Nome: Nr. Mat. Firma:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nome: Nr. Mat. Firma:"

Transcript

1 Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali temporali x(t): x 1 (t) = δ(t)+ e t X 1 (s) = + cos(3t), x (t) = 1+sin(t)+t 3 e t s+ [(s+) +3 ], X (s) = 1 s + s + + 3! (s ) b) Calcolare la risposta impulsiva g i (t) delle seguenti funzioni di trasferimento G i (s): G 1 (s) = s+ s(s+), G (s) = 1e s s + G 1 (s) = 1 s + 1 (s+), g 1(t) = e t { per t 1 G (s) g (t) = sin((t 1)) per t > 1 c) Sia dato il seguente sistema retroazionato: r(t) e(t) K G(s) ( s)(1+s) s (s +3s+1) c.1) Determinare per quali valori di K il sistema retroazionato è asintoticamente stabile. Soluzione. L equazione caratteristica del sistema retroazionato è: 1+ K( s)(1+s) s (s +3s+1) = s +3s 3 +(1 K)s +9Ks+K =. La tabella di Routh ha la seguente struttura: 1 1 K K 3 3 9K 1K + 3 1K 1 9K( 1K +3) K 1K Dalla riga e dalla riga si ricavano i seguenti vincoli: K < 3 1 Dalla riga 1 si ottiene la seguente disequazione: =, K >. 13K + > K < 13 = 19.7 = K. 1

2 Quindi il sistema retroazionato è asintoticamente stabile per: < K < K = La pulsazione ω corrispondente al valore limite K è: ω = 3K = 9 = c.) Tracciare i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s). Soluzione. I diagrammi di Bode delle ampiezze e delle fasi della funzione G(s) sono mostrati in Fig. 1. Le funzioni approssimanti G (s) e G (s) per ω ed ω sono le seguenti: Diagramma dei moduli Mag (db) be Gs ga Goos Phase (deg) Phi Diagramma delle fasi Frequency [rad/s] Phioo Figura 1: Diagrammi di Bode della funzione G(s). G (s) = 1 s, G (s) = s. Le corrispondenti fasi ϕ e ϕ hanno il seguente valore: ϕ = π, ϕ = π. Sul diagramma asintotico delle ampiezze, il guadagno β in corrispondenza della pulsazione ω =. e il guadagno γ in corrispondenza della pulsazione ω = 1 sono: β = 1, γ = 1. c.3) Calcolare, in funzione di K, l errore a regime e (t) per ingresso a parabola r(t) = t. Il sistema G(s) è tipo 1 per cui segnale di ingresso r(t) = t t = R inseguito solo con errore a regime non nullo: e (t) = R K a = K 1 = 8 K. può essere d) Si faccia riferimento ad un sistema G(s) i cui diagrammi di Bode sono mostrati in figura. Nei limiti della precisione consentita dal grafico si risponda alle seguenti domande:

3 d.1) calcolare la risposta oscillatoria a regime y (t) del sistema quando in ingresso è presente il segnale: x(t) = sin(.3t π ); d.) ricavare l espressione analitica della funzione di trasferimento G(s). Stimare in modo approssimato eventuali valori di δ. G(s) 77.8(s 3) (s+.1)(s +s+) Mag (db) Phase (deg) Diagramma dei moduli Diagramma delle fasi Frequency [rad/s] d.1) La risposta a regime y (t) del sistema G(s) quando in ingresso è presente il segnale x(t) = sin(.3t π ) è la seguente: y (t) = G(.3j) sin (.3t π ) +ArgG(.3j) =.3878 sin (.3t π ) 83.1o d.) Dal grafico è evidente che la funzione G(s) ha un polo stabile in ω =.1, due zeri instabili in ω = 3 e una coppia di poli complessi coniugati stabili in ω =. La funzione di trasferimento del sistema è quindi la seguente: G(s) = 77.8(s 3) (s+.1)(s +s+) = 1(1.333s) (1+1s)(1+.8s+.s ). Dal grafico risulta che il picco di risonanza è M R =. per cui si ha che δ =.. e) Sia dato il seguente sistema retroazionato: r(t) e(t) K G(s) (s+3) s((s+1) + ) e.1) Tracciare qualitativamente il luogo delle radici del sistema retroazionato al variare del parametro K >. Determinare esattamente la posizione degli asintoti, le intersezioni ω con l asse immaginario e i corrispondenti valori del guadagno K. Determinare la posizione dei punti di diramazione solo in modo qualitativo. e.) Posto K = K determinare la posizione p 1, p e p 3 dei poli del sistema retroazionato. Soluzione e.1) L equazione caratteristica del sistema retroazionato è: (s+3) 1+KG(s) = 1+K s((s+1) + ) = L andamento qualitativo del luogo delle radici del sistema G(s) al variare del parametro K > è mostrato in Fig.. Il centro degli asintoti σ a è il seguente: σ a = 1 ( +3) = 1 L intersezione con l asse immaginario si calcola utilizzando il criterio di Routh: 1+KG(s) = s 3 +s +(+K)s+3K = 3

4 Root Locus 1 8 Imaginary Axis Real Axis Figura : Luogo delle radici del sistema G(s) al variare del parametro K >. 3 1 (+K) 1 > 3K > 1 1 K K < 1 K K > Il sistema retroazionato è asintoticamente stabile per: < K < 1 = K L intersezione con l asse immaginario si ha in corrispondenza della pulsazione: ω = 1 rad/s. 3K = e.) In corrispondenza del valore K = K il sistema retroazionato è marginalmente stabile e due dei tre poli del sistema si trovano sull asse immaginario nella posizione p 1, = ±jω. La posizione del terzo polo p 3 si determina ad esempio utilizzando il teorema del baricentro: 3 p 1 +p +p 3 = p i p 3 =. i=1 f) In figura è mostrata la risposta al gradino x(t) = X = 1 di un sistema dinamico G(s) caratterizzato solamente da poli stabili. Nei limiti della precisione del grafico determinare: T ω Risposta al gradino y 1) Il guadagno statico del sistema: G = y X =.8 ) La posizione dei poli dominanti del sistema p 1, : σ = 3 T a 3 1., ω = π T ω.8.81, p 1, = σ ±jω = ±j7.7. 3) La pulsazione naturale ω n : T a Time [s] ω n = σ +ω 8. g) Si consideri il seguente schema a blocchi: x(t) e(t) R(s) G(s) dove G(s) = [(s+1) + ](s+) e R(s) = 1+τ 1s 1+τ s.

5 g.1) Considerando i diagrammi di Bode di G(s) riportati di seguito: ampiezza 1 db rad/sec fase gradi rad/sec indicare i valori della pulsazione di incrocio ω c, del margine di fase M ϕ e del margine di ampiezza M α di G(s). Pulsazione di incrocio ω c =.3 rad/s, margine di fase M ϕ = 11. e margine di ampiezza M α =.1dB. g.) Utilizzando le formule di inversione determinare i valori dei parametri τ 1 e τ della rete correttrice R(s) che garantisca al sistema compensato un margine di fase M ϕ = e una larghezza di banda ω f = rad/s per il sistema retroazionato. Si indichi inoltre se la rete progettata è una rete ritardatrice o anticipatrice. ω a =, M a =.71 db =.17, ϕ a = 7.3 M b = 1, ϕ b = 18 +M ϕ = 1 da cui si ricavano M = M b =.17, ϕ = ϕ b ϕ a = 31.3 M a I parametri τ 1 e τ si ricavano utilizzando le formule di inversione τ 1 = M cosϕ ω a sinϕ =.717, τ = cosϕ 1 M ω a sinϕ =.7 Essendo τ 1 < τ si tratta di una rete ritardatrice.

6 Controlli Automatici Compito Completo 13 Settembre 11 - Domande Teoriche Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si ritengono giuste. 1. Scrivere la funzione di trasferimento G(s) corrispondente alla seguente equazione differenziale:... y +ÿ +y = ẍ+3ẋ+x G(s) = Y(s) X(s) = s +3s+ s 3 +s +. Calcolare il valore iniziale y = lim t + e il valore finale y = lim del segnale t corrispondente alla seguente trasformata di Laplace Y(s): Y(s) = (s+1)(1 s) s(s +3s+) y =, y = 1 3. Un sistema in retroazione negativa avente G(s) sul ramo diretto, H(s) sul ramo di retroazione e con un elevato guadagno statico d anello è poco sensibile alle variazioni parametriche di G(s) presenta una forte attenuazione dei disturbi è poco sensibile alle variazioni parametriche di H(s) costanti agenti sull uscita del sistema. I due poli di un sistema del ordine sono univocamente determinati se vengono assegnate le seguenti specifiche coefficiente di smorzamento δ e tempo di assestamento Ta picco di risonanza MR e pulsazione di risonanza ω R massima sovraelongazione S e picco di risonanza M R. Calcolare l errore a regime e( ) per i seguenti sistemi retroazionati: r(t) = 8t e(t) (s+) s(s+3) r(t) = 3t e(t) s+1 s(s+3) r(t) = e(t) 1 s(s+1) e( ) = e( ) = 3 e( ) =. Disegnare l andamento qualitativo della risposta al gradino unitario del seguente sistema: G(s) = (+.1s)(s +8s+) (+.s)(9+.s)(s +1s+1)(s +s+1) Calcolare inoltre: 1) il valore a regime y della risposta al gradino per t ; ) il tempo di assestamento T a della risposta al gradino ; 3) il periodo T ω dell eventuale oscillazione smorzata presente sul segnale : T ω Risposta al gradino y y =., T a s, T ω.1s. 1 T a 8 1 Time [s]

7 7. In figura è mostrato il diagramma di Bode dei moduli di un sistema lineare G(s) a fase minima. a) Determinare la posizione dei poli dominanti: p 1, ±8.j; b) Calcolare il guadagno statico del sistema: G() = db = 1; c) Calcolare la larghezza di banda ω f del sistema G(s) posto in retroazione unitaria negativa: Mag (db) Diagramma dei moduli 1 ω f Frequency [rad/s] Scrivere la funzione di trasferimento G(s) di un sistema del secondo ordine caratterizzato da un guadagno statico pari a, un coefficiente di smorzamento δ =. e una pulsazione naturale ω n pari a 1: G(s) = = 1+.s+ s 1 1 +s+s 9. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = 1 1+jτω ha guadagno unitario vale 3 db vale 1/ vale 3 db vale 1/ 1. In un controllore PID, l azione integrale: aumenta la banda passante riduce il tempo di assestamento aumenta il guadagno a basse frequenze aumenta il guadagno ad alte frequenze 11. Se la funzione d anello L(s) di un sistema retroazionato presenta un polo doppio nell origine: l errore a regime per ingresso a gradino è nullo l errore a regime per ingresso a rampa è nullo l errore a regime per ingresso a rampa è diverso da zero e costante l errore a regime per ingresso a parabola è infinito 1. La rete anticipatrice R(s) = 1+τ s 1+ατ s solo per ω < 1 τ α solo per ω > 1 τ α a tutte le pulsazioni ω ], [ fornisce un anticipo di fase: 13. Se i coefficienti dell equazione caratteristica di un sistema retroazionato sono tutti positivi, allora è possibile affermare che l equazione caratteristica ha tutte le radici a parte reale positiva l equazione caratteristica ha tutte le radici a parte reale negativa l equazione caratteristica può avere radici a parte reale positiva l equazione caratteristica può avere radici a parte reale negativa 7

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso:

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso: Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni Il candidato scelga e sviluppi una tra le

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Cenni su Matlab (e toolbox Control Systems + Symbolic) Dott. Ingg. Marcello Bonfè e Silvio Simani Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 / 974844

Dettagli

CORSO DI ORDINAMENTO. Tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE

CORSO DI ORDINAMENTO. Tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE Sessione ordinaria 211 Seconda prova scritta M48 - ESAME DI STATO DI ISTITUTO PROFESSIONALE ORSO DI ORDINAMENTO Indirizzo: TENIO DELLE INDUSTRIE ELETTRIHE Tema di: SISTEMI, AUTOMAZIONE E ORANIZZAZIONE

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID Corso Tecniche di taratura di un PID Ing. Valerio Scordamaglia Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89060, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica

Dettagli

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza Scuola Politecnica e delle Scienze di Base Corso di Laurea in Ingegneria Informatica Elaborato finale in Controlli Automatici Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta Sistemi di Controllo Esempio di domande teoriche a risposta multipla Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti hanno più risposte

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici Esercizi sul luogo delle radici Gli esercizi che seguono faranno riferimento allo schema a blocchi riportato di seguito. r k G(s) y Esercizio. Sia data la seguente funzione di trasferimento s(s+). Verificare

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema Introduzione Lo scopo di questa trattazione è quello di analizzare un sistema fisico (veicolo a trazione elettrica) e progettare un adeguato sistema di controllo. Per cercare di ottenere risultati simili

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti Regolatori

Dettagli

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova ELETTRONIC per Ingegneria Biomedica Prof. Sergio Cova BLOCCO MPLIFICTORE v i È un circuito integrato v i v v v i quindi v i mplificatore ideale resistenza di ingresso corrente assorbita dagli ingressi

Dettagli

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE PID: DESIGN TECHNIQUES AND IMPLEMENTATION ISSUES Relatore: Laureando: Prof.ssa Maria Elena Valcher Davide Meneghel Corso di Laurea in

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Lezione 5. Schemi a blocchi

Lezione 5. Schemi a blocchi Lezione 5 Schemi a blocchi Elementi costitutivi di uno schema a blocchi Gli schemi a blocchi costituiscono un formalismo per rappresentare graficamente le interazioni tra sistemi dinamici. Vediamone gli

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Riferimento bibliografico In questi esercizi useremo la scrittura [FdA per riferirci al libro di testo adottato nel corso, ossia: P. Bolzern, R. Scattolini

Dettagli

Margine di fase e margine di guadagno

Margine di fase e margine di guadagno Margine di fase e margine di guadagno Prendiamo in considerazione sistemi per i uali la funzione ad anello aperto, L(s), sia stabile e non presenti dunue, poli a parte reale positiva. In tal caso il criterio

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli