Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale"

Transcript

1 Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori Circuito RC

2 Corrente elettrica e cariche in movimento Con corrente elettrica si intende un moto ordinato di carica elettrica, attraverso un mezzo conduttore. La corrente è definita come carica per unità di tempo che attraversa una data superficie e si misura in Ampère (A) I = Q/ t, da cui 1 A = 1 C/s Nei conduttori normali (metalli) la corrente è dovuta al moto di elettroni, che sotto un campo elettrico esterno E acquistano una velocità media v d. Da notare che le cariche libere sono sempre in moto, ma in assenza di campo elettrico esterno il loro moto è disordinato e v d = 0).

3 Corrente elettrica II Se la corrente è generata da elettroni in moto, il verso della corrente è opposto alla velocità media degli elettroni! Esistono anche correnti di cariche positive, come ad esempio ioni positivi negli elettroliti (sali disciolti in acqua). E bene sapere che in certi conduttori la corrente si comporta come se fosse dovuta a cariche positive, dette lacune, anche se le cariche libere sono elettroni! Relazione fra velocità media v d e corrente: I = Q/ t da cui I = (nv d ta)/ t = nav d (n =cariche per unità di volume)

4 Corrente Continua e Alternata Corrente Continua (CC o DC, Direct Current): corrente il cui verso non varia nel tempo. E la corrente prodotta dalle batterie, quella che scorre nei dispositivi elettronici. Corrente Alternata (CA o AC, Alternating Current): il verso della corrente varia periodicamente nel tempo, con una legge I = I 0 sin(2πft), dove f è la frequenza. E la corrente prodotta dalle centrali elettriche, con frequenza f = 50 Hz in Europa, f = 60 Hz negli Stati Uniti. Nel seguito ci occuperemo solo di circuiti a corrente continua, alimentati da una batteria o generatore di differenza di potenziale (o più d una, o anche nessuna)

5 Legge di Ohm Perché ci sia un campo elettrico E che causa una corrente, ci deve essere una differenza di potenziale V fra i capi di un conduttore: V = V b V a = El Qual è la relazione fra differenza di potenziale V e corrente I? La risposta dipende dal materiale e dalle condizioni in cui è usato, ma per un grandissimo numero di casi vale la Legge di Ohm: V = IR dove R è un coefficiente (positivo) detto resistenza, che dipende dal materiale e dalla geometria del conduttore. La resistenza R si misura in V/A, ovvero Ohm (Ω): 1 Ω = 1 V/A. Notare che la legge di Ohm implica proporzionalità fra velocità e campo elettrico: v d E, conseguenza dei continui urti delle cariche con gli atomi del conduttore.

6 Resistori Si osserva (e si può dimostrare) che per una geometria come quella mostrata in figura, la resistenza vale R = ρl A, dove ρ dipende solo dalle caratteristiche del materiale. ρ può variare di parecchi ordini di grandezza fra i migliori e i peggiori conduttori. Un elemento tipico di circuito è il cosidetto resistore, o resistenza. Un codice a barre colorate ne indica il valore R e la sua tolleranza (10%, 5%,...). Un resistore è indicato dal simbolo a destra. Resistori tipicamente usati in circuiti elettronici variano da pochi Ω a migliaia di Ω (kiloohm, kω), fino al milione di Ω (megaohm, Ω).

7 Generatori di differenza di potenziale Perché una corrente continui a circolare in un circuito occorre la presenza di un generatore di differenza di potenziale, o d.d.p.: un dispositivo (una batteria) che tramite reazioni elettrochimiche fornisce energia alle cariche. Il circuito essenziale qui sopra: una resistenza connessa ad un generatore di d.d.p., è schematizzato qui a destra. Notate il simbolo convenzionale il generatore di d.d.p.: il lato marcato con + si trova ad un potenziale più alto di V (positivo) del lato

8 Analisi di un circuito elementare La corrente I scorre da dove il potenziale è alto a dove è basso......gli elettroni fanno il percorso inverso! ma non ce ne curiamo: conviene scegliere il senso di I come in figura. Anche i collegamenti fra i vari elementi di circuiti (i fili metallici) hanno una resistenza, ma di solito è trascurabile. Anche la batteria è un conduttore, ma ha una piccola resistenza interna, nulla solo per un generatore ideale; trascuriamo anche questa. Se nota, la resistenza interna può essere aggiunta al circuito in serie alla batteria. Se R è la resistenza, la corrente I = V/R, per la legge di Ohm. Il potenziale in a è V più alto che in c.

9 Potenza dissipata da una resistenza La parola resistenza suggerisce attrito, quindi energia dissipata. In effetti, se una carica Q attraversa una differenza di potenziale V nel tempo t, c è una perdita di energia potenziale V Q e quindi una potenza dissipata W : W = V Q t = IV. Tale energia è di fatto fornita dalla batteria e va a finire in energia termica (così funzionano le resistenze degli scalda-acqua elettrici). Sfruttando la legge di Ohm si può scrivere anche W = I 2 R = V 2 R. Data una resistenza R, la potenza dissipata in essa è quindi proporzionale al quadrato della corrente che vi scorre.

10 Resistenze in serie Due (o più) resistenze in serie equivalgono ad una singola resistenza il cui valore è la somma dei valori delle singole resistenze: La dimostrazione è immediata: basta osservare che per le correnti I 1 e I 2 attraverso R 1 e R 2 vale I 1 = I 2 = I e che V = V a V c = V 1 + V 2, dove V 1 = V a V b = IR 1 e V 2 = V b V c = IR 2, da cui V = I(R 1 +R 2 ). Esercizio: dimostrare che la potenza dissipata è data anche in questo caso dalla formula trovata in precedenza: W = I 2 R eq.

11 Leggi di Kirchhoff Come risolvere (ovvero determinare le correnti in tutti gli elementi) circuiti più complicati, come questo in figura, formato da più maglie (percorsi chiusi in un circuito elettrico)? Identifichiamo i nodi (punti nei quali convergono tre o più tratti di conduttore) e i rami (tratti di collegamento tra nodi). Leggi di Kirchhoff: 1. La somma delle correnti che entrano in un nodo è uguale alla somma delle correnti che escono dal nodo (legge dei nodi) 2. La somma algebrica delle cadute di potenziale su di un circuito chiuso in un giro completo è nulla (legge delle maglie)

12 Leggi di Kirchhoff (2) La legge dei nodi esprime la conservazione della carica elettrica: la carica non può accumularsi nel nodo, quanta ne entra tanta ne esce! Nell esempio in figura, un analogo idraulico, con I 1 assunta entrante, I 2 e I 3 uscenti. Non è necessario scegliere il verso giusto : se si trattano le equazioni in modo consistente con il verso scelto la direzione finale della corrente sarà determinata dal suo segno. La legge delle maglie esprime il carattere conservativo del campo elettrico: l integrale di linea del campo (ovvero la somma delle cadute di potenziale) su di un percorso chiuso deve essere nullo!

13 Leggi di Kirchhoff (3) La caduta di potenziale attraverso un elemento di circuito non è altro che la differenza di potenziale ai capi. Nelle figure a lato, V = V b V a Per le batterie, la caduta di potenziale è come in figura. Per le resistenze, dipende dalla scelta della direzione della corrente come in figura. Attenzione al segno corretto!

14 Resistenze in parallelo Una semplice applicazione della legge dei nodi ci dice che due resistenze R 1, R 2 in parallelo sono equivalenti ad una resistenza equivalente R eq data da 1 = 1 + 1, ovvero R eq = R 1R 2 R eq R 2 R 2 R 1 + R 2 Da I = I 1 +I 2 e V = I 1 R 1 = I 2 R 2 si trova I 1 = IR 2 /(R 1 +R 2 ) e I 2 = IR 1 /(R 1 +R 2 ). Esercizio 1: generalizzare il risultato a tre o più resistenze. Esercizio 2: dimostrare che anche in questo caso W = I 2 R eq.

15 Resistenze in serie e in parallelo In molti casi è possibile risolvere un circuito sfruttando le regole per le resistenze in serie e in parallelo, senza bisogno di considerare esplicitamente le leggi di Kirchhoff. Esempio in figura: determinazione della resistenza equivalente fra a e c per un sistema di resistenze in serie e in parallelo. Fate attenzione a non sommare resistenze, R i, con quantità come 1/R j che resistenze non sono!!!

16 Condensatori Un altro elemento di circuito molto comune è il condensatore, già visto nella lezione scorsa. Il condensatore è caratterizzato dalla seguente relazione fra potenziale e carica immagazzinata: V = Q C Il condensatore non conduce corrente, a meno che non sia guasto! Il condensatore accumula carica, di segno opposto sulle due armature Relazione fra carica e corrente: Q(t) = t I(t )dt, oppure dq dt = I. Le leggi di Kirchhoff rimangono valide, ma producono equazioni differenziali assai più complicate da risolvere.

17 Condensatori in parallelo Per due condensatori C 1 e C 2 in parallelo, abbiamo V 1 = V 2 e Q 1 = C 1 V, Q 2 = C 2 V, da cui Q = Q 1 + Q 2 = (C 1 + C 2 )V, ovvero C eq = C 1 + C 2.

18 Condensatori in serie In questo caso, abbiamo che Q 1 = Q 2 = Q da cui V 1 = Q/C 1, V 2 = Q/C 2, da cui V = V 1 + V 2 = Q(1/C 1 + 1/C 2 ), ovvero 1/C eq = 1/C 1 + 1/C 2. Notate come i condensatori in serie si comportino come le resistenze in parallelo, e viceversa.

19 Amperometri e Voltmetri Un amperometro misura la corrente che scorre in un circuito. Deve essere montato in serie. Per non perturbare il sistema sotto misura, l amperometro ideale dovrebbe avere resistenza interna nulla; di fatto gli amperometri reali hanno resistenza interna finita ma piccola. Un voltmetro misura la differenza di potenziale fra due punti di un circuito. Deve essere montato in parallelo. Per non perturbare il sistema sotto misura, il voltmetro ideale dovrebbe avere resistenza interna infinita; di fatto i voltmetri reali hanno una resistenza interna finita ma grande.

20 Circuito RC Per la legge di Kirchhoff: V q C Consideriamo il circuito RC qui accanto: quando si chiude l interruttore, una carica q(t) si accumula nel condensatore, una corrente I(t) = dq dt inizia a scorrere. q(t) RI = 0, ovvero C + Rdq(t) dt = V. La soluzione è somma di una soluzione particolare: q(t) = V C Q, e della soluzione generale dell equazione omogenea (cioè con V = 0) associata: q(t) = q 0 e t/(rc). Condizioni iniziali: q(t) = V C + q 0 = 0, da cui q(t) = Q ( 1 e t/(rc)), I(t) = Q RC e t/(rc).

21 Carica di un condensatore La carica presente sul condensatore tende al valore limite Q = CV, con un tempo caratteristico τ = RC (in s se R è in Ohm, C in Farad): q(t) = Q (1 e t/τ) La corrente parte da un valore iniziale I 0 = Q/(RC) = V/R (come in assenza del condensatore) per poi decadere esponenzialmente a 0 a mano a mano che il condensatore si carica: I(t) = V R e t/τ. Attenzione: nessuna corrente attraversa le lastre del condensatore!

22 Scarica di un condensatore Consideriamo ora un circuito come in figura. Cosa succede quando si chiude l interruttore? Per la legge di Kirchhoff: dq(t) dt + q(t) RC RI(t) + q(t) C = 0, che ha come soluzione: = 0, ovvero q(t) = Qe t/τ, τ = RC dove Q è la carica iniziale al tempo t = 0. Per la corrente: I(t) = I 0 e t/τ, I 0 = Q RC. Il segno negativo indica che la direzione della corrente durante il processo di scarica è opposta a quella durante il processo di carica.

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Corrente elettrica stazionaria

Corrente elettrica stazionaria Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZANINELLO LORIS Classe

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Conduzione e Corrente Elettrica

Conduzione e Corrente Elettrica Conduzione e Corrente Elettrica I conduttori (metallici) sono solidi costituiti da atomi disposti in maniera ordinata nello spazio, che hanno perso uno o più elettroni (negativi) che sono liberi dimuoversinello

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Corrente Elettrica. dq dt

Corrente Elettrica. dq dt Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

CORRENTE ELETTRICA. φ 1

CORRENTE ELETTRICA. φ 1 COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA NOME SIMBOLO ELETTRICO E FOTO CATEGORIA GRANDEZZA ELETTRICA [simbolo della grandezza elettrica] UNITA DI MISURA Accumulatore, batteria, pila E un in tempo; per specificare questa categoria si parla comunque

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistori, sorgenti elettriche, capacitori, induttori

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Q t CORRENTI ELETTRICHE

Q t CORRENTI ELETTRICHE CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I

Dettagli

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min?

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min? ESECIZIO Un filo è percorso dalla corrente di 3,0 A. (a) Quanta carica attraversa un punto del filo in 5,0 min? (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi.

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. I CIRCUITI ELETTRICI Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. Definiamo ramo un tratto di circuito senza diramazioni (tratto evidenziato in rosso nella

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1 Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com Grandezze elettriche Prof. Mario Angelo GIORDANO Intensità della corrente elettrica La corrente elettrica che fluisce lungo un mezzo conduttore è costituita da cariche elettriche; a seconda del tipo di

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

PROGRAMMA PREVENTIVO: Tecnologie Elettrico-Elettroniche e Applicazioni. Modulo n 1: STRUTTURA DELLA MATERIA E FENOMENI ELETTRICI CONTENUTI OBIETTIVI

PROGRAMMA PREVENTIVO: Tecnologie Elettrico-Elettroniche e Applicazioni. Modulo n 1: STRUTTURA DELLA MATERIA E FENOMENI ELETTRICI CONTENUTI OBIETTIVI ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI Via T. Serafin, 15-30014 CAVARZERE (VE) Tel. 0426/51151 - Fax 0426/310911 E-mail: ipsiamarconi@ipsiamarconi.it -

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

CONTROLLO IN TENSIONE DI LED

CONTROLLO IN TENSIONE DI LED Applicazioni Ver. 1.1 INTRODUZIONE CONTROLLO IN TENSIONE DI LED In questo documento vengono fornite delle informazioni circa la possibilità di pilotare diodi led tramite una sorgente in tensione. La trattazione

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

10.1 Corrente, densità di corrente e Legge di Ohm

10.1 Corrente, densità di corrente e Legge di Ohm Capitolo 10 Correnti elettriche 10.1 Corrente, densità di corrente e Legge di Ohm Esercizio 10.1.1 Un centro di calcolo è dotato di un UPS (Uninterruptible Power Supply) costituito da un insieme di 20

Dettagli

Esercizi svolti di Elettrotecnica

Esercizi svolti di Elettrotecnica Marco Gilli Dipartimento di Elettronica Politecnico di Torino Esercizi svolti di Elettrotecnica Politecnico di Torino TOINO Maggio 2003 Indice Leggi di Kirchhoff 5 2 Legge di Ohm e partitori 5 3 esistenze

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

Collegamento a terra degli impianti elettrici

Collegamento a terra degli impianti elettrici Collegamento a terra degli impianti elettrici E noto che il passaggio di corrente nel corpo umano provoca dei danni che possono essere irreversibili se il contatto dura troppo a lungo. Studi medici approfonditi

Dettagli

Flusso del campo magnetico

Flusso del campo magnetico Lezione 19 Flusso del campo magnetico Il flusso magnetico o flusso di B attraverso una superficie aperta delimitata da un contorno chiuso e dato da Se il contorno chiuso e un circuito, il flusso in questione

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

ELETTRONICA. L amplificatore Operazionale

ELETTRONICA. L amplificatore Operazionale ELETTRONICA L amplificatore Operazionale Amplificatore operazionale Un amplificatore operazionale è un amplificatore differenziale, accoppiato in continua e ad elevato guadagno (teoricamente infinito).

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

1. Esercizio. (a) la corrente che passa in ogni lampadina (b) la potenza dissipata in ogni lampadina. Soluzione.

1. Esercizio. (a) la corrente che passa in ogni lampadina (b) la potenza dissipata in ogni lampadina. Soluzione. 1. Esercizio Due lampadine hanno resistenza pari a R 1 = 45 Ω e R 2 = 75 Ω rispettivamente, e possono essere collegate in serie o in parallelo ad una batteria che fornisce una differenza di potenziale

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

20) Ricalcolare la resistenza ad una temperatura di 70 C.

20) Ricalcolare la resistenza ad una temperatura di 70 C. ISTITUTO TECNICO AERONAUTICO G.P. CHIRONI NUORO Anno Sc. 2010/2011 Docente: Fadda Andrea Antonio RACCOLTA DI TEST ED ESERCIZI CLASSE 3^ 1) Quali particelle compongono un atomo? A) elettroni, protoni, neutroni

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

RICHIAMI DI MISURE ELETTRICHE

RICHIAMI DI MISURE ELETTRICHE RICHIAMI DI MISURE ELETTRICHE PREMESSA STRUMENTI PER MISURE ELETTRICHE Come si è già avuto modo di comprendere ogni grandezza fisica ha bisogno, per essere quantificata, di un adeguato metro di misura.

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli