Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)"

Transcript

1 Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano R 2. y y P P = (x P,y P ) x P R 2 x Im (0,0) y C z = (x,y) x Re x R è detto parte reale di z e si scrive x = Rez y R è detto parte immaginaria di z e si scrive y = Imz c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 1

2 L insieme A = {z C : z = (x,0), x R}, detto Asse reale può essere identificato con la retta dei numeri reali R, per cui possiamo scrivere R C. replacements Im C y z = (x,y) (0,0) x Re L insieme B = {z C : z = (0,y),y R} è detto Asse immaginario e i numeri di B sono detti immaginari puri. Lo zero di C è la coppia (0,0). c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 2

3 Operazioni in C Diciamo che due numeri complessi z 1 = (x 1,y 1 ) e z 2 = (x 2,y 2 ) sono uguali se hanno le stesse parti reali e immaginarie, ovvero: z 1 = z 2 x 1 = x 2 e y 1 = y 2 In particolare, un numero complesso z 1 = (x 1,y 1 ) è nullo se z 1 = 0 x 1 = 0 e y 1 = 0 La somma ed il prodotto sono definiti come: z 1 +z 2 = (x 1,y 1 )+(x 2,y 2 ) = (x 1 +x 2,y 1 +y 2 ) z 1 z 2 = (x 1,y 1 )(x 2,y 2 ) = (x 1 x 2 y 1 y 2,x 1 y 2 +x 2 y 1 ) In particolare: (x,0)+(0,y) = (x,y), (0,1)(y,0) = (0,y) e quindi z = (x,y) = (x,0)+(0,1)(y,0) c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 3

4 Forma cartesiana di un numero complesso 1 Identifichiamo il numero complesso (x, 0) con il numero reale x 2 Definiamo i = (0,1). i è detto unità immaginaria 3 Dalla relazione z = (x,y) = (x,0)+(0,1)(y,0), otteniamo z = x +iy detta forma algebrica o cartesiana del numero complesso z. Osserviamo che i 2 = ii = (0,1)(0,1) = ( 1,0) = 1, ovvero i C è la soluzione dell equazione x 2 = 1 (o x 2 +1 = 0), che invece non ha soluzioni in R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 4

5 Im 3+3i 2i i i 3 Re 2 2.5i Tutti i numeri complessi con parte immaginaria nulla (b = Imz = 0) stanno sull asse reale Re. x = x +0i. Tutti i numeri complessi con parte reale nulla (x = Rez = 0) stanno sull asse immaginario Im. iy = 0+iy = yi. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 5

6 Perchè i numeri complessi? Per poter calcolare le radici di equazioni del tipo x 2 +1 = 0, che in R non sono risolubili. I numeri complessi NON servono per misurare distanze, tempi, pesi, forze,... Per poter descrivere e studiare più facilmente la meccanica quantistica, i circuiti elettrici, i campi elettromagnetici, la trasmissione di segnali, la turbolenza di un fluido,... In certe situazioni lavorare con i numeri complessi è più semplice che lavorare con i numeri reali. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 6

7 Operazioni in forma cartesiana Somma: (x 1 +iy 1 )+(x 2 +iy 2 ) = (x 1 +x 2 )+i(y 1 +y 2 ) (sommo tra loro le parti reali e le parti immaginarie) Es. (3+i2)+( 2+i) = (3 2)+i(2+1) = 1+i3 = 1+3i Sottrazione (x 1 +iy 1 ) (x 2 +iy 2 ) = (x 1 x 2 )+i(y 1 y 2 ) (sottraggo tra loro le parti reali e le parti immaginarie) Es. (3+i2) ( 2+i) = (3+2)+i(2 1) = 5+i Prodotto (x 1 +iy 1 ) (x 2 +iy 2 ) = x 1 x 2 +ix 1 y 2 +ix 2 y 1 +i 2 y 1 y 2 = x 1 x 2 +ix 1 y 2 +ix 2 y 1 +( 1)y 1 y 2 = (x 1 x 2 y 1 y 2 ) + i(x 1 y 2 +x 2 y 1 ) Es. (3+i2) ( 2+i) = ( 6 2)+i(3 4) = 8 i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 7

8 Complesso coniugato e modulo Def. z = x +iy C, il numero complesso z = x iy è detto complesso coniugato di z. Def. z = x +iy C, il numero reale z := x 2 +y 2 è detto PSfrag modulo di z. Rappresenta la distanza del numero complesso dallo zero complesso. Im z z x y y z z Re z ed il suo coniugato z hanno lo stesso modulo, ovvero: z = z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 8

9 Esempi: 1) z = 3 i5, allora z = 3+i5, e z = z = 9+25 = 34 Im z = 3+5i Re z = 3 i5 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 9

10 z immaginario puro 2) z = i 2, allora z = i 2, e z = z = 2 Im z = i 2 z = i 2 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 10

11 z reale 3) z = 2, allora z = 2, e z = z = ( 2) 2 = 2 Im z = z = 2 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 11

12 Inverso di un numero complesso La divisione tra due numeri è il prodotto del primo per l inverso del secondo. z 1 = z 1 1 z 2 z 2 Per fare la divisione tra due numeri complessi devo saper costruire l inverso 1, z C, z 0+i0. z 1 z = 1 x +iy = 1 x +iy x iy x iy = 1 Es. 3 i2 = 3+i2 13 z z z = x iy x 2 +y 2 = z z 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 12

13 Cosa rappresenta A = {z C : z (1 2i) = 2}? z è la distanza di z da 0. z (1 2i) è la distanza di z da (1 2i). Im 1 Re i z 2i 1 2i z (1 2i) A è l insieme dei punti z la cui distanza da (1 2i) è uguale a 2, ovvero è la circonferenza dei punti z C di centro z C = (1 2i) e raggio r = 2. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 13

14 A = {z C : z z 0 = r} Assegnato z 0 C, ed assegnato r R +, l insieme A = {z C : z z 0 = r} è l insieme dei punti del piano complesso che distano r da z 0 (circonferenza di centro z 0 e raggio r). Im z Re z 0 z z 0 = r c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 14

15 A = {z C : z z 0 r} Assegnato z 0 C, ed assegnato r R +, l insieme A = {z C : z z 0 r} è l insieme dei punti del piano complesso che distano da z 0 al piú r (cerchio di centro z 0 e raggio r, bordo incluso). Im z Re z 0 z z 0 = r c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 15

16 Operazioni e complesso coniugato z C, α R: α z = α z (αz) = αz z 1, z 2, z C: z 1 +z 2 = z 1 +z 2 z 1 z 2 = z 1 z 2 z 1 z 2 = z 1 z 2 z z = (x +iy) (x iy) = x 2 +y 2 = z 2 z 1 = (z) 1 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 16

17 z +z = (x +iy)+(x iy) = 2x = 2Rez z z = (x +iy) (x iy) = 2iy = 2iImz z = z z = z z R Infatti: prendo z = x +iy, allora z = x iy e z = z se e solo se x = x (sempre vero) e y = y (vero se e solo se y = Imz = 0), ovvero z R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 17

18 Forma trigonometrica di z C z C è univocamente individuato mediante 2 parametri: la sua parte reale Rez = x e la sua parte immaginaria Imz = y. Im y z ρ x Re ϑ z può essere individuato univocamente anche da altri due parametri: ρ = z modulo di z ϑ = arg(z) argomento di z ρ e ϑ sono dette anche coordinate polari del punto z nel piano complesso. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 18

19 Se conosco ρ e θ, allora x = ρcosϑ, y = ρsinϑ. Im y x z Re ϑ+2kπ, k Z Se conosco x e y, allora ρ = x 2 +y 2 e ϑ è calcolabile attraverso l arctangente (pagina successiva). Esistono infiniti angoli che individuano lo stesso numero complesso z: ϑ, ϑ+2π, ϑ+4π, ϑ 2π,..., in genere ϑ+2kπ, con k Z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 19

20 Se si decide di scegliere ϑ ( π,π], si pone: ϑ = arctan(y/x) se x > 0 arctan(y/x)+π se x < 0, y 0 arctan(y/x) π se x < 0, y < 0 π/2 se x = 0, y > 0 π/2 se x = 0, y < 0 Im y x z Re ϑ arg(0) = R, infatti z = 0 = 0(cosϑ+i sinϑ), ϑ R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 20

21 Si ha quindi: z = x +iy = ρcosϑ+iρsinϑ = ρ(cosϑ+i sinϑ) z = x +iy forma algebrica = ρ(cosϑ+i sinϑ) forma trigonometrica c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 21

22 Esempi. 1) forma cartesiana forma polare 3 Dato z = 2 +i1 2. Rez = x = Im 3 2, Imz = y = 1 2. Im y z y z ϑ = π/6 x Re x Re Allora: ϑ = π 6 e ρ = 3/4+1/4 ( = 1 ) 3 ) Con la regola: ϑ = arctan 1/2 3/2 = arctan( 3 = π 6 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 22

23 2) Forma polare forma cartesiana Sono noti ρ = 2 e ϑ = π 2 (. ( z = ρ(cosϑ+i sinϑ) = 2 cos π ) ( +i sin π )) = 2 2 2(0 i) = 2i Im ρ = 2 x = 0 Re ϑ = π/2 z y = 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 23

24 Esponenziale complesso z C si vuole definire l esponenziale di z, e z C, in modo da rispettare le proprietà classiche delle potenze. e è il numero di Eulero (a volte noto come numero di Nepero) e z = x +iy C si definisce Esempi. e z := e Rez (cos(imz)+i sin(imz)) = e x (cosy +i siny) e (3 i) = e 3 (cos( 1)+i sin( 1)) = e 3 (cos(1) i sin(1)) e 2 = e 2 (cos(0)+i sin(0)) e 2iπ = e 0 (cos(2π)+i sin(2π)) = 1(1+i0) = 1 e iϑ = e 0 (cos(ϑ)+i sin(ϑ)) = cos(ϑ)+i sin(ϑ) c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 24

25 Formula di Eulero ( ) e iϑ = cosϑ+i sinϑ ϑ R Confrontando la forma trigonometrica di un numero complesso z = ρ(cosϑ+i sinϑ) e la formula di Eulero e iϑ = cosϑ+i sinϑ si ha z = ρe iϑ detta forma esponenziale del numero complesso z. Oss. Per ϑ = π la formula di Eulero diventa: e iπ = cosπ +i sinπ = 1 e iπ +1 = 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 25

26 Proprietà dell esponenziale in C Dato z = Rez +iimz = x +iy, l esponenziale e z è un numero complesso, lo chiamiamo ad esempio w. Dalla definizione di esponenziale complesso e dalla formula di Eulero abbiamo w = e z = e Rez (cos(imz)+i sin(imz)) = e Rez e iimz = }{{} e x ρ cioè l esponenziale di z è un numero complesso w il cui modulo è ρ = e x (x è la parte reale di z) ed il cui argomento è y (y è la parte immaginaria di z). e iy c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 26

27 Proprietà dell esponenziale in C Teorema. 1 e z1 e z 2 = e z 1+z 2 z 1, z 2 C 2 e z e z = 1 3 e z = e Rez = ρ 4 e iϑ = cos 2 ϑ+sin 2 ϑ = 1 ϑ R 5 (e z ) n = e nz n Z 6 e z+2kπi = e z k Z 7 e iϑ = e iϑ 8 e z 0 z C c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 27

28 Dimostrazione di 3. e z = e Rez = ρ Per definizione di esponenziale di un numero complesso si ha: e z = e Rez (cos(imz)+i sin(imz)) Poichè cos(imz)+i sin(imz)) = cos(ϑ)+i sin(ϑ) = 1, il modulo di e z è: e z = e Rez (cos(imz)+i sin(imz)) = e Rez cos(imz)+i sin(imz) = e Rez = ρ. Dimostrazione di 4. e iϑ = 1 e iθ = cos(θ)+i sin(θ) = cos 2 (θ)+sin 2 (θ) = 1. Dimostrazione di 6. e z+2kπi = e z k Z Per la proprietà 1.: e z+2kπi = e z e 2kπi Quanto vale e 2kπi? e 2kπi = e 0 (cos(2π)+i sin(2π)) = 1(1+0) = 1 Quindi e z+2kπi = e z 1 = e z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 28

29 Un numero complesso z può essere espresso in una delle tre seguenti forme, tutte equivalenti fra di loro: z = x + iy forma cartesiana = ρ(cosϑ+i sinϑ) forma trigonometrica = ρe iϑ forma esponenziale A seconda del contesto in cui si lavora, si usa la forma piú adatta: per somma e sottrazione: forma cartesiana per prodotto, divisione e potenza: forma esponenziale. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 29

30 Operazioni con la forma esponenziale La forma esponenziale dei numeri complessi è molto comoda per svolgere prodotti, divisioni e potenze di numeri complessi. Siano z 1 = ρ 1 e iϑ 1 e z 2 = ρ 2 e iϑ 2, si ha: z 1 z 2 = ρ 1 ρ 2 e i(ϑ 1+ϑ 2 ) z 1 = ρ 1 e i(ϑ 1 ϑ 2 ) z 2 ρ 2 (z 1 ) n = ρ n 1 einϑ 1 (cos(θ)+i sin(θ)) n = cos(nθ)+i sin(nθ),formula di de Moivre Es. Calcolare (1+i) 6. 1 si trasforma z = 1+i in forma trigonometrica e poi esponenziale 2 si calcola z 6, utilizzando la forma esponenziale 3 si trasforma il risultato nella forma cartesiana. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 30

31 Passo 1.: (z = x +iy = ρ(cosϑ+i sinϑ) = ρe iϑ ) z = (1+i) = 2( 2 2 +i 2 2 ) = 2 ( cos π 4 +i sin π 4 = 2 e i π 4 ) Im z = 1+i ρ = 2 ϑ = π/4 Re Passo 2.: z 6 = (1+i) 6 = ( 2e i π 4) 6 = ( 2) 6 e i 3 2 π = 8 e i 3 2 π Passo 3.: 8 e i 3 2 π = 8i. Quindi (1+i) 6 = 8i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 31

32 Radice n-sima di un numero complesso Dato w C e n N, vogliamo calcolare tutti i numeri z C per cui vale z n = w Def. Diciamo che z C è radice n-sima di w C se vale z n = w. L obiettivo è calcolare le radici n sime di un numero complesso w assegnato o, equivalentemente, risolvere l equazione z n w = 0. N.B. Non utilizziamo il simbolo per rappresentare le radici complesse, perchè il risultato non è univoco. Se x R, allora la radice n sima di x è un unico numero reale positivo e il simbolo n x individua un unico numero. Se z C, allora le radici n sime di z sono n e non possiamo utilizzare un solo simbolo per rappresentarle tutte. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 32

33 Teorema. Ogni numero complesso non nullo w ha esattamente n radici complesse n-sime distinte, ovvero l equazione z n = w ha n soluzioni distinte complesse. Inoltre, se w = ρe iϑ, le n radici n-sime di w hanno la forma: z k = r e iϕ k, dove r = n ρ e ϕ k = ϑ+2kπ, con k = 0,1,...,n 1. n Osservazione. Le radici n-sime di w sono i vertici di un poligono regolare di n lati inscritto nella circonferenza di centro 0 e raggio r. Ogni radice è ottenuta dalla precedente incrementando l argomento ϕ k di un angolo 2π/n. z 3 Im z 2 z 1 z 4 z 5 π 3 z 0 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 33

34 Esercizio d esempio Risolvere l equazione z 3 +8 = 0 in C. (Equivale a calcolare le radici terze di w = 8, cioè calcolare gli z C tali che z 3 = 8.) N.B. L equazione x 3 +8 = 0 in R ha una sola soluzione reale: x = 2. L equazione z 3 +8 = 0 in C ha 3 soluzioni distinte complesse. Procedimento: 1. Si trasforma w = 8 in forma esponenziale 2. Si calcolano le radici complesse z 0, z 1,..., z n 1 3. Si trasformano in forma algebrica gli z k trovati. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 34

35 Passo 1.: (w = x +iy = ρ(cosϑ+i sinϑ) = ρe iϑ ) Im w = 8 = 8+0i = 8( 1+0i) = 8 (cosπ +i sinπ) = 8e iπ Quindi: ρ = 8, ϑ = π w = 8 ρ = 8 ϑ = π Passo 2.: Calcolo r = n ρ (ricordo che ρ R + ) e gli angoli ϕ k = ϑ+2kπ n per k = 0,...,n 1: r = 3 8 = 2 e Im ϕ 0 = ϑ n = π 3, ϕ 1 = ϑ+2π = π +2π = π, n 3 ϕ 2 = ϑ+4π = π +4π = 5π n 3 3 z 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 35 z 1 z 0 Re r = 2 Re

