Sistema dinamico a tempo continuo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistema dinamico a tempo continuo"

Transcript

1 Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO USCITA - y(t) non è univocamente determinata

2 Risposta dinamica La risposta dinamica di un sistema indica l andamento del segnale di uscita quando in ingresso viene applicato un segnale variabile nel tempo. Esistono due possibilità per descrivere il comportamento dinamico di un sistema: La rappresentazione nel dominio del tempo che descrive la risposta del sistema in funzione del tempo stesso y(t). La rappresentazione nel dominio della frequenza che descrive la risposta del sistema in funzione di una variabile trasformata ad es. s (trasformazione di Laplace) o (trasformazione di Fourier).

3 Risposta dinamica DESCRIZIONE DEL COPORTAENTO DINAICO DELLA STRUTTURA DOINIO DEL TEPO DOINIO DELLA FREQUENZA Rappresentazione mediante equazioni differenziali Rappresentazione mediante la risposta a gradino Rappresentazione mediante risposta in frequenza e funzione di trasferimento Laplace, Fourier (analiticamente) Diagramma di Bode, Nichols, Nyquist (graficamente)

4 Equazioni differenziali Le equazioni differenziali descrivono i modelli matematici degli elementi di trasferimento fisici e dei sistemi n d y dy du a n... a a y b u b n b m m d u m con u(t) grandezza di ingresso e y(t) grandezza di uscita Formulazione implicita.

5 Risposta a gradino Considerando t 0 0, la perturbazione prodotta è rappresentabile come in figura: In sistemi asintoticamente stabili descrive la transizione da un equilibrio ad un altro.

6 Risposta a gradino parametri caratteristici

7 etodi operazionali Per facilitare la risoluzione delle equazioni differenziali dei circuiti e dei sistemi lineari e stazionari, riconducendole a equazioni algebriche mediante opportune trasformazioni, sono stati introdotti vari metodi, chiamati metodi operazionali. Utilizzando questi metodi il segnale d'ingresso viene decomposto esprimendolo come somma o integrale di determinate funzioni base, le equazioni (trasformate in algebriche) vengono risolte per queste funzioni e la soluzione ottenuta viene poi ricondotta (mediante antitrasformazione) a rappresentare il segnale d'uscita nel dominio del tempo. I vari metodi differiscono per i tipi di funzioni base impiegate, e quindi dei segnali ai quali essi possono venire applicati: sinusoidi pure di frequenza data sinusoidi con frequenze multiple di una data esponenziali complessi esponenziali complessi (nulli per t<0) etodo Simbolico Serie di Fourier Trasformata di Fourier Trasformata di Laplace

8 Serie di Fourier Un segnale s(t) è periodico nel tempo quando si ripete ogni T secondi. Un segnale periodico può essere, in generale, caratterizzato nel seguente modo: ( t) s( t kt ) s L indice k,, 3... rappresenta la replica del segnale elementare che si succede identica nel tempo, ogni periodo di T secondi. s(t) T è il periodo f /T è la frequenza fondamentale πf è la pulsazione fondamentale T t

9 Serie di Fourier Data una funzione periodica g(t) di periodo T e pulsazione g π/t, si può in generale scrivere che g a () [ ( ) ( )] 0 t a cos n t b sin n t n n g n g dove a n e b n sono i coefficienti di Fourier / T / an g() t cos( n gt) T bn g() t sin( n gt) T T / T T /

10 Trasformata di Fourier I segnali aperiodici sono caratterizzati dall avere energia finita. Per tale fatto sono detti anche segnali impulsivi, diversamente dai segnali periodici che si ripetono indefinitamente. Per i segnali aperiodici perde significato lo sviluppo in serie di Fourier, mancando il principale presupposto: la periodicità. Per i segnali impulsivi, l analisi in frequenza viene condotta mediante la trasformata (diretta e inversa) di Fourier. s(t) durata t Esempio di segnale s(t) aperiodico di durata limitata

11 Trasformata di Fourier Uno dei metodi operazionali più importanti è il metodo della trasformata di Fourier, che è basato sui due seguenti integrali: Il primo, chiamato integrale di Fourier o trasformata diretta di Fourier, rappresenta la trasformazione nel dominio della frequenza della funzione f(t) definita nel dominio del tempo. Il secondo integrale esprime invece la trasformazione inversa, cioè il passaggio dalla rappresentazione nel dominio della frequenza a quello del tempo.

