Esercizi svolti di Elettrotecnica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi svolti di Elettrotecnica"

Transcript

1 Marco Gilli Dipartimento di Elettronica Politecnico di Torino Esercizi svolti di Elettrotecnica Politecnico di Torino TOINO Maggio 2003

2

3 Indice Leggi di Kirchhoff 5 2 Legge di Ohm e partitori 5 3 esistenze equivalenti 2 4 Metodo dei nodi 33 5 Sovrapposizione degli effetti 53 6 Circ eq di Thevenin e Norton 6 7 Fasori 7 8 eti dinamiche 75 3

4

5 Capitolo Leggi di Kirchhoff Esercizio Si consideri il circuito di Fig, ove sono indicati i valori che alcune tensioni e correnti assumono ad un istante t 0 Sfruttando le leggi di Kirchhoff delle tensioni e delle correnti, si determinino i valori delle altre tensioni e correnti al medesimo istante t 0 Siano dati V 4 = 7 V, V 5 = 9 V, V 6 = 8 V, I 3 = 6 A, I 5 = 8 A ed I 6 = 7 A V I B V 5 V 3 I 5 C I 3 D I 4 V 2 V 4 V 6 I 2 I 6 A Figura : Circuito dell esercizio Applicando la legge di Kirchhoff delle tensioni rispettivamente alla maglia di sinistra, alla maglia di destra ed alla maglia esterna si ottiene 5

6 6 CAPITOLO LEGGI DI KICHHOFF V 2 = V 5 V 4 = 9 V 7 V = 2 V V 3 = V 4 V 6 = 7 V 8 V = V V = V 2 V 6 = 2 V 8 V = 0 V Applicando la legge Kirchhoff delle correnti rispettivamente ai nodi B, C e D si ottiene I 4 = I 5 I 3 = 8 A 6 A = 4 A I = I 6 I 5 = 7 A 6 A = A I 2 = I I 5 = A 8 A = 7 A

7 7 Esercizio 2 Con riferimento al circuito di Fig 2 e facendo uso della legge di Kirchhoff delle correnti, si calcolino le correnti incognite Siano dati I a = 8 A, I b = 2 A, I c = 5 A, I d = 6 A, I e = 8 A, ed I f = 0 A A I I e I d B I 2 I a C I Ib c I f Figura 2: Circuito dell esercizio 2 Applicando la legge Kirchhoff delle correnti rispettivamente ai nodi C e B si ottiene I 2 = I a I b I c = 8 A 2 A 5 A = A I = I 2 I d I e I f = A ( 6) A 8 A 0 A = 25 A

8 8 CAPITOLO LEGGI DI KICHHOFF Esercizio 3 Con riferimento al circuito di Fig 3 e facendo uso della legge di Kirchhoff delle correnti, si calcolino le correnti incognite Siano dati I a = 4 A, I b = 3 A, I c = 2 A, I d = 5 A ed I e = 6 A I 2 I I a Ie A I d B I c Ib Figura 3: Circuito dell esercizio 3 Applicando la legge Kirchhoff delle correnti rispettivamente ai nodi A e B si ottiene I = I a I b I c = 4 A ( 3) A 2 A = 9 A I 2 = I d I e I = 5 A ( 6) A 9 A = 0 A

9 9 Esercizio 4 Con riferimento al circuito di Fig 4 e facendo uso della legge di Kirchhoff delle correnti, si calcolino le correnti incognite Siano dati I a = 3 A, I b = 5 A, I c = A ed I d = 5 A I a A I c I I b B I 3 C I 4 I 2 D I d Figura 4: Circuito dell esercizio 4 Applicando la legge Kirchhoff delle correnti rispettivamente ai nodi A, B, D e C si ottiene I = I a I c = 3 A A = 2 A I 2 = I I b = 2 A 5 A = 3 A I 3 = I 2 I d = 3 A 5 A = 2 A I 4 = I 3 I c = 2 A A = 3 A

10 0 CAPITOLO LEGGI DI KICHHOFF Esercizio 5 Dato il circuito di Figura calcolare le tensioni V, V 2 e V 3 Siano dati V a = 8 V, V b = V, V c = 0 V, V d = 4 V e V e = 5 V V c V d V b V 3 B V e V a A V 2 C V Figura 5: Circuito dell esercizio 5 Applicando la legge di Kirchhoff delle tensioni rispettivamente alle maglie B, A e C si ottiene: V 3 = V d V c = 4 V 0 V = 4 V V 2 = V 3 V b V a = 4 V V 8 V = 5 V V = V d V e V 2 = 4 V 5 V 5 V = 4 V

11 Esercizio 6 Dato il circuito di Fig 6, calcolare le correnti I, I 2 ed I 3 I a = 2 ma, I b = 8 ma ed I c = 9 ma Siano dati A I a I I b B I 2 I 3 C I c D Figura 6: Circuito dell esercizio 6 Applicando la legge di Kirchhoff delle correnti rispettivamente ai nodi A, C e D si ottiene: I = I b I a = 8 ma 2 ma = 4 ma I 2 = I c I b = 9 ma 8 ma = ma I 3 = I c I a = 9 ma 2 ma = 3 ma Volendo si può scrivere un ulteriore equazione come verifica dei calcoli appena svolti: la somma delle correnti entranti nel nodo B deve essere uguale a zero I I 2 I 3 = 4 ma ma ( 3 ma) = 0

12 2 CAPITOLO LEGGI DI KICHHOFF Esercizio 7 Dato il circuito di Fig 7, calcolare le correnti I, I 2 ed I 3 I a = A, I b = 2 A, I c = 0 A ed I d = 3 A Siano dati A I a I b B I c I I 2 C I 3 D I d Figura 7: Circuito dell esercizio 7 Applicando la legge di Kirchhoff delle correnti rispettivamente ai nodi A, B e C si ottiene: I = I b I c I a = 2 A 0 A A = A I 2 = I b I d I a = 2 A 3 A A = 4 A I 3 = I I c = A 0 A = A Volendo si può scrivere un ulteriore equazione come verifica dei calcoli appena svolti: la somma delle correnti entranti nel nodo D deve essere uguale a zero I 2 I 3 I d = 4 A A 3 A = 0

13 3 Esercizio 8 Dato il circuito di Fig 8, calcolare le tensioni V, V 2 e V 3 V a = 20 V, V b = 25 V, V c = 0 V e V d = 5 V Siano dati V d V b V c B V 2 V a A V C V 3 Figura 8: Circuito dell esercizio 8 Applicando la legge di Kirchhoff delle tensioni rispettivamente alle maglie A, B e C si ottiene: V = V a V b V c = 20 V 25 V 0 V = 35 V V 2 = V d V c = 5 V 0 V = 5 V V 3 = V V 2 = 35 V 5 V = 30 V

14 4 CAPITOLO LEGGI DI KICHHOFF Esercizio 9 Dato il circuito di Fig 9, calcolare le tensioni V, V 2 e V 3 E = 0 V, E 2 = 2 V e E 3 = 0 V Siano dati V E V 2 V 3 E 3 E 2 Figura 9: Circuito dell esercizio 9 Osservando la maglia di destra si vede subito che V 3 = E 3 = 0 V Applicando la legge di Kirchhoff delle tensioni rispettivamente alla maglia esterna ed alla maglia di sinistra si ottiene V = E E 2 E 3 = 24 V 2 V 0 V = 2 V V 2 = V E = 2 V 24 V = 22 V Come verifica dei calcoli appena svolti si può scrivere l equazione delle tensioni alla maglia centrale V 3 = E 2 V 2 = 2 V ( 22 V ) = 0 V che è lo stesso valore ottenuto in precedenza

15 Capitolo 2 Legge di Ohm e partitori Esercizio 2 Dato il circuito di Fig 2, calcolare la corrente I, la potenza dissipata dal resistore e le potenze fornite dai singoli generatori Siano dati V a = 0 V, V b = 2 V, V c = 8 V ed = 3 Ω V b V a V c I V Figura 2: Circuito dell esercizio 2 Applicando la legge di Kirchhoff delle tensioni all unica maglia presente nel circuito si ottiene V a V b V c I = 0 da cui I = V a V b V c 0 V 2 V 8 V = = 2 A 3 Ω Essendo la potenza dissipata da un resistore pari alla corrente per la tensione ai sui capi (nella convenzione di utilizzatore), si ha che la potenza dissipata da è pari a P = V I = I 2 = 3 Ω (2 A) 2 = 2 W 5

16 6 CAPITOLO 2 LEGGE DI OHM E PATITOI La potenza fornita dai generatori è ancora pari al prodotto della tensione ai capi del generatore per la corrente che lo attraversa, ma nelle convenzioni di utilizzatore, per cui si ottiene P a = V a I = 0 V ( 2 A) = 20 W P b = V b I = 2 V ( 2 A) = 24 W P c = V c I = 8 V ( 2 A) = 6 W Si verifica infine che la somma algebrica delle potenze fornite dai generatori al circuito è uguale a alla somma algebrica delle potenze dissipate dai resistori del circuito P a P b P c = 20 W 24 W 6 W = 2 W = P

17 7 Esercizio 22 Dato il circuito di Fig 22, trovare i valori di i, i 2, i 3 e i 4 = 60 Ω, 2 = 40 Ω, 3 = 80 Ω, 4 = 20 Ω e J = 0 A Siano dati 4 i 4 3 i 3 i 2 i 2 J Figura 22: Circuito dell esercizio 228 Le quattro resistenze sono in parallelo Per calcolare le correnti incognite basta applicare la regola del partitore di corrente Ω 80 Ω 20 Ω i = J ( ) = 0 A 60 Ω(40 Ω 80 Ω 20 Ω) = 6 A Ω 80 Ω 20 Ω i 2 = J 2 ( 3 4 ) = 0 A 40 Ω(60 Ω 80 Ω 20 Ω) = 24 A Ω 40 Ω 20 Ω i 3 = J 3 ( 2 4 ) = 0 A 80 Ω(60 Ω 40 Ω 20 Ω) = 2 A Ω 40 Ω 80 Ω i 4 = J 4 ( 2 3 ) = 0 A 20 Ω(60 Ω 40 Ω 80 Ω) = 48 A

18 8 CAPITOLO 2 LEGGE DI OHM E PATITOI Esercizio 23 Dato il circuito di Fig 23, trovare i valori di i 0 e V 0 Siano dati = 70 Ω, 2 = 30 Ω, 3 = 40 Ω, 4 = 0 Ω e E = 58 V E i V 2 i 0 i 3 3 V 0 4 Figura 23: Circuito dell esercizio 23 Le resistenze ed 2 sono in parallelo, così come 3 ed 4 La tensione incognita V 0 si calcola con la regola del partitore di tensione 3 4 V 0 = E ( 2 ) ( 3 4 ) = 58 V 40 Ω 0 Ω (70 Ω 30 Ω) (40 Ω 0 Ω) = 6 V Per trovare il valore di i 0 bisogna prima calcolare il valore di i ed i 3 i = E V 0 = 58 V 6 V 70 Ω = 06 A i 3 = V 0 3 = 6 V 40 Ω = 04 A da cui i 0 = i i 3 = 06 A 04 A = 02 A

19 9 Esercizio 24 Dato il circuito di Fig 24, trovare i valori di i 0 e V 0 Siano dati = 80 Ω, 2 = 20 Ω, 3 = 30 Ω, 4 = 60 Ω, 5 = 0 Ω e E = 20 V i 0 5 E V 0 Figura 24: Circuito dell esercizio 232 La resistenza è in corto circuito, quindi la corrente i 0 è uguale alla corrente erogata dal generatore di tensione i 0 = E 2 ( 3 4 ) = 20 V 20 Ω (30 Ω 60 Ω) = 05 A Visto che sulla resistenza 5 non scorre corrente, la tensione V 0 è uguale alla tensione sul parallelo tra 3 ed 4 V 0 = i 0 ( 3 4 ) = 05 A (30 Ω 60 Ω) = 0 V

20 20 CAPITOLO 2 LEGGE DI OHM E PATITOI

21 Capitolo 3 esistenze equivalenti Esercizio 3 Dato il circuito di Fig 3, determinare la resistenza equivalente ab tra i morsetti a e b a b Figura 3: Circuito dell esercizio 3 La resistenza è in parallelo ad un corto circuito, quindi ab = 0 2

22 22 CAPITOLO 3 ESISTENZE EQUIVALENTI Esercizio 32 Dato il circuito di Fig 32, determinare la resistenza equivalente ab tra i morsetti a e b a b Figura 32: Circuito dell esercizio 32 ab = ( ) ( ) = 2 2 =

23 23 Esercizio 33 Dato il circuito di Fig 33, determinare la resistenza equivalente ab tra i morsetti a e b a b Figura 33: Circuito dell esercizio 33 ab = ( ) ( ) = (2) (2) =

24 24 CAPITOLO 3 ESISTENZE EQUIVALENTI Esercizio 34 Dato il circuito di Fig 34, determinare la resistenza equivalente ab tra i morsetti a e b a b 3 Figura 34: Circuito dell esercizio 34 ab = [( ) ] (3) = ( ) 2 (3) =

25 25 Esercizio 35 Dato il circuito di Fig 35, determinare la resistenza equivalente ab tra i morsetti a e b a b 2 3 Figura 35: Circuito dell esercizio 35 ab = (3) (2) () = 3 2 = 6

26 26 CAPITOLO 3 ESISTENZE EQUIVALENTI Esercizio 36 Dato il circuito di Fig 36, calcolare la corrente I e la resistenza eq vista ai capi del generatore di tensione E Siano dati E = 0 V, = 3 Ω, 2 = 4 Ω, 3 = 2 Ω, 4 = 6 Ω, 5 = Ω ed 6 = 2 Ω E I eq Figura 36: Circuito dell esercizio 36 Per il calcolo della resistenza equivalente vista dal generatore di tensione conviene prima calcolare la resistenza La eq è ora data da = ( 6 5 ) 4 = (2 Ω Ω) (6 Ω) = 2 Ω eq = [ ( 3 ) 2 ] = [(2 Ω 2 Ω) (4 Ω)] 3 Ω = 5 Ω La corrente I è la corrente erogata dal generatore di tensione e vale I = E eq = 0 V 5 Ω = 2 A

27 27 Esercizio 37 Dato il circuito di Fig 37, determinare la resistenza equivalente ab tra i morsetti a e b Siano dati = 60 Ω, 2 = 0 Ω, 3 = 30 Ω ed 4 = 60 Ω a b Figura 37: Circuito dell esercizio 37 I terminali a e b appartengono allo stesso nodo, quindi ab = 0

28 28 CAPITOLO 3 ESISTENZE EQUIVALENTI Esercizio 38 Dato il circuito di Fig 38, determinare la resistenza equivalente ab tra i morsetti a e b Siano dati = 5 Ω, 2 = 4 Ω, 3 = 5 Ω, 4 = 6 Ω, 5 = 20 Ω, 6 = 0 Ω, 7 = 8 Ω, 8 = 4 Ω, 9 = 5 Ω, 0 = 9 Ω ed = Ω a b Figura 38: Circuito dell esercizio 38 0 Per semplicità conviene calcolare ed = ( 0 ) 9 8 = ( Ω 9 Ω) (5 Ω) (4 Ω) = 2 Ω = ( 7 ) 6 5 = (2 Ω 8 Ω) (0 Ω) (20 Ω) = 4 Ω La resistenza vista tra i due morsetti vale ab = [ ( 4 ) 3 ] 2 = [(4 Ω 6 Ω) (5 Ω)] 4 Ω 5 Ω = 5 Ω

29 29 Esercizio 39 Dato il circuito di Fig 39, determinare la resistenza equivalente ab tra i morsetti a e b Siano dati = 70 Ω, 2 = 30 Ω, 3 = 60 Ω 4 = 20 Ω ed 5 = 40 Ω a 2 b Figura 39: Circuito dell esercizio 39 ab = ( 2 ) ( 3 4 ) 5 = (70 Ω 30 Ω) (60 Ω 20 Ω) 40 Ω = 76 Ω

30 30 CAPITOLO 3 ESISTENZE EQUIVALENTI Esercizio 30 Dato il circuito di Fig 30, determinare la resistenza equivalente ab tra i morsetti a e b Siano dati = 8 Ω, 2 = 30 Ω, 3 = 20 Ω, 4 = 40 Ω, 5 = 60 Ω, 6 = 4 Ω, 7 = 0 Ω, 8 = 50 Ω, 9 = 70 Ω, 0 = 80 Ω ed = 6 Ω a b Figura 30: Circuito dell esercizio 30 Le resistenze 7, 8, 9 ed 0 non intervengono nel calcolo della ab perché sono in parallelo ad un corto circuito La resistenza vista tra i due morsetti vale quindi ab = ( 2 3 ) ( 4 5 ) 6 = = 8 Ω (30 Ω 20 Ω) (40 Ω 60 Ω) 4 Ω 6 Ω = 54 Ω

31 3 Esercizio 3 Dato il circuito di Fig 3, determinare la resistenza equivalente ab tra i morsetti a e b Siano dati = 5 Ω, 2 = 6 Ω, 3 = 0 Ω 4 = 8 Ω, 5 = 20 Ω ed 6 = 3 Ω 2 3 a b Figura 3: Circuito dell esercizio 3 ab = ( 5 ) ( 2 6 ) 3 4 = = (5 Ω 20 Ω) (6 Ω 3 Ω) 0 Ω 8 Ω = 24 Ω

32 32 CAPITOLO 3 ESISTENZE EQUIVALENTI

33 Capitolo 4 Metodo dei nodi Esercizio 4 Dato il circuito di Fig 4, trovare i valori di V e V 2 utilizzando il metodo dei nodi Siano dati = 00 Ω, 2 = 50 Ω, 3 = 20 Ω, 4 = 40 Ω, J = 6 A e J 2 = 3 A 3 J V V J 2 Figura 4: Circuito dell esercizio 4 Scriviamo le equazioni delle correnti uscenti dai nodi di V e V 2 : V V 2 V V 2 3 J = 0 V 2 4 V 2 V 3 J J 2 = 0 33

34 34 CAPITOLO 4 METODO DEI NODI Le uniche due incognite sono V e V 2 iordinando il sistema e ponendolo in forma matriciale si ha: V J = V 2 J J Sostituendo i valori numerici e risolvendo il sistema si ottiene: 00 Ω 50 Ω 20 Ω 20 Ω V 6 A 20 Ω 20 Ω = V 2 6 A 3 A 40 Ω da cui V = 0 e V 2 = 20 V

35 35 Esercizio 42 Dato il circuito di Fig 42, trovare il valore di V 0 utilizzando il metodo dei nodi Siano dati = 40 Ω, 2 = 60 Ω, 3 = 20 Ω, E = 2 V ed E 2 = 0 V V 0 E 2 E 2 3 Figura 42: Circuito dell esercizio 42 Prima di procedere con i calcoli si trasformano i rami contenenti generatori di tensione in serie a resistenze nei loro equivalenti Norton: V 0 J J con J = E = 300 ma, J 2 = E 2 3 = 500 ma, = = 40 Ω e 3 = 3 = 20 Ω Scrivendo l equazione delle correnti uscenti dal nodo di V 0 si ha: V 0 isolvendo l equazione si ottiene V 0 V J J 2 = 0 V V

36 36 CAPITOLO 4 METODO DEI NODI Esercizio 43 Dato il circuito di Fig 43, trovare i valori di V e V 2 utilizzando il metodo dei nodi Siano dati = 0 Ω, 2 = 20 Ω, 3 = 40 Ω, 4 = 80 Ω, E = 40 V, E 2 = 20 V e J = 5 A J V 2 V E E 2 Figura 43: Circuito dell esercizio 43 Prima di procedere con i calcoli si trasformano i rami contenenti generatori di tensione in serie a resistenze nei loro equivalenti Norton: J V 2 V 2 J J con J = E = 4 A, J 2 = E 2 = 250 ma, = = 0 Ω e 4 = 4 = 4 80 Ω Impostando il sistema in forma matriciale nelle incognite V e V 2 si ha:

37 Sostituendo i valori numerici si ottiene: 0 Ω 20 Ω 20 Ω 20 Ω 20 Ω 40 Ω 80 Ω Il sistema di equazioni ha come soluzioni V V 2 J J = J J 2 V V 2 4 A 5 A = 5 A 025 A V 42 V e V V

38 38 CAPITOLO 4 METODO DEI NODI Esercizio 44 Dato il circuito di Fig 44, trovare i valori di V, V 2 e V 3 utilizzando il metodo dei nodi Siano dati G = S, G 2 = 2 S, G 3 = 4 S, G 4 = 8 S, E = 3 V e J = A G 2 V 2V 2 G V 2 4 V 3 J G G 3 E Figura 44: Circuito dell esercizio 44 I nodi di V e V 2 vanno considerati come un unico supernodo Inoltre bisogna aggiungere al sistema l equazione costitutiva del generatore dipendente di tensione ed il valore di V 3 che è noto Le equazioni del sistema sono: V G (V V 3 )G 2 V 2 G 3 (V V 3 )G 4 = J V V 2 = 2V 2 V 3 = E iordinando i termini e ponendo il tutto in forma matriciale si ottiene: G G 2 G 3 G 4 G 2 G V V 2 V 3 = J 0 E

39 39 Sostituendo i valori numerici si ottiene: S 2 S 4 S 8 S 2 S 8 S V V 2 V 3 = A 0 3 V Il sistema di equazioni ha come soluzioni V 87 V V V V 3 = 3 V

40 40 CAPITOLO 4 METODO DEI NODI Esercizio 45 Dato il circuito di Fig 45, trovare il valore di I 0 utilizzando il metodo dei nodi Siano dati = 4 Ω, 2 = 0 Ω, 3 = 2 Ω, 4 = 8 Ω ed E = 30 V I 0 V 3 3 V 2 V 2 E 3I 0 4 Figura 45: Circuito dell esercizio 45 Alle equazioni dei nodi di V, V 2 e V 3 bisogna aggiungere l equazione del generatore dipendente di corrente in funzione delle altre variabili: I 0 = V V 3 Il sistema risultante è il seguente: V V 2 V 3 I 0 = E 0 0 0

41 4 Sostituendo i valori numerici si ottiene: Ω 0 Ω 3 2 Ω 2 Ω 4 Ω 0 Ω 4 Ω 2 Ω 8 Ω Ω 4 Ω V V 2 V 3 I 0 = 30 V Il sistema di equazioni ha come soluzioni V = 30 V V V V V I A

42 42 CAPITOLO 4 METODO DEI NODI Esercizio 46 Dato il circuito di Fig 46, trovare i valori di V e V 2 utilizzando il metodo dei nodi Siano dati = Ω, 2 = 4 Ω, 3 = 8 Ω, 4 = Ω, E = 6 V e J = 3 A 3 V J V 2 V0 E 2 4 5V 0 Figura 46: Circuito dell esercizio 46 Scriviamo le equazioni delle correnti uscenti dai nodi di V e V 2 : V E V 2 V V 2 3 J = 0 V 2 V 3 V 2 5V 0 4 J = 0 A queste due equazioni bisogna aggiungere l equazione costitutiva del generatore dipendente di tensione in funzione dei potenziali ai nodi: V 0 = E V Mettendo insieme le tre equazioni e riordinando i termini si ottiene il seguente sistema: V V 2 V 0 = E J J E

43 43 Sostituendo i valori numerici e risolvendo il sistema si ottiene: Ω 4 Ω 0 6 V 8 Ω 8 Ω V 8 Ω 8 Ω Ω 3 A 5 Ω Ω V 2 = 3 A V V da cui V = 0 V V 2 = 24 V V 0 = 6 V

44 44 CAPITOLO 4 METODO DEI NODI Esercizio 47 Dato il circuito di Fig 47, trovare i valori di V, V 2 e V 3 utilizzando il metodo dei nodi Siano dati G = 2 S, G 2 = S, G 3 = 4 S, G 4 = 4 S, G 5 = S, G 6 = 2 S, J = 4 A e J 2 = 8 A G 3 3I 0 V G 2 V 2 G 5 V 3 I 0 J G J G 4 G 6 2 Figura 47: Circuito dell esercizio 47 Considerando le equazioni delle correnti uscenti dai nodi di V, V 2 e V 3, e tenendo conto che la corrente che pilota il generatore dipendente vale I 0 = V 2 G 4 si ottiene il seguente sistema: G G 2 G 3 G 2 G 3 3 G 2 G 2 G 4 G 5 G 5 0 G 3 G 5 G 3 G 5 G G 4 0 V V 2 V 3 I 0 = J 0 J 2 0

45 45 Sostituendo i valori numerici e risolvendo il sistema si ottiene: 2 S S 4 S S 4 S 3 S S 4 S S S 0 4 S S 4 S S 2 S S 0 V V 2 V 3 I 0 = 4 A 0 8 A 0 da cui V = 25 V V 2 = 075 V V 3 = 325 V I 0 = 3 A

46 46 CAPITOLO 4 METODO DEI NODI Esercizio 48 Dato il circuito di Fig 48, trovare i valori di V 0 ed I 0 utilizzando il metodo dei nodi Siano dati = 0 Ω, 2 = 20 Ω, 3 = 40 Ω, 4 = 80 Ω, E = 0 V ed E 2 = 2 V 3 E 2 E I 0 V 2 V 2 4V 0 2I 4 0 V 0 Figura 48: Circuito dell esercizio 48 Si nota subito che V 0 = V 2 Scriviamo quindi le equazioni delle correnti uscenti dai nodi di V e V 2 : V E V 4V 2 2 V V 2 E 2 3 = 0 V 2 4 V 2 V E 2 3 2I 0 = 0 Le equazioni sono 2 ma le incognite sono 3, bisogna perciò aggiungere un altra equazione: I 0 = V V 2 E 2 3

47 47 Mettendo insieme le tre equazioni e riordinando i termini si ottiene il seguente sistema: 4 E E V V 2 I 0 = E 2 3 E 2 3 Sostituendo i valori numerici e risolvendo il sistema si ottiene: 0 Ω 20 Ω 40 Ω 40 Ω Ω V 40 Ω 40 Ω 2 80 Ω V 2 = I 0 40 Ω 40 Ω da cui V = 688 V V 2 = V 0 = 344 V I 0 = 056 A 0 V 0 Ω 2 V 40 Ω 2 V 40 Ω 2 V 40 Ω

48 48 CAPITOLO 4 METODO DEI NODI Esercizio 49 Dato il circuito di Fig 49, trovare i valori di V, V 2 e V 3 utilizzando il metodo dei nodi Siano dati = 4 Ω, 2 = Ω, 3 = Ω, 4 = 4 Ω, 5 = 2 Ω, E = 5 V e J = A 2 V0 4I 0 2V 0 V V 2 V 3 I 0 J E Figura 49: Circuito dell esercizio 49 Come prima operazione conviene trasformare il ramo di destra nel suo equivalente Norton: 2 V0 4I 0 2V 0 V V 2 V 3 I 0 J J dove J = E 5 = 25 A ed 5 = 5 Considerando il ramo contenente il generatore dipendente di tensione come un unico supernodo, ed aggiungendo le equazioni che legano le incognite V 0 ed I 0 alle tensioni nodali, si giunge al seguente sistema:

49 49 V V V 3 3 V 2 2 2V 0 J = 0 V 3 V V 3 V 2V 0 J = 0 3 V 2 V = 4I 0 V 0 = V V 3 I 0 = V 3 4 iordinando i termini e ponendo il tutto in forma matriciale si ottiene: V V 2 V 3 V 0 I 0 = J 0 J 0 0 Sostituendo i valori numerici e risolvendo il sistema si ottiene: 4 Ω Ω Ω Ω Ω 0 Ω 4 Ω 2 Ω Ω 0 V V 2 V 3 V 0 I 0 = A 0 25 A 0 0

50 50 CAPITOLO 4 METODO DEI NODI da cui V 2545 V V V V V V V I ma

51 5 Esercizio 40 Dato il circuito di Fig 40, trovare i valori di V, V 2 e V 3 Siano dati = 5 Ω, 2 = 8 Ω, E = 0 V, E 2 = 2 V, E 3 = 20 V e J = A E E 3 J E 2 2 V V 2 V 3 Figura 40: Circuito dell esercizio 40 Dall analisi del circuito si vede immediatamente che V = E 2 E = 2 V V 2 = E 2 = 2 V V 3 = E 2 E 3 = 8 V

52 52 CAPITOLO 4 METODO DEI NODI

53 Capitolo 5 Sovrapposizione degli effetti Esercizio 5 Dato il circuito di Fig 5, trovare il valore di i x e la potenza P x dissipata su 2 usando il metodo della sovrapposizione degli effetti Siano dati = 24 Ω, 2 = 20 Ω, 3 = 80 Ω, E = 30 V e J = 2 A E i x 2 3 J Figura 5: Circuito dell esercizio 47 Per calcolare la i x dovuta al generatore di tensione E si spegne il generatore di corrente J Il circuito risultante è il seguente E V x i x

54 54 CAPITOLO 5 SOVAPPOSIZIONE DEGLI EFFETTI Per il calcolo di i x conviene prima trovare la tensione ai capi del parallelo tra 2 ed 3 da cui 2 3 x = E ( 2 3 ) = 30 V 20 Ω 80 Ω 24 Ω (20 Ω 80 Ω) = 2 V V i x = V x 2 = 2 V 20 Ω = 06 A Per calcolare la i x dovuta al generatore di corrente J si spegne il generatore di tensione E Il circuito risultante è il seguente i x 2 3 J Il valore di i x è dato da un semplice partitore di corrente i 3 x = J 2 ( 3 ) = 2 A 24 Ω 80 Ω 20 Ω (24 Ω 80 Ω) = 096 A Mettendo insieme i due risultati si ha i x = i x i x = 06 A 096 A = 036 A e P x = 2 i 2 x = 20 Ω ( 036 A) 2 = 2592 W

55 55 Esercizio 52 Dato il circuito di Fig 52, trovare il valore di i x e la potenza P x dissipata su 3 usando il metodo della sovrapposizione degli effetti Siano dati = 4 Ω, 2 = 2 Ω, 3 = 6 Ω, 4 = 8 Ω, E = 40 V, E 2 = 32 V e J = 2 A E 2 i x 3 J 4 E 2 Figura 52: Circuito dell esercizio 42 Primo effetto i E 2 4 i x 3 Per calcolare i x conviene prima calcolare i : i = E [( 2 3 ) 4 ] = 40 V 4 Ω [(2 Ω 6 Ω) 8 Ω] = 5 A Il valore di i x si ricava facendo un partitore di corrente: i 4 8 Ω x = i = 5 A Ω 6 Ω 8 Ω = 25 A

56 56 CAPITOLO 5 SOVAPPOSIZIONE DEGLI EFFETTI Secondo effetto 2 J 4 i x 3 Il parallelo delle resistenze e 4 è in serie ad 3, quindi i x si trova con un partitore di corrente: i 2 x = J 2 3 ( 4 ) = 2 A 2 Ω 2 Ω 6 Ω (4 Ω 8 Ω) = 0375 A Terzo effetto i 4 2 i x 3 4 E 2 Per calcolare i x conviene prima calcolare i 4 : i 4 = E 2 4 [( 3 2 ) ] = 32 V 8 Ω [(6 Ω 2 Ω) 4 Ω] = 3 A Il valore di i x si ricava facendo un partitore di corrente: i 4 Ω x = i 4 = 3 A Ω 2 Ω 6 Ω = A

57 57 Complessivo La corrente i x vale i x = i x i x i x = 25 A 0375 A A = 875 A mentre P x vale P x = 3 i 2 x 2 W

58 58 CAPITOLO 5 SOVAPPOSIZIONE DEGLI EFFETTI Esercizio 53 Dato il circuito di Fig 53, trovare il valore di i 0 usando il metodo della sovrapposizione degli effetti Siano dati = 8 Ω, 2 = 20 Ω, 3 = 6 Ω, 4 = 4 Ω, 5 = 0 Ω, E = 24 V, J = 4 A e J 2 = 2 A J i 0 3 E J 2 Figura 53: Circuito dell esercizio 43 Primo effetto i 0 3 E La corrente i 0 è la corrente erogata dal generatore di tensione E i 0 = E [ 2 ( )] = 24 V 8 Ω [20 Ω (6 Ω 4 Ω 0 Ω)] 33 A Secondo effetto Calcoliamo prima i x con un partitore di corrente 3 i x = J ( 2 ) = 4 A 6 Ω 6 Ω 4 Ω 0 Ω (8 Ω 20 Ω) 093 A

59 59 J i i x 5 da cui i 2 0 = i x = 093 A 20 Ω 2 20 Ω 8 Ω 067 A Terzo effetto i i y 5 J 2 Calcoliamo prima i y con un partitore di corrente 5 i y = J ( 2 ) = 2 A 0 Ω 0 Ω 4 Ω 6 Ω (8 Ω 20 Ω) 078 A da cui i 2 0 = i y = 078 A 20 Ω 2 20 Ω 8 Ω 055 A Complessivo La corrente i 0 vale i 0 = i 0 i 0 i 0 = 33 A 067 A 055 A 0 A

60 60 CAPITOLO 5 SOVAPPOSIZIONE DEGLI EFFETTI

61 Capitolo 6 Circuiti equivalenti di Thevenin e Norton Esercizio 6 Dato il circuito di Fig 6, trovare il circuito equivalente di Thevenin tra i morsetti a e b Siano dati = Ω, 2 = Ω, 3 = 2 Ω, 4 = 2 Ω, 5 = Ω, 6 = Ω, E = 3 V, E 2 = 2 V e J = 5 A 3 a E b E J 5 6 Figura 6: Circuito dell esercizio 448 esistenza equivalente Spegnendo i generatori di corrente e di tensione e trasformando in triangolo la stella costituita dai resistori, 5 ed 6, si ha 6

62 62 CAPITOLO 6 CIC EQ DI THEVENIN E NOTON 3 a 2 4 b b c a dove a = b = c = 3 Ω, da cui ab = a [( b 2 ) ( 3 4 c )] = 3 Ω [(3 Ω Ω) (2 Ω 2 Ω 3 Ω)] = Ω Tensione a vuoto Il metodo più veloce consiste nel trasformare il gruppo 3-4 -E 2 nel suo equivalente Thevenin: a E 2 eq eq i 2 A b E J B i dove eq = 3 4 = 2 Ω 2 Ω = Ω E eq = E = V

63 63 La tensione a vuoto V ab è data da V ab = 2 i 2 eq i 6 E eq Per calcolare le correnti incognite conviene applicare il teorema di Millman ai nodi A e B: E V AB = 2 J E eq eq 6 2 = 3 V 5 eq 6 da cui i 2 = E V AB 2 = 0 A i 6 = V ABE eq eq 6 = 3 V V Ω Ω = 2 A e quindi V ab = 2 i 2 eq i 6 E eq = V Circuito equivalente di Thevenin ab V ab a b

64 64 CAPITOLO 6 CIC EQ DI THEVENIN E NOTON Esercizio 62 Dato il circuito di Fig 62, trovare il circuito equivalente di Thevenin tra i morsetti a e b, e tra i morsetti b e c Siano dati = 4 Ω, 2 = 6 Ω, 3 = 8 Ω, 4 = 0 Ω, 5 = 2 Ω, E = 48 V e J = 2 A 2 5 a E 3 b 4 J c Figura 62: Circuito dell esercizio 435 esistenze equivalenti Spegnendo i generatori di corrente e di tensione si ha ab = ( 2 4 ) 3 5 = (4 Ω 6 Ω 0 Ω) 8 Ω 2 Ω 77 Ω bc = ( 2 3 ) 4 = (4 Ω 6 Ω 8 Ω) 0 Ω 643 Ω Tensioni a vuoto Per semplificare i conti conviene trasformare il gruppo 4 -J nel suo equivalente Thevenin: dove eq = 4 = 0 Ω E eq = J 4 = 20 V La tensione a vuoto V ab è data da 3 8 Ω V ab = (E E eq ) = (48 V 20 V ) 3 2 eq 8 Ω 4 Ω 6 Ω 0 Ω = 8 V

65 a E 3 eq E eq b c mentre la tensione V bc è data da V bc = E 2 3 E eq = 30 V Circuito equivalente di Thevenin tra i morsetti a e b ab V ab a b Circuito equivalente di Thevenin tra i morsetti b e c bc V bc b c

66 66 CAPITOLO 6 CIC EQ DI THEVENIN E NOTON Esercizio 63 Dato il circuito di Fig 63, trovare il circuito equivalente di Norton tra i morsetti a e b Siano dati = Ω, 2 = 4 Ω, 3 = 2 Ω, E = 4 V e J = 3 A J 3 a E 2 b Figura 63: Circuito dell esercizio 439 esistenza equivalente Spegnendo i generatori di corrente e di tensione si ha ab = ( 2 ) 3 = ( Ω 4 Ω) 2 Ω = 28 Ω Corrente di corto circuito Il circuito diventa: J A 3 i 3 a E B 2 i cc b La corrente di corto circuito è data da i cc = i 3 J

67 67 Per calcolare la corrente i 3 conviene applicare il teorema di Millman tra i nodi A e B: E V AB = J V 3 da cui e quindi i 3 = V AB 3 = 057 V 2 Ω = 0285 A i cc = i 3 J = 0285 A 3 A = 3285 A Circuito equivalente di Norton a i cc ab b

68 68 CAPITOLO 6 CIC EQ DI THEVENIN E NOTON Esercizio 64 Dato il circuito di Fig 64, trovare i circuiti equivalenti di Thevenin e Norton tra i morsetti a e b Siano dati = Ω, 2 = 5 Ω, 3 = 2 Ω, 4 = 4 Ω e J = 8 A J 3 a b V 2 2 V 4 4 Figura 64: Circuito dell esercizio 448 esistenza equivalente Spegnendo il generatore di corrente J si ha eq = ( 3 ) ( 2 4 ) = ( Ω 2 Ω) (5 Ω 4 Ω) = 225 Ω Tensione a vuoto La tensione a vuoto V ab è data da V ab = V 2 V 4 inoltre Ω4 Ω V 2 = 2 J = 5 Ω 8 A Ω5 Ω2 Ω4 Ω = 20 V 2 Ω5 Ω V 4 = 4 J = 4 Ω 8 A Ω5 Ω2 Ω4 Ω = 6 V e quindi V ab = V 2 V 4 = 20 V 6 V = 4 V

69 69 J 3 i a b i 2 icc 2 4 Corrente di corto circuito Il circuito diventa così La corrente i cc è data da dove i cc = i i 2 i = J 3 3 = 8 A 2 Ω 2 Ω Ω 533 A i 2 = J = 8 A 4 Ω 4 Ω5 Ω 355 A da cui i cc = i i 2 = 533 A 355 A 78 A Circuito equivalente di Thevenin eq V ab a b Circuito equivalente di Norton

70 70 CAPITOLO 6 CIC EQ DI THEVENIN E NOTON a i eq cc b

71 Capitolo 7 Fasori Esercizio 7 Calcolare i numeri complessi risultanti dalle seguenti espressioni ed esprimerli in forma cartesiana (a) j4 j2 (b) 8 ( 20 ) (2 j)(3 j4) 0 5 j2 (c) 0 (8 50 )(5 j2) (d) 2 3 j4 5 j8 (e) 4 ( 0 ) j2 3 6 (f) ( 20 ) (a) j4 j2 = 06 j06 3 j4 j2 = 042 j297 j2 = 042 j497 (b) 8 ( 20 ) (2 j)(3 j4) j274 = 03 j07 = 5 j2 0 j5 = 07 j j07 = 04 j063 7

72 72 CAPITOLO 7 FASOI (c) 0(8 50 )(5 j2) = 0(54j63)(5 j2) = j307 = = 0925 j307 (d) 2 3 j4 = 2 09 j049 = 8 j049 5 j8 (e) 4 ( 0 ) j2 3 6 = 394 j069 j2 298 j03 = = 394 j j07 = 42 j39 (f) ( 20 ) 788 j j j = = 56 j j306 0 j58 = = 05 j224

73 73 Esercizio 72 Calcolare le sinusoidi corrispondenti a ciascuno dei seguenti fasori (a) V = 60 5, (b) V 2 = 6 j8, (c) I = 28e jπ/3, ω = rad/s ω = 40 rad/s ω = 377 rad/s (d) I 2 = 05 j2, ω = 000 rad/s (a) v = 60 cos(t 5 ) V (b) V 2 = 6 j8 = 0 53 v 2 = 0 cos(40t 53 ) V (c) I = 28e jπ/3 = 28 ( 60 ) i = 28 cos(377t 60 ) A (d) I 2 = 05 j2 = 3 ( 26 ) i 2 = 3 cos(000t 26 ) A

74 74 CAPITOLO 7 FASOI Esercizio 73 Calcolare le seguenti espressioni utilizzando i fasori (a) 3 cos(50t 0 ) 5 cos(50t 30 ) (b) 40 sin 30t 30 cos(30t 45 ) (c) 20 sin 00t 0 cos(00t 60 ) 5 sin(00t 20 ) (a) Passando ai fasori si ha ( 30 ) = 295j j25 = 38j302 = e quindi 3 cos(50t 0 ) 5 cos(50t 30 ) = 332 cos(50t 4 ) (b) Passando ai fasori si ha j4030 ( 45 ) = j4022 j22 = 22 j62 = 6478 ( 709 ) e quindi 40 sin 30t 30 cos(30t 45 ) = 6478 cos(30t 709 ) (c) Passando ai fasori si ha j ( 0 ) = j205j8667j47 = 944 ( 447 ) e quindi 20 sin 00t0 cos(00t60 ) 5 sin(00t 20 ) = 944 cos(00t 447 )

75 Capitolo 8 eti dinamiche Esercizio 8 Dato il circuito di Fig 8, trovare il valore di I 0 Siano dati Z = 4 Ω, Z 2 = j4 Ω, Z 3 = j8 Ω, Z 4 = j4 Ω, Z 5 = 4 Ω e J = 5 A J Z I Z 2 Z 3 Z 4 I 0 Z 5 Figura 8: Circuito dell esercizio 938 Con un primo partitore di corrente si calcola la corrente I : Z 2 I = J Z 2 Z 3 (Z 4 Z 5 ) = 5 A j4 Ω j4 Ω j8 Ω ( j4 Ω 4 Ω) = 2 j A e con un secondo partitore si trova la corrente I 0 : Z 4 I 0 = I = ( 2 j) A j4 Ω Z 4 Z 5 j4 Ω 4 Ω = 5 j05 A 75

76 76 CAPITOLO 8 ETI DINAMICHE Esercizio 82 Dato il circuito di Fig 82, trovare il valore di Z Siano dati Z = 2 Ω, Z 2 = j4 Ω, Z 3 = j8 Ω, E = 0 ( 90 ) V e V 0 = 4 0 V Z Z E Z 2 Z 3 V0 Figura 82: Circuito dell esercizio 944 Prima di procedere con i calcoli conviene trasformare il lato sinistro del circuito nel suo equivalente Thevenin: Z eq Z E eq Z 3 V0 con V eq = E Z 2 = 0 ( 90 j4 Ω ) V = ( 3 j) V Z Z 2 2 Ω j4 Ω Z eq = Z Z 2 = 2 Ω ( j4 Ω) = (2 j36) Ω A questo punto basta scrivere una relazione che leghi la tensione V 0 agli gli altri parametri del circuito: V 0 = V eq Z 3 Z eq Z Z 3 da cui Z = Z 3 V eq V 0 Z eq Z 3 = (08 j04) Ω

77 77 Esercizio 83 Dato il circuito di Fig 83, trovare il valore di Z eq Siano dati Z = (2j6) Ω, Z 2 = (2 j2) Ω, Z 3 = j0 Ω e Z 4 = (2 j4) Ω Z 2 Z Z 4 Z eq Z 3 Figura 83: Circuito dell esercizio 947 Le quattro impedenze sono tutte in parallelo tra di loro: Z eq = = (2 j) Ω Z Z 2 Z 3 Z 4

78 78 CAPITOLO 8 ETI DINAMICHE Esercizio 84 Dato il circuito di Fig 84, calcolare i valori di Z e di I Siano dati Z = 2 Ω, Z 2 = 4 Ω, Z 3 = j6 Ω, Z 4 = 3 Ω, Z 5 = j4 Ω ed E = 60 0 V E I Z Z Z 3 2 Z 4 Z 5 Z Figura 84: Circuito dell esercizio 949 Il valore di Z è dato da: Z = Z (Z 2 Z 3 ) (Z 4 Z 5 ) = 2 Ω(4 Ω j6 Ω) (3 Ωj4 Ω) = (683j094) Ω Il valore di I è invece dato da: I = E Z = 60 0 V = (867 j036) A (683 j094) Ω

79 79 Esercizio 85 Dato il circuito di Fig 85, calcolare lo scostamento di fase tra ingresso ed uscita, determinare se lo scostamento di fase è in anticipo o in ritardo (uscita rispetto ingresso), e calcolare il valore dell uscita se l ingresso V i vale 60 V Siano dati Z = 20 Ω, Z 2 = j0 Ω, Z 3 = 40 Ω, Z 4 = j30 Ω, Z 5 = 30 Ω e Z 6 = j60 Ω Z V i Z 2 Z 3 Z 4 Z 5 Z 6 Vo Figura 85: Circuito dell esercizio 96 Il circuito è un filtro passa-alto Attraverso una serie di partitori di tensione si può giungere ad una relazione che lega V o a V i : [ ] [ ] [ ] Z 2 (Z 3 Z 4 (Z 5 Z 6 )) Z 4 (Z 5 Z 6 ) Z 6 V o = V i Z Z 2 (Z 3 Z 4 (Z 5 Z 6 )) Z 3 Z 4 (Z 5 Z 6 ) Z 5 Z 6 sostituendo i valori numerici si ha: V o V i = (0206 j0328)(0249 j0367)(08 j04) = 08 j0098 Lo scostamento di fase è dato dall argomento del numero complesso appena calcolato: ( ) 0098 ϕ = arctan = Questo scostamento di fase è positivo, quindi è in anticipo Per calcolare il valore dell uscita con un ingresso di 60 V si utilizza la relazione calcolata in precedenza: V o = V i ( 08 j0098) = 60 V ( 08 j0098) = V

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

TRANSITORI BJT visto dal basso

TRANSITORI BJT visto dal basso TRANSITORI BJT visto dal basso Il transistore BJT viene indicato con il simbolo in alto a sinistra, mentre nella figura a destra abbiamo riportato la vista dal basso e laterale di un dispositivo reale.

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

MACCHINA SINCRONA TRIFASE

MACCHINA SINCRONA TRIFASE MACCHIA SICROA TRIFASE + + + + + + + + + + + + + + + + + + L avvolgimento di eccitazione, percorso dalla corrente continua i e, crea una f.m.m. al traferro e quindi un campo magnetico in modo tale che

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it PROGETTO ALIMENTATORE VARIABILE CON LM 37 di Adriano Gandolfo www.adrirobot.it L'integrato LM37 Questo integrato, che ha dimensioni identiche a quelle di un normale transistor di media potenza tipo TO.0,

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP Salve, questo circuito nasce dall'esigenza pratica di garantire continuità di funzionamento in caso di blackout (accidentale o provocato da malintenzionati)

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

negativa Forza repulsiva Forza attrattiva

negativa Forza repulsiva Forza attrattiva 1 Corrente elettrica 1.1 Carica elettrica Sebbene le cariche elettriche siano tra i costituenti fondamentali della materia, l elettricità in natura è un fenomeno relativamente raro, se si eccettuano i

Dettagli

Capitolo 4 Protezione dai contatti indiretti.

Capitolo 4 Protezione dai contatti indiretti. Capitolo 4 Protezione dai contatti indiretti. La protezione contro i contatti indiretti consiste nel prendere le misure intese a proteggere le persone contro i pericoli risultanti dal contatto con parti

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

APPUNTI DI MACCHINE ELETTRICHE versione 0.7

APPUNTI DI MACCHINE ELETTRICHE versione 0.7 APPUNTI DI MACCHINE ELETTRICHE versione 0.7 11 settembre 2007 2 Indice 1 ASPETTI GENERALI 7 1.1 Introduzione........................................ 7 1.2 Classificazione delle macchine elettriche........................

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze LICEO SCIENTIFICO DI STATO G. GALILEI PESCARA (PE) EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze Laboratorio di fisica on-line

Dettagli

CAPITOLO X PERICOLOSITA DELLA CORRENTE ELETTRICA E PROTEZIONE DELLE PERSONE CONTRO IL RISCHIO ELETTRICO

CAPITOLO X PERICOLOSITA DELLA CORRENTE ELETTRICA E PROTEZIONE DELLE PERSONE CONTRO IL RISCHIO ELETTRICO CAPITOLO X PERICOLOSITA DELLA CORRENTE ELETTRICA E PROTEZIONE DELLE PERSONE CONTRO IL RISCHIO ELETTRICO 1. Elementi di elettrofisiologia I fenomeni elettrici inerenti il corpo umano e l analisi degli effetti

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza.

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza. FILTRI PASSIVI Un filtro è un sistema dotato di ingresso e uscita in grado di operare una trasmissione selezionata di ciò che viene ad esso applicato. Un filtro elettronico seleziona i segnali in ingresso

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni Appunti di Misure Elettriche Richiami vari QUANTITÀ ELETTRICHE... 1 Corrente... 1 Tensione... 2 Resistenza... 3 Polarità... 3 Potenza... 4 CORRENTE ALTERNATA... 4 Generalità... 4 Valore efficace... 5 Valore

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA CONTATTI DIRETTI contatti con elementi attivi dell impianto elettrico che normalmente sono in tensione CONTATTI INDIRETTI contatti con masse che possono trovarsi

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Effetti fisiopatologici della corrente elettrica sul corpo umano

Effetti fisiopatologici della corrente elettrica sul corpo umano Effetti fisiopatologici della corrente elettrica sul corpo umano La vita è regolata a livello cerebrale, muscolare e biologico da impulsi di natura elettrica. Il cervello è collegato ai muscoli ed a tutti

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

CONOSCERE I TRANSISTOR

CONOSCERE I TRANSISTOR ONOSR I TRANSISTOR Il transistor è il nome di un semiconduttore utilizzato in elettronica per amplificare qualsiasi tipo di segnale elettrico, cioè dalla assa Frequenza alla Radio Frequenza. Per quanti

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori CONNESSIONI IN MORSETTIERA Morsettiere a 6 pioli per motori -monofase -monofase con condensatore di spunto -bifase -trifase a singola velocità -trifase dahlander -trifase bipolari -trifase tripolari forniti

Dettagli

IMPIANTI ELETTTRICI parte II

IMPIANTI ELETTTRICI parte II IMPIANTI ELETTTRICI parte II di Delucca Ing. Diego PROTEZIONE DI UN IMPIANTO DAI SOVRACCARICHI E DAI CORTO CIRCUITI Una corrente I che passa in un cavo di sezione S, di portata IZ è chiamata di sovracorrente

Dettagli