36 Quindi: z 0 = 2e iπ/3, z 1 = 2e iπ, z 2 = 2e i5π/3 Passo 3.: z 0 = 2e iπ/3 = 1+ 3i, z 1 = 2e iπ = 2, z 2 = 2e i5π/3 = 1 3i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 36

37 Dimostrazione del teorema Parto da w in forma esponenziale ed utilizzo la proprietà n. 6 dell esponenziale (quella che dice e z+2kπi = e z k Z) w = ρe iϑ = ρe iϑ+2kπi k Z = r n e i(ϑ+2kπ) = r n (e i(ϑ+2kπ)/n ) n = (r e i(ϑ+2kπ)/n ) n = (r e iϕ k) n = z n k Avrei infinite z k, tante quante sono i numeri interi, ma quelle distinte sono solo n: z 0,...,z n 1. Infatti abbiamo: z n = r e iϕn = r e i(ϑ+2nπ)/n = r e iϑ/n+2πi = r e iϑ/n = z 0 In maniera analoga si dimostra che z n+k = z k. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 37

38 Esercizio. Calcolare le radici complesse seste dell unità. Si ha w = 1, n = 6. Devo calcolare n = 6 numeri complessi z 0,z 1,...,z 5 della forma z k = r e iϕ k, con r = 6 ρ e ϕ k = ϑ+2kπ, con k = 0,1,...,5. 6 Passo 1. Individuo ρ e ϑ: w = 1 = ρe i 0, quindi ρ = 1 e ϑ = 0 Passo 2. Calcolo: r = 6 ρ = 1 Passo3. Calcolo gli angoli ϕ k, con k = 0,...,5 ϕ 0 = 0+0 2π 6 ϕ 2 = 0+2 2π 6 ϕ 4 = 0+4 2π 6 = 0, ϕ 1 = 0+1 2π 6 = 2π 3, ϕ 3 = 0+3 2π 6 = 4π 3, ϕ 5 = 0+5 2π 6 = π 3, = π, = 5π 3. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 38

39 Le radici seste dell unità sono: z 0 = e iϕ 0 = e i0 = 1, z 1 = e iϕ 1 = e iπ/3 = 1 2 +i 3 2 z 2 = e iϕ 2 = e i2π/3 = 1 2 +i 3 2, z 3 = e iϕ 3 = e iπ = 1 z 4 = e iϕ 4 = e i4π/3 = 1 2 i 3 2, z 5 = e iϕ 5 = e i5π/3 = 1 2 i 3 2 Im w 2 w 1 π 3 w 3 w 0 Re w 4 w 5 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 39

40 Polinomi in campo complesso Def. Una funzione p : C C è un polinomio a variabile complessa z se si può scrivere come p(z) = a n z n +a n 1 z n 1 + +a 1 z +a 0, dove a 0,a 1,...,a n sono numeri complessi assegnati detti coefficienti del polinomio. Se a n 0, allora si dice che il polinomio è di grado n. Es. p(z) = (3+i)z 3 iz Questo polinomio ha grado n = 3 e i coefficienti sono: a 3 = 3+i, a 2 = i, a 1 = 0, a 0 = 2 Def. Si chiama radice di p ogni numero complesso w tale che p(w) = 0. Es. p(z) = z 2 7z +(1 7i), w = i è una radice di p(z). Infatti, andando a sostituire z = i nel polinomio e facendo i conti si ha: p( i) = ( i) 2 7( i)+(1 7i) = 1+7i +1 7i = 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 40

41 Proposizione. (Principio di identità dei polinomi) Due polinomi p(z) e q(z) sono uguali se e solo se sono uguali i coefficienti delle potenze omologhe dei due. Es. p(z) = (3+i)z 3 iz 2 +2 e q(z) = (3+i)z 3 z 2 +2 non sono uguali. Infatti a 2 = i per p, mentre a 2 = 1 per q. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 41

42 Teorema (fondamentale dell algebra). Ogni polinomio p(z) a coefficienti complessi di grado n 1 ammette almeno una radice in C. Il Teorema fondamentale dell algebra garantisce che esistano m n numeri complessi distinti z 1,...,z m e m numeri interi µ 1,...,µ m tali che µ 1 + +µ m = n per cui p(z) = a n (z z 1 ) µ 1 (z z 2 ) µ 2...(z z m ) µm. z k è detta radice del polinomio p(z) e µ k la sua molteplicità. Es. 1 z 2 +1 = (z i)(z +i). Si ha z 1 = i, z 2 = i. Ho 2 radici distinte semplici (ovvero con molteplicità 1); z 5 +2z 3 = z 3 (z 2 +2) = z z z (z i 2) (z +i 2). z 1 = 0 con molteplicità 3, z 2 = i 2 semplice, z 3 = i 2 semplice. Si ha m = 3, µ 1 = 3, µ 2 = µ 3 = 1, e µ 1 +µ 2 +µ 3 = n = 5. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 42

43 Proposizione. Si consideri un polinomio p(z) con coefficienti a i R. Se w è una radice (non reale), anche w è una radice, con la stessa molteplicità. Inoltre, se il grado del polinomio è dispari, vi è almeno una radice reale. N.B. z 3 = z 4 (ovvero z 3 z 4 = 0) NON è una equazione di tipo polinomiale (in un polinomio compaiono solo potenze di z, qui invece c è anche un modulo). c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 43

44 Osservazioni su sin e cos Considero la formula di Eulero: e iϑ = cosϑ+i sinϑ, con ϑ R. Riscrivo la formula con ϑ al posto di ϑ: e iϑ = cos( ϑ)+i sin( ϑ) = cosϑ i sinϑ y P cosϑ sinϑ ϑ x ϑ cos( ϑ) = cosϑ, sin( ϑ) = sinϑ. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 44

45 Osservazioni su sin e cos Considero la formula di Eulero: e iϑ = cosϑ+i sinϑ, con ϑ R, e iϑ = cosϑ i sinϑ Sommo le due formule: e iϑ +e iϑ = 2cosϑ, ovvero cosϑ = eiϑ +e iϑ Sottraggo le due formule: e iϑ e iϑ = 2i sinϑ, ovvero sinϑ = eiϑ e iϑ 2 2i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 45

46 Sin e Cos in campo complesso Si estendono le formule date prima per ϑ R ad un qualsiasi z C. Diventano le definizioni di sin e cos su una variabile complessa. cosz := eiz +e iz 2 sinz := eiz e iz 2i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 46

47 Riferimento bibliografico Per il piano cartesiano: Canuto-Tabacco, sez. 1.5, pag Per i numeri complessi: Canuto-Tabacco, sez. 8.3, pag Esercizi: - n del cap. 8 del libro Canuto-Tabacco. - esercizi nei temi d esame Esercizio Risolvere l equazione z 2 = z 4, con z C. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 47

I Numeri complessi - Motivazioni

I Numeri complessi - Motivazioni I Numeri complessi - Motivazioni In Telecomunicazioni Elettronica Informatica Teoria dei segnali... si studiano i segnali, cioè delle grandezze fisiche dipendenti dal tempo, matematicamente esprimibili

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i 2 = 1 L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero complesso

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 L insieme dei numeri complessi è indicato con. a è detta parte reale del numero complesso b è

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Numeri Complessi. Perché i numeri complessi? PSfrag replacements

Numeri Complessi. Perché i numeri complessi? PSfrag replacements Numeri Complessi Sono numeri del tipo = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i = 1 3 + 3i i i L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire Operazioni tra funzioni Siano f e g due funzioni, allora D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire f() ± g(), f() g(), f () g() se g() 0 Es. f() = 4, g() = 3 + D f

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[ Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Insiemi numerici: i numeri complessi

Insiemi numerici: i numeri complessi Insiemi numerici: i numeri complessi Riccarda Rossi Università di Brescia Analisi I Introduzione Storicamente: I si è passati da N a Z perché la sottrazione di due numeri naturali non è operazione interna

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Esercizi proposti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 7 3 7i,

Esercizi proposti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 7 3 7i, Numeri complessi Esercizi proposti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 7 3 7i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli