Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)"

Transcript

1 Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano R 2. y y P P = (x P,y P ) x P R 2 x Im (0,0) y C z = (x,y) x Re x R è detto parte reale di z e si scrive x = Rez y R è detto parte immaginaria di z e si scrive y = Imz c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 1

2 L insieme A = {z C : z = (x,0), x R}, detto Asse reale può essere identificato con la retta dei numeri reali R, per cui possiamo scrivere R C. replacements Im C y z = (x,y) (0,0) x Re L insieme B = {z C : z = (0,y),y R} è detto Asse immaginario e i numeri di B sono detti immaginari puri. Lo zero di C è la coppia (0,0). c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 2

3 Operazioni in C Diciamo che due numeri complessi z 1 = (x 1,y 1 ) e z 2 = (x 2,y 2 ) sono uguali se hanno le stesse parti reali e immaginarie, ovvero: z 1 = z 2 x 1 = x 2 e y 1 = y 2 In particolare, un numero complesso z 1 = (x 1,y 1 ) è nullo se z 1 = 0 x 1 = 0 e y 1 = 0 La somma ed il prodotto sono definiti come: z 1 +z 2 = (x 1,y 1 )+(x 2,y 2 ) = (x 1 +x 2,y 1 +y 2 ) z 1 z 2 = (x 1,y 1 )(x 2,y 2 ) = (x 1 x 2 y 1 y 2,x 1 y 2 +x 2 y 1 ) In particolare: (x,0)+(0,y) = (x,y), (0,1)(y,0) = (0,y) e quindi z = (x,y) = (x,0)+(0,1)(y,0) c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 3

4 Forma cartesiana di un numero complesso 1 Identifichiamo il numero complesso (x, 0) con il numero reale x 2 Definiamo i = (0,1). i è detto unità immaginaria 3 Dalla relazione z = (x,y) = (x,0)+(0,1)(y,0), otteniamo z = x +iy detta forma algebrica o cartesiana del numero complesso z. Osserviamo che i 2 = ii = (0,1)(0,1) = ( 1,0) = 1, ovvero i C è la soluzione dell equazione x 2 = 1 (o x 2 +1 = 0), che invece non ha soluzioni in R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 4

5 Im 3+3i 2i i i 3 Re 2 2.5i Tutti i numeri complessi con parte immaginaria nulla (b = Imz = 0) stanno sull asse reale Re. x = x +0i. Tutti i numeri complessi con parte reale nulla (x = Rez = 0) stanno sull asse immaginario Im. iy = 0+iy = yi. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 5

6 Perchè i numeri complessi? Per poter calcolare le radici di equazioni del tipo x 2 +1 = 0, che in R non sono risolubili. I numeri complessi NON servono per misurare distanze, tempi, pesi, forze,... Per poter descrivere e studiare più facilmente la meccanica quantistica, i circuiti elettrici, i campi elettromagnetici, la trasmissione di segnali, la turbolenza di un fluido,... In certe situazioni lavorare con i numeri complessi è più semplice che lavorare con i numeri reali. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 6

7 Operazioni in forma cartesiana Somma: (x 1 +iy 1 )+(x 2 +iy 2 ) = (x 1 +x 2 )+i(y 1 +y 2 ) (sommo tra loro le parti reali e le parti immaginarie) Es. (3+i2)+( 2+i) = (3 2)+i(2+1) = 1+i3 = 1+3i Sottrazione (x 1 +iy 1 ) (x 2 +iy 2 ) = (x 1 x 2 )+i(y 1 y 2 ) (sottraggo tra loro le parti reali e le parti immaginarie) Es. (3+i2) ( 2+i) = (3+2)+i(2 1) = 5+i Prodotto (x 1 +iy 1 ) (x 2 +iy 2 ) = x 1 x 2 +ix 1 y 2 +ix 2 y 1 +i 2 y 1 y 2 = x 1 x 2 +ix 1 y 2 +ix 2 y 1 +( 1)y 1 y 2 = (x 1 x 2 y 1 y 2 ) + i(x 1 y 2 +x 2 y 1 ) Es. (3+i2) ( 2+i) = ( 6 2)+i(3 4) = 8 i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 7

8 Complesso coniugato e modulo Def. z = x +iy C, il numero complesso z = x iy è detto complesso coniugato di z. Def. z = x +iy C, il numero reale z := x 2 +y 2 è detto PSfrag modulo di z. Rappresenta la distanza del numero complesso dallo zero complesso. Im z z x y y z z Re z ed il suo coniugato z hanno lo stesso modulo, ovvero: z = z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 8

9 Esempi: 1) z = 3 i5, allora z = 3+i5, e z = z = 9+25 = 34 Im z = 3+5i Re z = 3 i5 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 9

10 z immaginario puro 2) z = i 2, allora z = i 2, e z = z = 2 Im z = i 2 z = i 2 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 10

11 z reale 3) z = 2, allora z = 2, e z = z = ( 2) 2 = 2 Im z = z = 2 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 11

12 Inverso di un numero complesso La divisione tra due numeri è il prodotto del primo per l inverso del secondo. z 1 = z 1 1 z 2 z 2 Per fare la divisione tra due numeri complessi devo saper costruire l inverso 1, z C, z 0+i0. z 1 z = 1 x +iy = 1 x +iy x iy x iy = 1 Es. 3 i2 = 3+i2 13 z z z = x iy x 2 +y 2 = z z 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 12

13 Cosa rappresenta A = {z C : z (1 2i) = 2}? z è la distanza di z da 0. z (1 2i) è la distanza di z da (1 2i). Im 1 Re i z 2i 1 2i z (1 2i) A è l insieme dei punti z la cui distanza da (1 2i) è uguale a 2, ovvero è la circonferenza dei punti z C di centro z C = (1 2i) e raggio r = 2. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 13

14 A = {z C : z z 0 = r} Assegnato z 0 C, ed assegnato r R +, l insieme A = {z C : z z 0 = r} è l insieme dei punti del piano complesso che distano r da z 0 (circonferenza di centro z 0 e raggio r). Im z Re z 0 z z 0 = r c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 14

15 A = {z C : z z 0 r} Assegnato z 0 C, ed assegnato r R +, l insieme A = {z C : z z 0 r} è l insieme dei punti del piano complesso che distano da z 0 al piú r (cerchio di centro z 0 e raggio r, bordo incluso). Im z Re z 0 z z 0 = r c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 15

16 Operazioni e complesso coniugato z C, α R: α z = α z (αz) = αz z 1, z 2, z C: z 1 +z 2 = z 1 +z 2 z 1 z 2 = z 1 z 2 z 1 z 2 = z 1 z 2 z z = (x +iy) (x iy) = x 2 +y 2 = z 2 z 1 = (z) 1 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 16

17 z +z = (x +iy)+(x iy) = 2x = 2Rez z z = (x +iy) (x iy) = 2iy = 2iImz z = z z = z z R Infatti: prendo z = x +iy, allora z = x iy e z = z se e solo se x = x (sempre vero) e y = y (vero se e solo se y = Imz = 0), ovvero z R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 17

18 Forma trigonometrica di z C z C è univocamente individuato mediante 2 parametri: la sua parte reale Rez = x e la sua parte immaginaria Imz = y. Im y z ρ x Re ϑ z può essere individuato univocamente anche da altri due parametri: ρ = z modulo di z ϑ = arg(z) argomento di z ρ e ϑ sono dette anche coordinate polari del punto z nel piano complesso. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 18

19 Se conosco ρ e θ, allora x = ρcosϑ, y = ρsinϑ. Im y x z Re ϑ+2kπ, k Z Se conosco x e y, allora ρ = x 2 +y 2 e ϑ è calcolabile attraverso l arctangente (pagina successiva). Esistono infiniti angoli che individuano lo stesso numero complesso z: ϑ, ϑ+2π, ϑ+4π, ϑ 2π,..., in genere ϑ+2kπ, con k Z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 19

20 Se si decide di scegliere ϑ ( π,π], si pone: ϑ = arctan(y/x) se x > 0 arctan(y/x)+π se x < 0, y 0 arctan(y/x) π se x < 0, y < 0 π/2 se x = 0, y > 0 π/2 se x = 0, y < 0 Im y x z Re ϑ arg(0) = R, infatti z = 0 = 0(cosϑ+i sinϑ), ϑ R. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 20

21 Si ha quindi: z = x +iy = ρcosϑ+iρsinϑ = ρ(cosϑ+i sinϑ) z = x +iy forma algebrica = ρ(cosϑ+i sinϑ) forma trigonometrica c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 21

22 Esempi. 1) forma cartesiana forma polare 3 Dato z = 2 +i1 2. Rez = x = Im 3 2, Imz = y = 1 2. Im y z y z ϑ = π/6 x Re x Re Allora: ϑ = π 6 e ρ = 3/4+1/4 ( = 1 ) 3 ) Con la regola: ϑ = arctan 1/2 3/2 = arctan( 3 = π 6 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 22

23 2) Forma polare forma cartesiana Sono noti ρ = 2 e ϑ = π 2 (. ( z = ρ(cosϑ+i sinϑ) = 2 cos π ) ( +i sin π )) = 2 2 2(0 i) = 2i Im ρ = 2 x = 0 Re ϑ = π/2 z y = 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 23

24 Esponenziale complesso z C si vuole definire l esponenziale di z, e z C, in modo da rispettare le proprietà classiche delle potenze. e è il numero di Eulero (a volte noto come numero di Nepero) e z = x +iy C si definisce Esempi. e z := e Rez (cos(imz)+i sin(imz)) = e x (cosy +i siny) e (3 i) = e 3 (cos( 1)+i sin( 1)) = e 3 (cos(1) i sin(1)) e 2 = e 2 (cos(0)+i sin(0)) e 2iπ = e 0 (cos(2π)+i sin(2π)) = 1(1+i0) = 1 e iϑ = e 0 (cos(ϑ)+i sin(ϑ)) = cos(ϑ)+i sin(ϑ) c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 24

25 Formula di Eulero ( ) e iϑ = cosϑ+i sinϑ ϑ R Confrontando la forma trigonometrica di un numero complesso z = ρ(cosϑ+i sinϑ) e la formula di Eulero e iϑ = cosϑ+i sinϑ si ha z = ρe iϑ detta forma esponenziale del numero complesso z. Oss. Per ϑ = π la formula di Eulero diventa: e iπ = cosπ +i sinπ = 1 e iπ +1 = 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 25

26 Proprietà dell esponenziale in C Dato z = Rez +iimz = x +iy, l esponenziale e z è un numero complesso, lo chiamiamo ad esempio w. Dalla definizione di esponenziale complesso e dalla formula di Eulero abbiamo w = e z = e Rez (cos(imz)+i sin(imz)) = e Rez e iimz = }{{} e x ρ cioè l esponenziale di z è un numero complesso w il cui modulo è ρ = e x (x è la parte reale di z) ed il cui argomento è y (y è la parte immaginaria di z). e iy c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 26

27 Proprietà dell esponenziale in C Teorema. 1 e z1 e z 2 = e z 1+z 2 z 1, z 2 C 2 e z e z = 1 3 e z = e Rez = ρ 4 e iϑ = cos 2 ϑ+sin 2 ϑ = 1 ϑ R 5 (e z ) n = e nz n Z 6 e z+2kπi = e z k Z 7 e iϑ = e iϑ 8 e z 0 z C c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 27

28 Dimostrazione di 3. e z = e Rez = ρ Per definizione di esponenziale di un numero complesso si ha: e z = e Rez (cos(imz)+i sin(imz)) Poichè cos(imz)+i sin(imz)) = cos(ϑ)+i sin(ϑ) = 1, il modulo di e z è: e z = e Rez (cos(imz)+i sin(imz)) = e Rez cos(imz)+i sin(imz) = e Rez = ρ. Dimostrazione di 4. e iϑ = 1 e iθ = cos(θ)+i sin(θ) = cos 2 (θ)+sin 2 (θ) = 1. Dimostrazione di 6. e z+2kπi = e z k Z Per la proprietà 1.: e z+2kπi = e z e 2kπi Quanto vale e 2kπi? e 2kπi = e 0 (cos(2π)+i sin(2π)) = 1(1+0) = 1 Quindi e z+2kπi = e z 1 = e z. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 28

29 Un numero complesso z può essere espresso in una delle tre seguenti forme, tutte equivalenti fra di loro: z = x + iy forma cartesiana = ρ(cosϑ+i sinϑ) forma trigonometrica = ρe iϑ forma esponenziale A seconda del contesto in cui si lavora, si usa la forma piú adatta: per somma e sottrazione: forma cartesiana per prodotto, divisione e potenza: forma esponenziale. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 29

30 Operazioni con la forma esponenziale La forma esponenziale dei numeri complessi è molto comoda per svolgere prodotti, divisioni e potenze di numeri complessi. Siano z 1 = ρ 1 e iϑ 1 e z 2 = ρ 2 e iϑ 2, si ha: z 1 z 2 = ρ 1 ρ 2 e i(ϑ 1+ϑ 2 ) z 1 = ρ 1 e i(ϑ 1 ϑ 2 ) z 2 ρ 2 (z 1 ) n = ρ n 1 einϑ 1 (cos(θ)+i sin(θ)) n = cos(nθ)+i sin(nθ),formula di de Moivre Es. Calcolare (1+i) 6. 1 si trasforma z = 1+i in forma trigonometrica e poi esponenziale 2 si calcola z 6, utilizzando la forma esponenziale 3 si trasforma il risultato nella forma cartesiana. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 30

31 Passo 1.: (z = x +iy = ρ(cosϑ+i sinϑ) = ρe iϑ ) z = (1+i) = 2( 2 2 +i 2 2 ) = 2 ( cos π 4 +i sin π 4 = 2 e i π 4 ) Im z = 1+i ρ = 2 ϑ = π/4 Re Passo 2.: z 6 = (1+i) 6 = ( 2e i π 4) 6 = ( 2) 6 e i 3 2 π = 8 e i 3 2 π Passo 3.: 8 e i 3 2 π = 8i. Quindi (1+i) 6 = 8i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 31

32 Radice n-sima di un numero complesso Dato w C e n N, vogliamo calcolare tutti i numeri z C per cui vale z n = w Def. Diciamo che z C è radice n-sima di w C se vale z n = w. L obiettivo è calcolare le radici n sime di un numero complesso w assegnato o, equivalentemente, risolvere l equazione z n w = 0. N.B. Non utilizziamo il simbolo per rappresentare le radici complesse, perchè il risultato non è univoco. Se x R, allora la radice n sima di x è un unico numero reale positivo e il simbolo n x individua un unico numero. Se z C, allora le radici n sime di z sono n e non possiamo utilizzare un solo simbolo per rappresentarle tutte. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 32

33 Teorema. Ogni numero complesso non nullo w ha esattamente n radici complesse n-sime distinte, ovvero l equazione z n = w ha n soluzioni distinte complesse. Inoltre, se w = ρe iϑ, le n radici n-sime di w hanno la forma: z k = r e iϕ k, dove r = n ρ e ϕ k = ϑ+2kπ, con k = 0,1,...,n 1. n Osservazione. Le radici n-sime di w sono i vertici di un poligono regolare di n lati inscritto nella circonferenza di centro 0 e raggio r. Ogni radice è ottenuta dalla precedente incrementando l argomento ϕ k di un angolo 2π/n. z 3 Im z 2 z 1 z 4 z 5 π 3 z 0 Re c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 33

34 Esercizio d esempio Risolvere l equazione z 3 +8 = 0 in C. (Equivale a calcolare le radici terze di w = 8, cioè calcolare gli z C tali che z 3 = 8.) N.B. L equazione x 3 +8 = 0 in R ha una sola soluzione reale: x = 2. L equazione z 3 +8 = 0 in C ha 3 soluzioni distinte complesse. Procedimento: 1. Si trasforma w = 8 in forma esponenziale 2. Si calcolano le radici complesse z 0, z 1,..., z n 1 3. Si trasformano in forma algebrica gli z k trovati. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 34

35 Passo 1.: (w = x +iy = ρ(cosϑ+i sinϑ) = ρe iϑ ) Im w = 8 = 8+0i = 8( 1+0i) = 8 (cosπ +i sinπ) = 8e iπ Quindi: ρ = 8, ϑ = π w = 8 ρ = 8 ϑ = π Passo 2.: Calcolo r = n ρ (ricordo che ρ R + ) e gli angoli ϕ k = ϑ+2kπ n per k = 0,...,n 1: r = 3 8 = 2 e Im ϕ 0 = ϑ n = π 3, ϕ 1 = ϑ+2π = π +2π = π, n 3 ϕ 2 = ϑ+4π = π +4π = 5π n 3 3 z 2 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 35 z 1 z 0 Re r = 2 Re

36 Quindi: z 0 = 2e iπ/3, z 1 = 2e iπ, z 2 = 2e i5π/3 Passo 3.: z 0 = 2e iπ/3 = 1+ 3i, z 1 = 2e iπ = 2, z 2 = 2e i5π/3 = 1 3i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 36

37 Dimostrazione del teorema Parto da w in forma esponenziale ed utilizzo la proprietà n. 6 dell esponenziale (quella che dice e z+2kπi = e z k Z) w = ρe iϑ = ρe iϑ+2kπi k Z = r n e i(ϑ+2kπ) = r n (e i(ϑ+2kπ)/n ) n = (r e i(ϑ+2kπ)/n ) n = (r e iϕ k) n = z n k Avrei infinite z k, tante quante sono i numeri interi, ma quelle distinte sono solo n: z 0,...,z n 1. Infatti abbiamo: z n = r e iϕn = r e i(ϑ+2nπ)/n = r e iϑ/n+2πi = r e iϑ/n = z 0 In maniera analoga si dimostra che z n+k = z k. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 37

38 Esercizio. Calcolare le radici complesse seste dell unità. Si ha w = 1, n = 6. Devo calcolare n = 6 numeri complessi z 0,z 1,...,z 5 della forma z k = r e iϕ k, con r = 6 ρ e ϕ k = ϑ+2kπ, con k = 0,1,...,5. 6 Passo 1. Individuo ρ e ϑ: w = 1 = ρe i 0, quindi ρ = 1 e ϑ = 0 Passo 2. Calcolo: r = 6 ρ = 1 Passo3. Calcolo gli angoli ϕ k, con k = 0,...,5 ϕ 0 = 0+0 2π 6 ϕ 2 = 0+2 2π 6 ϕ 4 = 0+4 2π 6 = 0, ϕ 1 = 0+1 2π 6 = 2π 3, ϕ 3 = 0+3 2π 6 = 4π 3, ϕ 5 = 0+5 2π 6 = π 3, = π, = 5π 3. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 38

39 Le radici seste dell unità sono: z 0 = e iϕ 0 = e i0 = 1, z 1 = e iϕ 1 = e iπ/3 = 1 2 +i 3 2 z 2 = e iϕ 2 = e i2π/3 = 1 2 +i 3 2, z 3 = e iϕ 3 = e iπ = 1 z 4 = e iϕ 4 = e i4π/3 = 1 2 i 3 2, z 5 = e iϕ 5 = e i5π/3 = 1 2 i 3 2 Im w 2 w 1 π 3 w 3 w 0 Re w 4 w 5 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 39

40 Polinomi in campo complesso Def. Una funzione p : C C è un polinomio a variabile complessa z se si può scrivere come p(z) = a n z n +a n 1 z n 1 + +a 1 z +a 0, dove a 0,a 1,...,a n sono numeri complessi assegnati detti coefficienti del polinomio. Se a n 0, allora si dice che il polinomio è di grado n. Es. p(z) = (3+i)z 3 iz Questo polinomio ha grado n = 3 e i coefficienti sono: a 3 = 3+i, a 2 = i, a 1 = 0, a 0 = 2 Def. Si chiama radice di p ogni numero complesso w tale che p(w) = 0. Es. p(z) = z 2 7z +(1 7i), w = i è una radice di p(z). Infatti, andando a sostituire z = i nel polinomio e facendo i conti si ha: p( i) = ( i) 2 7( i)+(1 7i) = 1+7i +1 7i = 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 40

41 Proposizione. (Principio di identità dei polinomi) Due polinomi p(z) e q(z) sono uguali se e solo se sono uguali i coefficienti delle potenze omologhe dei due. Es. p(z) = (3+i)z 3 iz 2 +2 e q(z) = (3+i)z 3 z 2 +2 non sono uguali. Infatti a 2 = i per p, mentre a 2 = 1 per q. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 41

42 Teorema (fondamentale dell algebra). Ogni polinomio p(z) a coefficienti complessi di grado n 1 ammette almeno una radice in C. Il Teorema fondamentale dell algebra garantisce che esistano m n numeri complessi distinti z 1,...,z m e m numeri interi µ 1,...,µ m tali che µ 1 + +µ m = n per cui p(z) = a n (z z 1 ) µ 1 (z z 2 ) µ 2...(z z m ) µm. z k è detta radice del polinomio p(z) e µ k la sua molteplicità. Es. 1 z 2 +1 = (z i)(z +i). Si ha z 1 = i, z 2 = i. Ho 2 radici distinte semplici (ovvero con molteplicità 1); z 5 +2z 3 = z 3 (z 2 +2) = z z z (z i 2) (z +i 2). z 1 = 0 con molteplicità 3, z 2 = i 2 semplice, z 3 = i 2 semplice. Si ha m = 3, µ 1 = 3, µ 2 = µ 3 = 1, e µ 1 +µ 2 +µ 3 = n = 5. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 42

43 Proposizione. Si consideri un polinomio p(z) con coefficienti a i R. Se w è una radice (non reale), anche w è una radice, con la stessa molteplicità. Inoltre, se il grado del polinomio è dispari, vi è almeno una radice reale. N.B. z 3 = z 4 (ovvero z 3 z 4 = 0) NON è una equazione di tipo polinomiale (in un polinomio compaiono solo potenze di z, qui invece c è anche un modulo). c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 43

44 Osservazioni su sin e cos Considero la formula di Eulero: e iϑ = cosϑ+i sinϑ, con ϑ R. Riscrivo la formula con ϑ al posto di ϑ: e iϑ = cos( ϑ)+i sin( ϑ) = cosϑ i sinϑ y P cosϑ sinϑ ϑ x ϑ cos( ϑ) = cosϑ, sin( ϑ) = sinϑ. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 44

45 Osservazioni su sin e cos Considero la formula di Eulero: e iϑ = cosϑ+i sinϑ, con ϑ R, e iϑ = cosϑ i sinϑ Sommo le due formule: e iϑ +e iϑ = 2cosϑ, ovvero cosϑ = eiϑ +e iϑ Sottraggo le due formule: e iϑ e iϑ = 2i sinϑ, ovvero sinϑ = eiϑ e iϑ 2 2i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 45

46 Sin e Cos in campo complesso Si estendono le formule date prima per ϑ R ad un qualsiasi z C. Diventano le definizioni di sin e cos su una variabile complessa. cosz := eiz +e iz 2 sinz := eiz e iz 2i c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 46

47 Riferimento bibliografico Per il piano cartesiano: Canuto-Tabacco, sez. 1.5, pag Per i numeri complessi: Canuto-Tabacco, sez. 8.3, pag Esercizi: - n del cap. 8 del libro Canuto-Tabacco. - esercizi nei temi d esame Esercizio Risolvere l equazione z 2 = z 4, con z C. c Paola Gervasio - Analisi Matematica 1 - A.A. 14/15 Numeri complessi cap8.pdf 47

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Matematica di base. Marco Di Francesco. October 28, 2015

Matematica di base. Marco Di Francesco. October 28, 2015 Matematica di base Marco Di Francesco October 28, 2015 2 Chapter 1 Insiemi, numeri e introduzione alle funzioni 1.1 Insiemi La teoria degli insiemi permette di definire in modo sintetico e generale i problemi

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

L unità immaginaria si indica con la lettera i oppure con la lettera j

L unità immaginaria si indica con la lettera i oppure con la lettera j I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d-06154 PERUGIA Tel. 075/5838322 Fax 075/32371

Dettagli

Analysis for Brixen. Corso Estivo A.A. 2011/12. Paolo Guiotto

Analysis for Brixen. Corso Estivo A.A. 2011/12. Paolo Guiotto Analysis for Brien Corso Estivo A.A. 0/ Paolo Guiotto Avvertenze Questa avvertenze sono rivolte direttamente all allievo/a, con la speranza di fornirgli/le qualche utile indicazione per un utilizzo proficuo

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010 Università degli Studi di agliari Dipartimento di Matematica Prof. Sebastiano Seatzu Analisi omplessa 9 settembre Facoltà di Ingegneria orso di laurea in Ingegneria Elettronica 3 Indice ANALISI OMPLESSA

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte.

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. Tutorial di Barberis Paola - 2009 Definizioni: FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Esercizi di analisi complessa. A cura di: Fabio Musso, Orlando Ragnisco.

Esercizi di analisi complessa. A cura di: Fabio Musso, Orlando Ragnisco. Esercizi di analisi complessa A cura di: Fabio Musso, Orlando Ragnisco. Operazioni con i numeri complessi I numeri complessi furono introdotti in matematica attraverso lo studio delle radici di polinomi

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi Registro delle lezioni di Analisi Matematica II (6 CFU) Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica A.A. 2006/2007 - Prof. Massimo Furi Testo di riferimento:

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Analisi in regime sinusoidale (parte I)

Analisi in regime sinusoidale (parte I) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte I) Introduzione sul regime sinusoidale... Generalità sulle funzioni periodiche e sulle grandezze alternate...3 Esempio...4 Richiami sui numeri

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1 MATEMATICA LEGGERA 1. Equazioni 2. Proporzioni 3. Potenze 4. Notazione scientifica 5. Superfici e volumi 6. Percentuale 7. Funzioni 8. Sistemi di riferimento 9. Esponenziale e logaritmo 10. Gaussiana 11.

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2. Esercizi su dominio iti continuità - prof. B.Bacchelli Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2. ESERCIZI * Determinare e disegnare il dominio delle seguenti

Dettagli

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Il tempo a disposizione per la risoluzione dei quesiti è di 90 minuti. Il test si ritiene superato

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO ISTRUZIONE SUPERIORE Via Silvestri, 301 00164 ROMA - Via Silvestri, 301 Tel. 06/121127660 Fax

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli