD La Z-trasformata Funzioni elementari Rampa unitaria. Si consideri la funzione rampa unitaria: Poichè x(kt) = kt, k = 0, 1, 2,, la Z-trasformata è Serie convergente per z > 1 CD Pag. 7

8 La Z-trasformata Funzioni elementari Funzione potenza a k. Sia data la funzione: a costante reale o complessa Dalla definizione si ha Serie convergente per z > a CD La Z-trasformata Le trasformate delle funzioni di maggior interesse sono solitamente riportate in tabelle che vengono consultate per la determinazione di Z- trasformate di funzione generiche, in modo analogo a quanto avviene per le tabelle delle trasformate di Laplace. Tramite le tabelle si possono determinare le Z-trasformate di funzioni di maggior complessità, scomponendo tali funzioni in somme di funzioni più semplici e ricomponendo successivamente le corrispondenti Z-trasformate. Esempio: Determinare la Z-trasformata di CD Pag. 8

9 Tabelle delle Z-Trasformate CD Tabelle delle Z-Trasformate CD Pag. 9

10 La Z-trasformata Dato un segnale x(t) e il periodo di campionamento T, si ottiene una unica X(z) A una X(z) possono corrispondere molte funzioni continue x(t) Questa ambiguità non sussiste se sono verificate le condizioni restrittive e su T del teorema ema di Shannon , y1 y 0 1 x x x x x x t (s) CD Teoremi e proprietà principali Linearità: La Z trasformata è un operatore lineare CD Pag. 10

11 Teoremi e proprietà principali Teorema della traslazione nel tempo: Sia dato un segnale x(t), nullo per t<0, e sia X(z) = Z[x(t)]. Per n = 0, 1, 2, si ha che: ritardo anticipo In pratica spesso si scrive, con un certo abuso di notazione: Ingegneria e Tecnologie dei Sistemi di Controllo CD Teoremi e proprietà principali Teorema del valore iniziale: Se X(z) = Z[x(t)] ed esiste allora il valore iniziale x(0) di x(t) è dato da: Infatti si ha che: Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag. 11

12 Teoremi e proprietà principali Teorema del valore finale: Sia X(z) = Z[x(t)] e siano tutti i poli di X(z) entro al cerchio unitario, con al più un polo semplice in z =1. Allora il valore finale di x(k), cioè il valore di x(k) per k!1 è dato da: CD Teoremi e proprietà principali Esempio: Si consideri il segnale descritto da X(kT) = 0, , , , , , , , , , , , , , , , , ,. (T = 1 sec) CD Pag. 12

13 Teoremi e proprietà principali Differenziazione complessa Da cui si deduce che: Questa relazione permette di calcolare Z-trasformate di funzioni a partire da Z-trasformate già note. CD Teoremi e proprietà principali Esempio: Gradino unitario. La Z-trasformata del gradino unitario è Si può usare il teorema della differenziazione complessa per calcolare la Z-trasformata della rampa unitaria x(kt) = kt: CD Pag. 13

14 Teoremi e proprietà principali Integrazione complessa: Si consideri la sequenza dove x(k)/k è finito per k=0 e sia Z[x(k)]=X(z). La Z-trasformata di x(k)/k è data da: CD Teoremi e proprietà principali Teorema della convoluzione reale: Siano date due funzioni x 1 (t) e x 2 (t), con x 1 (t) = x 2 (t) = 0 per t< 0, e siano X 1 (z) e X 2 (z) le corrispondenti Z-trasformate. Allora: CD Pag. 14

15 La antitrasformata Z X(z) x(k) La relazione tra X(z) e x(k) è biunivoca: è possibile ottenere la sequenza di dati x(k) a partire dalla X(z) e viceversa. L antitrasformata Z permette di passare da una Z-trasformata X(z) alla corrispondente sequenza x(k). Esistono diversi metodi per antitrasformare una funzione X(z) Metodo della lunga divisione Metodo computazionale Metodo della scomposizione in fratti semplici Metodo dell integrale di inversione CD La antitrasformata Z x(k) x(t) La corrispondenza tra la sequenza campionata x k e il segnale originale x(t) NON è biunivoca. Se è soddisfatto il Teorema di Shannon sul campionamento, la funzione continua x(t) può essere determinata univocamente a partire dalla sequenza x k y0, y1 1 x x x x x x t (s) CD Pag. 15

16 La antitrasformata Z Il metodo computazionale Si consideri ad esempio la seguente Z trasformata: Essa può essere riscritta come: Dove U(z) è la Z-trasformata t dell impulso l unitario i discreto e vale 1 CD La antitrasformata Z Il metodo computazionale Considerando l operatore z -1 come un ritardo unitario possiamo riscrivere l espressione precedente sotto forma di equazione alle differenze: da cui Le condizioni iniziali, necessarie per risolvere l equazione alle differenze, sono: CD Pag. 16

17 La antitrasformata Z Il metodo computazionale La soluzione dell equazione alle differenze ci dà i termini della sequenza x(kt) Il vantaggio di questo metodo è che l equazione alle differenze da risolvere per trovare la sequenze può essere facilmente scritta in forma ricorsiva in qualsiasi linguaggio di programmazione. CD La antitrasformata Z fratti semplici E l analogo nel discreto della tecnica della scomposizione in fratti semplici utilizzate con le trasformate di Laplace. Infatti, poichè la Z-trasformata è un operatore lineare, è possibile scomporre l'espressione di una X(z) in termini elementari, dai quali si può ricavare l'antitrasformata tramite tabelle, e sommare i vari elementi così ottenuti. In gerale, sia data una Z-trasformata: Per prima cosa occorre calcolare i poli, le radici del polinomio A(z) e riscrivere X(z) come: CD Pag. 17

18 La antitrasformata Z fratti semplici CASO 1: Tutti i poli di X(z) sono semplici In questo caso si pone: dove i coefficienti c i sono detti residui e sono dati da: CD La antitrasformata Z fratti semplici Se in X(z) vi è almeno uno zero nell origine, si usa X(z)/z: Quando sono presenti poli complessi coniugati, i coefficienti c i sono anch'essi complessi. In questo caso si ricorre alle formule di Eulero per ottenere funzioni trigonometriche a coefficienti reali. L espressione della sequenza x(k) è in forma chiusa ed è data da: CD Pag. 18

19 La antitrasformata Z fratti semplici CASO 2 Vi sono poli multipli in X(z) o in X(z)/z Siamo nella situazione in cui si ha: Possiamo scrivere Dove i residui si calcolano mediante la seguente formula: CD La antitrasformata Z fratti semplici Esempio: Calcolare l'antitrasformata della funzione I due poli risultano z 1 = 1 e z 2 = 0.6. Inoltre, la X(z) puo` essere scritta come Si utilizza quindi la X(z)/z da cui Dalle tabelle si ha quindi che CD Pag. 19

20 La antitrasformata Z fratti semplici Esempio: Antitrasformare la funzione Si ha che e quindi e CD Funzioni di Trasferimento Discrete Considereremo sistemi discreti lineari con un ingresso e un uscita a y 1 k u k S + a y L 2 k 1 + L+ an yk n = b1u k + b2uk y k b u n Elaborazione Discreta k m Applicando la Z trasformata ad entrambi i membri e sfruttando la linearità dell operatore, si ottiene: 1 n 1 m ( a1 + a2z + L+ anz ) Y ( z) = ( b1 + b2 z + L+ bn z ) U ( z) CD Pag. 20

21 Funzioni di Trasferimento Discrete Y ( z) ( b G z) = = U ( z) ( a + b ( a2z z + L+ bn z + L+ a z G(z) è la funzione di trasferimento del sistema a tempo discreto. Analogamente a quanto succede per i sistemi tempo continui: La sua espressione non dipende dall ingresso, ma è data dalle proprietà del sistema Lega la trasformata Z dell uscita a quella dell ingresso tramite Y(z)=G(z)U(z) E uno strumento molto utile per l analisi di un sistema discreto e per la sintesi di un controllore E razionale fratta e, quindi, molti degli strumenti introdotti per l analisi dei sistemi tempo continui possono essere utilizzati, con opportune modifiche, per i sistemi discreti Le radici del polinomio al denominatore sono dette poli mentre quelle del polinomio al numeratore sono dette zeri. L equazione che si ottiene ponendo uguale a zero il polinomio al denominatore è detta equazione caratteristica. n m n ) ) CD Funzioni di Trasferimento Discrete La funzione di trasferimento può essere interpretata come la Z- trasformata della risposta impulsiva Y ( z) = G( z) U ( z) = G( z) Z[ δ ( k)] = G( z) 1 = G( z) La risposta nel tempo discreto è data dalla sommatoria di convoluzione tra l ingresso e la risposta impulsiva del sistema, detta anche sequenza ponderatrice y( k) = Z 1 [ Y ( z)] = Z 1 [ G( z) U ( z)] Ricordando il teorema della convoluzione reale si ha che: y( k) = k h= 0 g h u k Queste proprietà sono analoghe a quelle della funzione di trasferimento nel dominio di Laplace h CD Pag. 21

22 Funzioni di Trasferimento Discrete E possibile rappresentare un sistema a tempo discreto come un blocco con un ingresso e un uscita. U(z) Y(z) G(z) Un sistema discreto può essere rappresentato dall interconnessione di più blocchi. Le regole di riduzione per gli schemi a blocchi di sistemi discreti sono le stesse che valgono per gli schemi a blocchi di sistemi continui Serie Parallelo Retroazione U(z) G 1 (z) Y(z) G 2 (z) C(z) U(z) G 1 (z) G 2 (z) + + Y(z) U(z) + - G 1 (z) G 2 (z) Y(z) U(z) C(z) H(z) H ( z) = G1 ( z) G2( z) U(z) Y(z) H(z) H ( z) = G1 ( z) + G2( z) U(z) Y(z) H(z) G1 ( z) H ( z) = 1+ G ( z) G ( z) 1 CD Stabilità nei sistemi discreti Analogamente al caso tempo continuo, la stabilità di un sistema tempo discreto è legata alla risposta impulsiva del sistema. Un sistema discreto si dice: Stabile, se la risposta del sistema all impulso discreto rimane limitata Asintoticamente stabile, se è stabile e la risposta del sistema converge asintoticamente a 0 Instabile, se non è stabile Analogamente al caso tempo continuo, la stabilità asintotica e la stabilità ingresso-limitato uscita-limitata coincidono Nelle applicazioni pratiche si è tipicamente interessati alla asintotica stabilità CD Pag. 22

23 Stabilità nei sistemi discreti Analogamente al caso tempo-continuo, il carattere di convergenza della risposta impulsiva dipende solamente dalla posizione dei poli della funzione di trasferimento che rappresenta il sistema tempo discreto. Se il sistema è descritto da una funzione di trasferimento del tipo: con A(z) e B(z) primi tra loro B(z) ( ) G ( z) = A( z) Il sistema è asintoticamente stabile se tutte le radici del polinomio A(z), cioè i poli del sistema, sono entro il cerchio unitario che ha centro nell origine del piano z, ossia se p i <1 per ogni i Il sistema è stabile se tutti i poli con modulo unitario ( p i =1) sono semplici (ossia hanno molteplicità 1), mentre tutti i rimanenti poli sono entro il cerchio unitario Il sistema è instabile se almeno un polo ha modulo strettamente maggiore di uno oppure se esiste un polo con modulo unitario e molteplicità maggiore di 1 La posizione degli zeri NON influisce sulla stabilità del sistema. CD Stabilità nei sistemi discreti - Esempi G ( z ) = z G ( z) = z CD Pag. 23

24 Stabilità nei sistemi discreti - Esempi 1 G ( z ) = z 1 1 G ( z) = z 1 CD Stabilità nei sistemi discreti - Esempi 1 ( z) = z G ( z) = ( z 1) G 2 CD Pag. 24

25 Stabilità nei sistemi discreti L uscita del sistema poteva essere ottenuta direttamente antitrasformando la G(z) Il fatto che la regione di stabilità sia il cerchio unitario, dipende dal fatto che l antritrasformata asfo di G(z) è composta da termini in cui compaiono funzioni potenza anziché esponenziali come nel caso tempo continuo. CD Determinazione della stabilità Per determinare la stabilità è sufficiente verificare la posizione delle radici dell equazione caratteristica rispetto al cerchio unitario. Se l equazione è data da: è possibile n n z L 1 + a1 z + + an = 0 trovare le radici dell equazione mediante un programma di analisi numerica (es. Matlab roots([1 a 1,,a n ]) usare criteri che consentono di determinare la stabilità del sistema senza dover risolvere l equazione caratteristica Criterio di Routh e trasformazione bilineare Criterio di Jury (vedi Bonivento-Zanasi-Melchiorri Cap. 4) CD Pag. 25

26 Criterio di Routh Data un equazione polinomiale di grado n, il criterio di Routh consente di determinare, senza dover risolvere l equazione, se tutte le radici hanno parte reale negativa. Nei sistemi continui, i ciò è sufficiente per determinare e se un sistema è asintoticamente stabile ma questo non è più vero per i sistemi discreti. L idea è quella di trasformare, mediante una trasformazione bilineare, la funzione data G(z) in un altra funzione G(w) di variabile complessa w tale da permettere l applicazione a quest ultima il criterio di Routh. CD Criterio di Routh Si utilizza la seguente trasformazione bilineare z 1+ w z 1 = w = 1 w z + 1 La prima equazione trasforma infatti il cerchio unitario in z nel semipiano sinistro del piano w (permettendo quindi l applicazione del criterio di Routh), mentre la seconda equazione effettua la trasformazione inversa. Verificare che il sistema G(w) abbia tutti i poli a parte reale negativa equivale a verificare che il sistema G(z) abbia tutti i poli all interno del cerchio unitario e che, quindi, sia asintoticamente stabile. CD Pag. 26

27 Criterio di Routh Ponendo w=σ+jω, si può facilmente vedere che il cerchio unitario viene mappato nel semipiano sinistro tramite la trasformazione bilineare 1+ w 1+ σ + jω z = = < 1 1 w 1 σ j ω da cui ( 1+ σ ) ( 1 σ ) ω 2 + ω < ( 1 σ ) + ω < ( 1 σ ) + ω + σ < 0 In modo analogo, è possibile mostrare che i punti sul cerchio unitario vengono mappati sull asse immaginario e che i punti esterni al cerchio unitario vengono mappati nel semipiano destro del piano di Gauss. CD Criterio di Routh Per testare la stabilità di una funzione di trasferimento G(z): Si considera l equazione caratteristica del sistema n n P( z) = z + a1z + L+ + an 1z + a 1 = Si effettua la trasformazione bilineare per mappare il piano z nel piano w n 0 1+ w 1 w n 1+ w + a1 1 w n 1 + L+ + a n 1 1+ w + a 1 w n = 0 da cui si ottiene una nuova equazione polinomiale in w n n Q( w) = q0w + q1w + L+ + qn 1w + q 1 = n 0 CD Pag. 27

28 Criterio di Routh in virtù delle proprietà della trasformazione bilineare, radici di Q(w) a parte reale positiva, nulla, negativa corrispondono rispettivamente a radici di P(z) a modulo maggiore, uguale, minore di 1. Applicando il criterio di Routh, si determina la posizione delle radici di Q(w) e, di conseguenza, la stabilità di G(z). CD Esempio Sia dato un sistema discreto rappresentato da: z + 1 G( z) = 3 2 z + 2z + z + 1 Applicando la trasformazione bilineare all equazione caratteristica, si ottiene 1+ w Q( w) = 1 w 3 1+ w w da cui 3 2 Q( w) = w + 3w + w w w CD Pag. 28

29 Esempio Applicando il criterio di Routh, si ottiene: /3 0 5 da cui si conclude che, essendo presente una sola variazione di segno in prima colonna, il sistema ha un polo instabile. CD Sistemi a tempo discreti Sono definiti in un insieme discreto dei tempi e possono essere rappresentati da un equazione alle differenze La trasformata Z è l analogo discreto della trasformata di Laplace e consente di definire e il concetto di funzione di trasferimento per i sistemi discreti. Le regole di interconnessione per i sistemi discreti sono le stesse che valgono per i sistemi continui La stabilità di un sistema discreto è legata alla molteplicità e alla posizione dei poli della sua funzione di trasferimento rispetto al cerchio unitario. CD Pag. 29

30 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel mettere dopo il teorema del ritardo: Il termine z -k è interpretabile come un ritardo z - k! ritardo di t = kt Dire quando si parla del metodo computazionale che è quella la ragione per cui le espressioni razionali fratte vengono espresse in termini di z -1 Controlli Digitali CD Pag. 30

31 Soluzione delle equazioni alle differenze Trovare la soluzione delle equazioni alle differenze è semplice. Basta conoscere le condizioni iniziali. Si consideri ad esempio: Condizioni iniziali: CD Equazione caratteristica L equazione caratteristica (associata all equazione) è data da L equazione alle differenze è instabile. Infatti la soluzione è divergente Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag. 31

32 Soluzione delle equazioni alle differenze Nel caso generale, si ipotizza che la sequenza soluzione sia nella forma: Sostituendo la soluzione candidata nell equazione si ottiene: Dividendo per cz k si ottiene Poiché l equazione è lineare, si ha che la combinazione lineare di due soluzioni è ancora una soluzione. Quindi è ancora una soluzione Ingegneria e Tecnologie dei Sistemi di Controllo CD Soluzione delle equazioni alle differenze Le costanti c 1 e c 2 si determinano imponendo specifiche condizioni iniziali. da cui Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag. 32

33 Soluzione delle equazioni alle differenze L equazione che si ottiene dopo la sostituzione u k =z k è detta equazione caratteristica dell equazione alle differenze. Se una delle radici dell equazione caratteristica ha modulo maggiore di 1, allora la corrispondente equazione alle differenze è instabile (cioè la sua soluzione divergerà al crescere del tempo per qualsiasi condizione iniziale finita). Se tutte le radici dell equazione caratteristica hanno modulo minore di 1, allora la corrispondente equazione alle differenze è stabile (cioè la sua soluzione convergerà a 0 al crescere del tempo per qualsiasi condizione iniziale finita). stabile 1 instabile Ingegneria e Tecnologie dei Sistemi di Controllo CD La Z-trasformata Funzioni elementari Funzione esponenziale. Sia data la funzione: a costante reale o complessa Poichè x(kt) = e -akt, k = 0, 1, 2,, si ha Convergente per z > e -Re(a)T Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag. 33

34 La Z-trasformata Funzioni elementari Funzione sinusoidale. Sia data la funzione: Dalle formule di Eulero: Convergente per z > 1 Ingegneria e Tecnologie dei Sistemi di Controllo CD La Z-trasformata Funzioni elementari Funzione cosinusoidale. Sia data la funzione: Analogamente a prima, con le formule di Eulero Convergente per z > 1 Ingegneria e Tecnologie dei Sistemi di Controllo CD Pag. 34

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Sistemi LSTD: rappresentazione esplicita

Sistemi LSTD: rappresentazione esplicita Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Università degli Studi di Siena Sede di Arezzo Corso di Laurea triennale in Ingegneria dell Automazione Appunti del corso di Controllo Digitale A cura di Gianni Bianchini Indice Glossario, abbreviazioni

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Corso di Laurea in Ingegneria Informatica e dell Informazione (SA) Appunti del corso di Controllo Digitale A cura di Gianni Bianchini

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

7. Trasformata di Laplace

7. Trasformata di Laplace 7. Trasformata di Laplace Pierre-Simon de Laplace (1749-1827) Trasformata di Fourier e segnali causali In questa lezione ci occuperemo principalmente di segnali causali: Definizione 7.1 (Segnali causali)

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Regolatori PID. Corso di Controllo Digitale. a cura di Simona Onori s.onori@disp.uniroma2.it

Regolatori PID. Corso di Controllo Digitale. a cura di Simona Onori s.onori@disp.uniroma2.it Regolatori PID Corso di Controllo Digitale a cura di Simona Onori s.onori@disp.uniroma2.it Novembre 2005 Introduzione I regolatori lineari più usati in ambito industriale sono certamente i PID, o regolatori

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata.

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata. 8.. STRUMENTI MATEMATICI 8. Equazini alle differenze. Sn legami statici che legan i valri attuali (all istante k) e passati (negli istanti k, k, ecc.) dell ingress e k e dell uscita u k : u k = f(e 0,

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Studio del grafico di una funzione reale

Studio del grafico di una funzione reale Capitolo 1 Studio del grafico di una funzione reale Questo testo è una guida per lo studio del grafico di una funzione. Non è un testo completo ma solo una bozza che servirà agli studenti per arrivare

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

analisi di sistemi retroazionati (2)

analisi di sistemi retroazionati (2) : analisi di sistemi retroazionati (2) Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano lovera@elet.polimi.it Indice Piccolo guadagno Stabilita ingresso-uscita Guadagno L 2

Dettagli

Trasformata Zeta e Sistemi LTI a Tempo Discreto

Trasformata Zeta e Sistemi LTI a Tempo Discreto Capitolo 7 Trasformata Zeta e Sistemi LTI a Tempo Discreto Questo capitolo è dedicato allo studio della trasformata zeta, strumento di analisi dei sistemi LTI a tempo discreto così come la trasformata

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Elaborazione numerica. Teoria dei segnali

Elaborazione numerica. Teoria dei segnali Elaborazione numerica e Teoria dei segnali Raccolta di Esercizi Fiandrino Claudio agosto 00 II Indice I Teoria dei segnali 5 Esercizi di base 7. Esercizio............................. 7. Esercizio.............................

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Istituto Tecnico Industriale Statale Enrico Mattei

Istituto Tecnico Industriale Statale Enrico Mattei Istituto Tecnico Industriale Statale Enrico Mattei Specializzazione di Elettronica ed Elettrotecnica URBINO Corso di Sistemi Automatici Elettronici ESERCITAZIONE TRASFORMATA DI LAPLACE Circuiti del primo

Dettagli