12 Trasformata di Fourier Proprietà Elenchiamo ora alcune importanti proprietà della trasformata di Fourier. Indicheremo con F(),G(),..., le trasformate delle funzioni f(t), g(t),...

13 Trasformata di Laplace Il metodo operazionale più usato in elettronica è quello della trasformata di Laplace. La frequenza angolare complessa s σ viene a sostituire la frequenza angolare (presente nella trasformata di Fourier) come variabile da cui dipendono le funzioni trasformate. L - Tempo t Dominio complesso s L In generale, la trasformata di Laplace di una funzione f(t) non dipende dai valori che tale funzione assume per t<0. Questo non crea inconvenienti quando si utilizza la trasformata di Laplace per determinare la risposta di un circuito o di un sistema lineare e stazionario da t0 in poi. σ è definita ascissa di convergenza.

14 Trasformata di Laplace - proprietà - Linearità - Trasformata dell integrale - Trasformata della derivata Derivata di ordine k

15 Trasformata di Laplace - proprietà - Traslazione in frequenza - Traslazione nel tempo - Cambiamento di scala nei tempi - oltiplicazione per t n - Integrale di convoluzione

16 Trasformata di Laplace Trasformate Notevoli Esempio: gradino unitario

17 Risposta in frequenza La risposta in frequenza F() di un elemento o sistema lineare e tempoinvariante ne indica inequivocabilmente la risposta caratteristica. Questa può essere derivata matematicamente dalla funzione di trasferimento G(s) oppure può essere determinata empiricamente tramite la misura della risposta in frequenza. La risposta in frequenza di un sistema viene determinata valutando l effetto di un oscillazione armonica con frequenza variabile da 0 a. Per un ingresso costituito da un oscillazione armonica, nella rappresentazione complessa vale: y u t ( t) uˆ e uˆ ( cost sint) ( t ϕ ( )) ( t) yˆ e yˆ ( cos( t ϕ( )) sin( t ϕ( ))) n d y dy du a n... a a y b u b n b m m d u m

18 Risposta in frequenza ( ) ( ) ( ) ( ) ( ) m m t n n t b b b e u a a a e e y ϕ... ˆ... ˆ 0 0 ( ) ( ) ( ) ( ) ( ) n n m m a a a b b b e u y ϕ ˆ ˆ 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ϕ n n m m e u v a a a b b b u v F ˆ ˆ Il modulo della risposta in frequenza, per ogni valore della pulsazione, rappresenta il rapporto tra l ampiezza dell uscita e quella dell ingresso. La risposta di fase, attraverso l angolo di fase ϕ, fornisce a sua volta il ritardo dell uscita rispetto all ingresso.

19 F Risposta in frequenza ϕ ( ) ( ) F( ) e Re( ) Im( ) F yˆ u ˆ ( ) Re ( ) Im ( ) ϕ ( ) F( ) arg arctan Im Re ( ) ( ) Il modulo della risposta in frequenza, per ogni valore della pulsazione, rappresenta il rapporto tra l ampiezza dell uscita e quella dell ingresso. La risposta di fase, attraverso l angolo di fase ϕ, fornisce a sua volta il ritardo dell uscita rispetto all ingresso.

20 Risposta in frequenza Così come l equazione differenziale di un elemento di trasferimento lineare può essere trasformata nell equazione della risposta in frequenza F() mediante l operatore s, quest ultima può essere convertita nella funzione di trasferimento G(s). Questa trasformazione ha luogo secondo le regole della trasformata di Laplace. La funzione di trasferimento di un elemento di trasferimento è in generale: G () s y u ( s) () s ( m b ) 0 b s... bm s ( n a a s... a s ) 0 n

21 Diagramma di Bode ediante la rappresentazione del modulo della risposta in frequenza, che rappresenta il rapporto tra l ampiezza della grandezza in uscita e l ampiezza di quella in ingresso, e la rappresentazione dell angolo di fase ϕ() si ottiene una chiara immagine della risposta caratteristica degli elementi di trasferimento lineari. Questi diagrammi sono la risposta in ampiezza e la risposta di fase dell elemento di trasferimento ed insieme formano il diagramma di Bode. Risposta in ampiezza Sulle ascisse abbiamo la frequenza mentre sulle ordinate viene riportato il rapporto di ampiezza, entrambe le grandezze in scala logaritmica. Il valore del rapporto di ampiezza può essere rappresentato in forma numerica o in Decibel (db). F ( ) db Risposta di fase F ( ) db 0 log F( ) F( ) 0 Sulle ascisse abbiamo, in scala logaritmica, la frequenza mentre sulle ordinate viene riportato, su scala lineare, la relazione di fase ϕ() tra il segnale in uscita e quello in ingresso. 0

22 Altre rappresentazioni grafiche Diagrammi di Nichols Singolo grafico dove sulle ascisse abbiamo, in scala logaritmica, il modulo [db] mentre sulle ordinate viene riportato, su scala lineare, la relazione di fase ϕ() [gradi] tra il segnale in uscita e quello in ingresso. Diagrammi di Nyquist Rappresentazione dei dati riportati nel diagramma di Bode mediante grafico polare delle coppie di valori di modulo e fase della risposta armonica in una curva graduata in pulsazione (o frequenza). Sulle ascisse abbiamo la parte reale Re() mentre sulle ordinate viene riportata la parte immaginaria Im().

23 Diagrammi di Nyquist Diagramma polare

24 Elementi di trasferimento Per risolvere problemi complessi di comando o regolazione è possibile trasformare il sistema da studiare in un sistema equivalente che contiene elementi di trasferimento base. E possibile successivamente effettuare una schematizzazione a blocchi che tenga conto delle funzioni del sistema e di qui particolarizzare le singole connessioni nodali tra gli elementi. Elemento Proporzionale P Elemento Proporzionale con ritardo del ordine P-T Elemento Proporzionale con ritardo del ordine P-T Elemento Integrale I Elemento Derivativo D Elemento Proporzionale Integrale PI

25 Elementi di trasferimento

26 Elementi di trasferimento Blocco in serie u y u y S S y Blocco in parallelo u S S y y u ± S y Blocco in retroazione y S

27 Elementi di trasferimento Elemento Proporzionale P Equazione di sistema y p u Equazione risolutiva y p u s

28 Elementi di trasferimento Elemento Proporzionale P con ritardo del ordine P-T Equazione di sistema Equazione risolutiva dy T p y u y u s e T t F C dx x x F s e C T t Esempio: massa (nulla) con molla e smorzatore sottoposta a forzante (grandezza in ingresso).

29 Elementi di trasferimento Elemento Proporzionale P con ritardo del ordine P-T Equazione di sistema d y T dy y u F d x m C dx x Periodo caratteristico T Coefficiente proporzionale m p C Grado di smorzamento D C m Esempio: massa con molla e smorzatore sottoposta a forzante (grandezza in ingresso).

30 Elementi di trasferimento Elemento Integrale I Equazione di sistema y t I u 0 Equazione risolutiva s h n t 0 n ds con coefficiente integrale I Esempio: conversione della velocità n h h di una vite a ricircolo di sfere di passo h in un percorso della tavola.

31 Elementi di trasferimento Elemento Derivativo D Equazione di sistema y D du Equazione risolutiva y D du s

32 Elementi di trasferimento Elemento Proporzionale Integrale PI Equazione di sistema y t P u I u 0 Esempio: regolatore di velocità in un azionamento di avanzamento.

33 Equazioni di governo di un motore a CC Figura : Circuito equivalente semplificato di un motore CC a magnete permanente Figura : Circuito equivalente di un motore CC a magnete permanente E V I R source b U di Vsource I R L b

34 Equazioni di governo di un motore a CC Forza contro elettromotrice back EF b Coppia motrice C m T I Coppia di accelerazione C C m B C L C B J TOT d

35 Rappresentazione nel dominio del tempo Schema semplificato

36 Rappresentazione nel dominio del tempo Schema con induttanza U - U-E - di L I L i C C L C B - E R i P T I J TOT P R P b

37 Equazioni di governo di un motore a CC Equazione delle tensioni U di Vsource I R L b Forza contro elettromotrice back EF b Coppia motrice C T I C C L C B Coppia di accelerazione C B J TOT d posto b T uguaglianza numericamente valida se le unità di misura delle grandezze sono espresse nel S.I.

38 Equazioni di governo di un motore a CC U I R L di R C L J TOT d L dc L L J TOT d Si procede con la normalizzazione delle grandezze presenti nelle equazioni, utilizzando le seguenti grandezze di riferimento: max velocità angolare massima per funzionamento a vuoto U max massima tensione di armatura a vuoto C st coppia di carico in condizioni di massima tensione di armatura e albero bloccato C st I max U R max R max oltiplicando tutti i termini dell equazione precedente per la quantità R U max

39 Equazioni di governo di un motore a CC introducendo le costanti di tempo elettrica e meccanica dell azionamento L J TOT max J TOT T el Tmech R C st R T el T mech d max T mech d max max U U max C C L st T el d C C L st Elemento proporzionale P-T con ritardo del ordine

40 Equazioni di governo di un motore a CC Elemento proporzionale P-T con ritardo del ordine con parametri caratterizzanti T * T el T mech D * T mech T el T * d max D * T * d max max U U max C C L st T el d C C L st Le costanti di tempo elettrica e meccanica individuano il comportamento oscillatorio dell azionamento mentre il grado di smorzamento determina l ampiezza delle sovraelongazioni ed il tempo di assestamento.

41 Equazioni di governo di un motore a CC

42 Equazioni di governo di un motore a CC

43 Equazioni di governo di un motore a CC

44 Elemento Proporzionale P con ritardo del ordine P-T Equazione di sistema u y dy DT y d T u y ( ) ( ) 0 0 D F T 0 ( ) 0 0 D F ( ) 0 0 arctan ϕ D angolo di fase risposta in ampiezza risposta in frequenza

45 Elemento Proporzionale P con ritardo del ordine P-T 0 risposta in ampiezza D D0. D

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua Servomeccanismi 1 1. Il motore elettrico in corrente continua Descrizione fisica Il motore è contenuto in una cassa che in genere è cilindrica. Da una base del cilindro fuoriesce l albero motore; sulla

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Analisi della risposta dinamica

Analisi della risposta dinamica Analisi della risposta dinamica Risposta dinamica del trasduttore: descrive, in termini di un modello matematico basato su equazioni differenziali alle derivate parziali, le relazioni, basate su opportune

Dettagli

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice ITIS J.F. Kennedy prof. Maurilio Bortolussi 1 Indice 1 I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO 2 1.1 Introduzione........................................ 2 1.2 La funzione di trasferimento...............................

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Capitolo 9 Introduzione alle macchine elettriche

Capitolo 9 Introduzione alle macchine elettriche Capitolo 9 Introduzione alle macchine elettriche Sezione 9.1: Macchine elettriche rotanti Problema 9.1 Relazione tra potenza nominale e temperatura ambiente mostrata in tabella. Un motore con funziona

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 5 I Disciplina: Sistemi automatici Docenti: Linguanti Vincenzo Gasco Giovanni PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automaticih PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Elementi di sismologia

Elementi di sismologia Elementi di sismologia Sismologia e Rischio Sismico Anno Accademico 2009-2010 Giovanna Cultrera, cultrera@ingv.it Istituto Nazionale di Geofisica e Vulcanologia Trasformata di Fourier Premessa: l equazione

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma

Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma Circuiti Elettrici Un introduzione per studenti di Fisica Giulio D Agostini Dipartimento di Fisica, Università La Sapienza, Roma 6 marzo 2015 ii Indice 1 Forze gravitazionali e forze elettriche 1 1.1 Forze

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDICE DELLE UFC

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDICE DELLE UFC INDICE DELLE UFC 1 Transitori Transitori di circuiti R,L,C Ordine di un sistema Modello matematico 2 Trasformata di Laplace Teoremi sulla trasformata Trasformata dei principali segnali di ingresso Antitrasformata

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

stazione sismica Sistema di rilevazione e archiviazione dei segnali sismici PDF created with pdffactory Pro trial version www.pdffactory.

stazione sismica Sistema di rilevazione e archiviazione dei segnali sismici PDF created with pdffactory Pro trial version www.pdffactory. stazione sismica Sistema di rilevazione e archiviazione dei segnali sismici 1 Schema di una stazione sismica D POWER Display keyboard S ADC CPU I/O DRIVE CLOCK S POWER ADC CPU I/O CLOCK D sensore alimentazione

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Azionamenti elettronici PWM

Azionamenti elettronici PWM Capitolo 5 Azionamenti elettronici PWM 5.1 Azionamenti elettronici di potenza I motori in corrente continua vengono tipicamente utilizzati per imporre al carico dei cicli di lavoro, nei quali può essere

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Costruzione di Sistemi Meccanici

Costruzione di Sistemi Meccanici ostruzione di Sistemi eccanici Analisi di sistemi di posizionamento Scelta di un motore rushless Applicazione a velocità fissa. Esempi di utilizzo: pompe rushless, scanner ottici, ventilatori, trapani

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

7. Trasformata di Laplace

7. Trasformata di Laplace 7. Trasformata di Laplace Pierre-Simon de Laplace (1749-1827) Trasformata di Fourier e segnali causali In questa lezione ci occuperemo principalmente di segnali causali: Definizione 7.1 (Segnali causali)

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

Esercizi in MATLAB-SIMULINK

Esercizi in MATLAB-SIMULINK Appendice A Esercizi in MATLAB-SIMULINK A.1 Implementazione del modello e del controllo di un motore elettrico a corrente continua A.1.1 Equazioni del modello Equazioni nel dominio del tempo descrittive

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Modellistica e controllo dei motori in corrente continua

Modellistica e controllo dei motori in corrente continua Modellistica e controllo dei motori in corrente continua Note per le lezioni del corso di Controlli Automatici A.A. 2008/09 Prof.ssa Maria Elena Valcher 1 Modellistica Un motore in corrente continua si

Dettagli

Capitolo 10 Macchine elettriche speciali

Capitolo 10 Macchine elettriche speciali Capitolo 10 Macchine elettriche speciali Sezione 10.1: Motori DC senza spazzole Problema 10.1 Macchina sincrona bifase a sei poli a magnete permanente. L ampiezza della tensione di fase a circuito aperto

Dettagli

Strumentazione Biomedica

Strumentazione Biomedica Sensori induttivi, capacitivi, piezoelettrici Univ. degli studi Federico II di Napoli ing. Paolo Bifulco Sensori induttivi Sensori induttivi di spostamento basati su variazioni di autoinduttanza e mutua

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Scuola Universitaria Professionale della Svizzera Italiana. Dipartimento di informatica ed elettronica. Automazione I e II. Ing.

Scuola Universitaria Professionale della Svizzera Italiana. Dipartimento di informatica ed elettronica. Automazione I e II. Ing. Scuola Universitaria Professionale della Svizzera Italiana Dipartimento di informatica ed elettronica Automazione I e II Ing. Roberto Bucher 7 aprile 23 Automazione I e II 2 Copyright 23 Roberto Bucher

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del giugno 202 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli