SISTEMI DIGITALI DI CONTROLLO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI DIGITALI DI CONTROLLO"

Transcript

1 Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza Lucidi tratti dal libro C. Bonivento, C. Melchiorri, R. Zanasi: Sistemi di Controllo Digitale Capitolo 6: Specifiche di progetto Si ringraziano gli autori

2 Sistemi Digitali di Controllo A.A. 9- p. /3 Specifiche di progetto dei sistemi di controllo Specifiche che il sistema controllato (stabile asintoticamente) deve soddisfare a regime permanente (o in condizioni statiche) e durante il regime transitorio (o in condizioni dinamiche) - Precisione a regime: capacità del sistema di seguire alcuni segnali di riferimento con il minimo errore poli in z =, aumento del guadagno,... - Risposta nel transitorio: andamento per tempi finiti dell uscita del sistema in retroazione in risposta a segnali tipici in ingresso in risposta al gradino nel dominio del tempo (posizione dei poli), o nel dominio frequenziale - Stabilità relativa: margini di stabilità sul diagramma di Nyquist - Sensibilità parametrica: le prestazioni del sistema non vengono alterate (troppo) dalle variazioni di parametri del sistema (tipicamente in catena diretta) - Reiezione di disturbi: capacità del sistema di ridurre al minimo l influenza sull uscita di eventuali disturbi che entrano nell anello di controllo poli in z = (prima del disturbo), aumento del guadagno,... - Sforzo di controllo: limiti sull ampiezza massima della variabile manipolabile u(t), o sull energia entrante nel sistema (proporzionale a u (t)dt)

3 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Specifiche a regime Errori a regime (caso continuo): tipo di sistema numero di poli in s = R(s) E(s) C(s) D(s) G(s) D(s)G(s) = K( + q s)( + q s)...( + q m s) s N ( + p s)( + p s)...( + p p s) Errori a regime (caso discreto): tipo di sistema numero di poli in z = HP(z) R(z) E(z) C(z) D(z) ZOH P(s) [ ] P(s) G(z) = D(z)HP(z) = D(z)( z )Z s E(z) = + G(z) R(z) = W e(z)r(z)

4 Sistemi Digitali di Controllo A.A. 9- p. 4/3 Errori a regime (retroazione unitaria) Assumendo che il sistema ad anello chiuso sia asintoticamente stabile, l errore a regime può essere calcolato mediante il teorema del valore finale e reg = lim k e(k) = lim z [( z )E(z)]=lim z [( z ) +G(z) R(z) ]=lim z [ z z W e(z)r(z)] Le specifiche sono date in termini di risposta a regime a riferimenti in ingresso che sono polinomi fattoriali canonici di ordine h r(kt) = ( ) k T h = h k(k )...(k h + ) h! T h eventualmente scalati per una costante r ordine h = r(kt) = (gradino) ordine h = r(kt) = k T (rampa) k(k )T ordine h = r(kt) = = (parabola discreta T rampa) (spesso si usa semplicemente la parabola discreta r(kt) = (kt) )

5 Sistemi Digitali di Controllo A.A. 9- p. 5/3 Sistema di controllo discreto di tipo h Il sistema di controllo discreto a retroazione è di tipo h se in risposta a un ingresso di ordine h presenta un errore a regime costante e diverso da zero Data la struttura delle R(z) di ingressi canonici campionati, ciò accade se e solo se la funzione di trasferimento d errore W e (z) W e (z) = E(z) R(z) = + G(z) ( = G(z) ) + G(z) = W(z) ha uno zero in z = di molteplicità h la G(z) ha un polo in z = di molteplicità h Posto k G = [ ( z ) h G(z)/T h], un sistema di controllo di tipo h ha un errore a z= regime per un ingresso di ordine h pari a e = + k G (h = ) e h = k G (h ) Verifica per i casi notevoli di ordine h =,,, con una terminologia di tipo meccanico

6 Sistemi Digitali di Controllo A.A. 9- p. 6/3 Errore a regime per ingressi canonici Errore di posizione per ingresso a gradino campionato (ordine ) r(kt) = r R(z) = r z z = r z [ e p (= e ) = lim ( z ) z + G(z) Definendo la costante di posizione k p = lim z G(z) e p = r + k p ] r z [ r = lim z + G(z) ] Sistema di tipo h = : k p finito Sistema di tipo h =,,... : k p = e p =

7 Sistemi Digitali di Controllo A.A. 9- p. 7/3 Errore a regime per ingressi canonici Errore di velocità per ingresso a rampa campionata (ordine ) r(kt) = r kt R(z) = r Tz (z ) = Tz r ( z ) [ e v (= e ) = lim ( z ) z + G(z) Tz ] r ( z ) Definendo la costante di velocità k v = lim z ( z )G(z) T e v = r k v [ ] Tr = lim z ( z )G(z) Sistema di tipo h = : k v = e v = Sistema di tipo h = : k v finito Sistema di tipo h =, 3,... : k v = e v =

8 Sistemi Digitali di Controllo A.A. 9- p. 8/3 Errore a regime per ingressi canonici 3 Errore di accelerazione per ingresso a parabola campionata (ordine ) r(kt) = r (kt) [ e a (= e ) = lim ( z ) z T z(z + ) R(z) = r (z ) 3 = T z ( + z )r ( z ) 3 + G(z) T z ( + z )r ( z ) 3 Definendo la costante di accelerazione k a = lim z ( z ) G(z) T e a = r k a ] [ T ] r = lim z ( z ) G(z) Sistema di tipo h =, : k a = e a = Sistema di tipo h = : k a finito Sistema di tipo h = 3, 4,... : k a = e a =

9 Sistemi Digitali di Controllo A.A. 9- p. 9/3 Esempi di calcolo dell errore a regime errore di posizione (tipo ) G(z) = z.5z con T =.5 s k p = lim z G(z) = e p = + =.333 k v = lim z ( z )G(z) T = e v = = k a = lim z ( z ) G(z) T = e a = =. Sistema di tipo con ingresso a gradino Errore y

10 Sistemi Digitali di Controllo A.A. 9- p. /3 Esempi di calcolo dell errore a regime (cont) errore di velocità Sistema di tipo con ingresso a rampa Errore 4 y errore di accelerazione 8 Sistema di tipo con ingresso a parabola 4 Errore y s s

11 Sistemi Digitali di Controllo A.A. 9- p. /3 Esempi di calcolo dell errore a regime (tipo ) G(z) =.3z.z +.z =.3z ( z )(.z ) con T =.5 s errore di posizione k p = lim z G(z) = e p = k v = lim z ( z )G(z) T =.75 e v =.333 k a = lim z ( z ) G(z) T = e a =. Sistema di tipo con ingresso a gradino Errore.5.8 y

12 Sistemi Digitali di Controllo A.A. 9- p. /3 Esempi di calcolo dell errore a regime (cont) errore di velocità Sistema di tipo con ingresso a rampa Errore y errore di accelerazione 5 45 Sistema di tipo con ingresso a parabola 4 Errore 4 y s s

13 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Esempi di calcolo dell errore a regime 3 (tipo ) G(z) =.3(.z +.37z ) ( z ) (.6z ) con T = s errore di posizione k p = lim z G(z) = e p = k v = lim z ( z )G(z) T = e v = k a = lim z ( z ) G(z) T =.75 e a = Sistema di tipo con ingresso a gradino Errore y

14 Sistemi Digitali di Controllo A.A. 9- p. 4/3 Errori a regime errore di velocità 6 Sistema di tipo con ingresso a rampa 3 Errore 5 4 y errore di accelerazione 8 Sistema di tipo con ingresso a parabola Errore y s s

15 Sistemi Digitali di Controllo A.A. 9- p. 5/3 Errori a regime (sommario per retroazione unitaria) Errori a regime in funzione del tipo h di sistema per ingressi con r = Errore a regime in risposta a Tipo di sistema gradino rampa parabola tipo + k p tipo k v tipo k a Si noti che le costanti k G della G(z) potrebbero essere negative, nel qual caso occorre utilizzare il modulo k G (soprattutto per h =!)

16 Sistemi Digitali di Controllo A.A. 9- p. 6/3 Errori a regime per retroazione non unitaria H(z) Si è ancora interessati alla differenza E(z) = R(z) C(z), ma in generale allora il riferimento in ingresso all anello è R(z) = H(z)C des (z) Si applicano le stesse formule con G (z) = G(z) + G(z) [H(z) ] anzichè G(z). Infatti G (z) R(z) G(z) C(z) R(z) G(z) C(z) H(z) H(z) retroazione non unitaria schema equivalente a retroazione unitaria

17 Sistemi Digitali di Controllo A.A. 9- p. 7/3 Errori a regime per retroazione non unitaria H(z) = /k d Il caso notevole H(z) = /k d rappresenta la presenza di un coefficiente di trasduzione del sensore di misura dell uscita E(z) = C des (z) C(z) = k d R(z) C(z) C des (z) R(z) G(z) k d k d C(z) C(z) R(z) = W(z) = G(z) = k dg(z) + G(z) k d + G(z) k d E(z) R(z) = k dr(z) C(z) R(z) = W e (z) = k d W(s) = k d k d + G(z) e = k d k d + k G (h = ) e h = k d k G (h )

18 Sistemi Digitali di Controllo A.A. 9- p. 8/3 Specifiche sul transitorio nel dominio del tempo Tali specifiche per sistemi discreti sono del tutto analoghe a quelle del caso tempo continuo, dove si definiscono le seguenti caratteristiche della risposta a gradino - tempo di salita T s per passare dal % (o 5%) al 9% (o 95%) del valore finale c( ) - tempo di assestamento T a oltre il quale c(t) differisce per < 5% (o < %) da c( ) - tempo di ritardo T r quando l uscita c(t) raggiunge il 5% del valore c( ) - massima sovraelongazione S rispetto al valore di regime c( ) (di solito in %) - istante di massima sovraelongazione T m dove c(t m ) = c( ) + S.6.4. S.5 c(t) Ts Tr Tm Ta t

19 Sistemi Digitali di Controllo A.A. 9- p. 9/3 Specifiche sul transitorio nel dominio del tempo Per un sistema del secondo ordine (o con coppia di poli dominanti), è possibile ricavare formule chiuse jω jω n δ ω n G(s) = ω n s + δω n s + ω n δω n σ - tempo di salita da al % del valore finale - tempo di assestamento T s% = π arccosδ ω n δ T a = 3 δω n (al 5%) T a = 4 δω n (al %)

20 Sistemi Digitali di Controllo A.A. 9- p. /3 Specifiche sul transitorio nel dominio del tempo 3 - massima sovraelongazione percentuale S = [c(t m ) ] = e δπ δ S % delta tipico δ = istante di massima sovraelongazione T m = π ω n δ

21 Sistemi Digitali di Controllo A.A. 9- p. /3 Specifiche sul transitorio nel dominio della Z-trasformata Impongono l appartenenza dei poli ad anello chiuso a zone del piano z z = e st

22 Sistemi Digitali di Controllo A.A. 9- p. /3 Specifiche sul transitorio nel dominio della frequenza Anche queste sono analoghe al caso a tempo continuo (Bode o Nyquist, con le dovute cautele, e Nichols) Si possono mettere in relazione con i parametri di un sistema del secondo ordine - margine di fase m f detta φ (<, in generale) la fase di G(e jωt ) in corrispondenza alla pulsazione ω t (di taglio) dove G(e jω tt ) =, il margine di fase è m f = π φ con valori tipici di specifica m f = margine di guadagno m g è l inverso del guadagno di anello alla pulsazione ω g dove arg{g(e jω gt )} = π m g = G(e jω gt ) con valori tipici di specifica m g = 4 6 ( 6 db)

23 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Specifiche sul transitorio nel dominio della frequenza - modulo alla risonanza M r è il massimo valore che assume il modulo di G(e jωt ), con valori tipici di specifica M r = 3 db M r = δ δ G r (db) delta - pulsazione di risonanza ω r è la pulsazione alla quale si verifica il modulo alla risonanza ω r = ω n δ - banda passante B 3 è la pulsazione alla quale il modulo della risposta armonica si riduce di 3 db rispetto al valore in continua (a ω = ) - si ricorre spesso all utilizzo del piano ausiliario w, che gode della proprietà (come nel dominio s) di poter trattare con funzioni razionali fratte di ω

24 Sistemi Digitali di Controllo A.A. 9- p. 4/3 Specifiche sul transitorio uniche dei sistemi discreti - tempo di risposta finito, possibilmente minimo lt esempio elementare e k = e(kt) = e, k = l, l +,... c k+ = c k + u k u k = c des c k porta a e k = c k c des = in ogni k =,,..., quali che siano c e c des (risposta in tempo finito e minimo, con l = ) - per processi continui campionati, con riferimento a un ingresso a gradino, risposta piatta possibilmente in tempo minimo si annulla definitivamente l errore, a partire da un istante di campionamento finito, anche al di fuori degli istanti kt - risposta deadbeat, una generalizzazione del caso precedente per altri ingressi tipici (rampa, parabola,... ) - caratteristica legata al posizionamento dei poli ad anello chiuso nell origine

25 Sistemi Digitali di Controllo A.A. 9- p. 5/3 Sensibilità parametrica Sensibilità del sistema in retroazione G (z) = G(z) + G(z) a variazioni di un parametro a rispetto al valore nominale Facendo il limite per a Sensibilità di G rispetto a G Σ G a G /G a/a Σ G G = G G Σ G a = G a G G = = G a a G a G + G(z) valutata a una data pulsazione ω Σ G G ω=ω = + G(e jω T )

26 Sistemi Digitali di Controllo A.A. 9- p. 6/3 Sensibilità parametrica Volendo che la sensibilità sia piccola a date frequenze, è quindi necessario che per tali frequenze G(e jωt ) sia grande Un modo per ottenere questo risultato è aumentare il guadagno d anello, il che però comporta in genere riduzioni dei margini di stabilità Se la G(z) in catena diretta dipende da un parametro a Σ G a = G a a = G G G G a a G da cui Σ G a = G(z)( + G(z)) G(z) a a Anche in questo caso, per ridurre la sensibilità bisogna aumentare il guadagno d anello Se il parametro è contenuto in un blocco H(z) in retroazione, allora aumentare il guadagno in catena diretta peggiora le cose...

27 Sistemi Digitali di Controllo A.A. 9- p. 7/3 Reiezione dei disturbi r(t) d(t) Controllo y(t) d(t) y(t) Processo Processo Y (z) D(z) = G d(z) = HG(z) + C(z)HG(z) Controllo essendo qui C(z) la funzione di trasferimento del controllo e HG(z) quella del processo Se vale C(z)HG(z) Y (z) D(z) C(z) l entità del disturbo è ridotta di un fattore C(z) Se D(z) è costante, allora un integratore in C(z) farà sì che l errore causato dal disturbo sia nullo a regime (astatismo) Un disturbo a una pulsazione ω d verrà attenuato se si ha C(e jω dt )HG(e jω dt ) oppure HG(e jω dt ) e C(e jω dt )HG(e jω dt )

28 Sistemi Digitali di Controllo A.A. 9- p. 8/3 Sforzo di controllo nel progetto del controllore si deve considerare che la variabile di controllo u è fisicamente limitata e quindi non possono esserne richiesti valori eccessivi (fenomeni di saturazione introducono non-linearità nel sistema) d altra parte, a progetto completato, si possono fare verifiche in simulazione sugli sforzi di controllo richiesti in condizioni operative tipiche e dimensionare di conseguenza l organo di attuazione oltre ai valori di picco della variabile u interessano anche aspetti energetici (consumo, surriscaldamento dei componenti), tipicamente legati all integrale u (t)dt o, nel caso discreto, alla sommatoria k u k, che possono ancora essere valutati in simulazione di queste considerazioni si può tenere conto anche in fase di progetto, impostando e risolvendo problemi di sintesi di controllo ottimo (tipicamente lineare-quadratico) in cui l obiettivo è quello di assicurare buone prestazioni (transitori di errore rapidi) e contemporaneamente ridotto sforzo di controllo

29 Sistemi Digitali di Controllo A.A. 9- p. 9/3 Esempio di controllo ottimo a tempo discreto Si riconsideri il semplice sistema a tempo discreto c k+ = c k + u k e si desideri regolare l uscita a zero con un controllo proporzionale u k = k p c k a partire da un valore iniziale arbitrario c = c(). La soluzione a tempo di risposta finito e minimo è data dal guadagno k p = che fornisce c =, c k =, k =, 3,... u = c, u k =, k =,,... ossia l errore si azzera dopo un solo campione. D altronde è facile verificare che si avrà stabilità asintotica per qualsiasi scelta k p (, ) in quanto c k+ = c k k p c k = ( k p )c k C(z) = z ( k p ) polo in p < k p < dove quella a tempo minimo impone il polo in z = al sistema ad anello chiuso Valutiamo se questa soluzione è ottima per qualche opportuna funzione obiettivo (diversa dal tempo minimo) o se ce ne sono di migliori da un punto di vista energetico

30 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Esempio di controllo ottimo a tempo discreto (cont) Per qualsiasi valore di k p, dalle c k+ = ( k p )c k e u k = k p c k si ha c = c() c = ( k p )c u = k p c u = k p ( k p )c c = ( k p ) c. c k = ( k p ) k c u = k p ( k p ) c. u k = k p ( k p ) k c Si consideri la seguente funzione di costo quadratica H = c k + r u k r k= che somma i campioni (quadratici) dell errore (e k = c k ) e del controllo u k, e dove il peso r definisce la loro importanza relativa (identica se r = ). Sostituendo i valori si ha H = ( ) k= ( kp ) k ( ) c + r kp ( k p ) k c = c ( + rkp) ( k= ( kp ) ) k = (per k p < ) = c ( + rk p) ( k p ) = c ( + rkp) k p ( k p )

31 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Esempio di controllo ottimo a tempo discreto (cont) Per minimizzare H rispetto a k p (, ), si impone la condizione necessaria (e anche sufficiente perchè H/ k p > ) H c = k p kp( k p ) (rk p + k p ) = rkp + k p = Delle due radici (reali) per k p, quella positiva vale k p = + +4r r e appartiene, r, all intervallo (, ) (ammissibile per la stabilità) kp r Ad esempio, per r = si ha kp opt =.5. La soluzione a tempo minimo di risposta (k p = ) si trova nel caso limite per r (i campioni del controllo non sono pesati)

32 Sistemi Digitali di Controllo A.A. 9- p. 3/3 Esempio di controllo ottimo a tempo discreto (cont) A verifica, paragonando il valore della funzione di costo H per r = con i due valori kp opt =.5 e k p =, si ha H opt = H {kp =.5} = c < H {kp =} = c k + u k = c + ( c ) = 3 c Sono ovviamente possibili altre scelte per la funzione di costo, ad esempio sommando i soli moduli dei campioni di controllo. Assumendo ancora k p <, si ha H = u k = k= k= k p ( k p ) k c = k p c k= ( k p ) k = k= k p c k p Questa funzione non è differenziabile rispetto a k p e va quindi analizzata direttamente nei due casi possibili per k p (, ) k p H = c k p < H = c k p k p > c per cui il valore ottimo non si ha per un unico k p, ma per qualsiasi k p (, ]

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Controllori PID, metodi di taratura e problemi d implementazione

Controllori PID, metodi di taratura e problemi d implementazione Controllori PID, metodi di taratura e problemi d implementazione Prof. Luigi Glielmo Università del Sannio L. Glielmo 1 / 23 Contenuto della presentazione Controllori PID Metodi di taratura in anello aperto

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati

Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 2012

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

IL FILTRAGGIO DEL SEGNALE

IL FILTRAGGIO DEL SEGNALE CAPITOLO 4 IL FILTRAGGIO DEL SEGNALE 4.1 - SISTEMA LINEARE NON DISTORCENTE E un sistema lineare che restituisce in uscita una replica indistorta del segnale di entrata, intendendo x(t) y(t) = Ax(t-t 0

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso:

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso: Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni Il candidato scelga e sviluppi una tra le

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

ENS - Prima prova in itinere del 07 Maggio 2010

ENS - Prima prova in itinere del 07 Maggio 2010 ENS - Prima prova in itinere del 07 Maggio 0 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli devono

Dettagli

CORSO DI ORDINAMENTO. Tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE

CORSO DI ORDINAMENTO. Tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE Sessione ordinaria 211 Seconda prova scritta M48 - ESAME DI STATO DI ISTITUTO PROFESSIONALE ORSO DI ORDINAMENTO Indirizzo: TENIO DELLE INDUSTRIE ELETTRIHE Tema di: SISTEMI, AUTOMAZIONE E ORANIZZAZIONE

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID Corso Tecniche di taratura di un PID Ing. Valerio Scordamaglia Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89060, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

ELETTRONICA. L amplificatore Operazionale

ELETTRONICA. L amplificatore Operazionale ELETTRONICA L amplificatore Operazionale Amplificatore operazionale Un amplificatore operazionale è un amplificatore differenziale, accoppiato in continua e ad elevato guadagno (teoricamente infinito).

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Lezione 5. Schemi a blocchi

Lezione 5. Schemi a blocchi Lezione 5 Schemi a blocchi Elementi costitutivi di uno schema a blocchi Gli schemi a blocchi costituiscono un formalismo per rappresentare graficamente le interazioni tra sistemi dinamici. Vediamone gli

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

CONVERTITORI DIGITALE/ANALOGICO (DAC)

CONVERTITORI DIGITALE/ANALOGICO (DAC) CONVERTITORI DIGITALE/ANALOGICO (DAC) Un convertitore digitale/analogico (DAC: digital to analog converter) è un circuito che fornisce in uscita una grandezza analogica proporzionale alla parola di n bit

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Introduzione al Campionamento e

Introduzione al Campionamento e Introduzione al Campionamento e all analisi analisi in frequenza Presentazione basata sul Cap.V di Introduction of Engineering Experimentation, A.J.Wheeler, A.R.Ganj, Prentice Hall Campionamento L'utilizzo

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli

Corso di orientamento. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI

Corso di orientamento. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Corso di orientamento Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA (Testo valevole per i corsi di ordinamento e per i corsi sperimentali

Dettagli

IL PROBLEMA DELLE SCORTE

IL PROBLEMA DELLE SCORTE IL PROBLEMA DELLE SCORTE Un problema di Ricerca Operativa, di notevole interesse pratico, è il problema della gestione delle scorte, detto anche di controllo delle giacenze di magazzino. Esso riguarda

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Tesina di Identificazione dei Modelli e Analisi dei Dati

Tesina di Identificazione dei Modelli e Analisi dei Dati Tesina di Identificazione dei Modelli e Analisi dei Dati Ceccarelli Egidio e Papi Alessio 19 Luglio 2000 1 Indice 1 Introduzione 3 2 Valutazioni relative all identificazione 3 3 Prove 4 4 Conclusioni 5

Dettagli