13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale"

Transcript

1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale D/A: convertitore digitale analogico P: processo/impianto sotto controllo TMP: temporizzatore y(t), u(t): variabili a tempo continuo y k, u k : variabili a tempo discreto (campionate) r k, e k : variabili a tempo discreto 13-1

2 CONVERTITORI A/D e D/A Campionatore (periodico) ideale: y k = y(kt ), k = 0, 1,... y o y(t) y 1 y 2 y 3 y 4 y 5 y 6 y 7 0 T 2T 3T 4T 5T 6T 7T t Mantenitore di ordine zero (zero order hold): u(t) = u k, kt t < (k + 1)T u o u(t) u 1 u 2 u 3 u 4 u 5 u 6 u 7 0 T 2T 3T 4T 5T 6T 7T t 13-2

3 CONTROLLORE DIGITALE Forma generale della legge di controllo: u k = Φ(u k 1, u k 2,..., e k, e k 1, e k 2,...), k = 0, 1, 2,... Legge di controllo lineare e stazionaria: u k = a 1 u k 1 a 2 u k b o e k + b 1 e k 1 + b 2 e k 2, k = 0, 1, 2,... T : tempo di campionamento del campionatore e del mantenitore : tempo di calcolo richiesto dalla legge di controllo Se nella legge di controllo u k non dipende da e k e l hardware garantisce che < T : Procedura per il calcolo di u k attivabile all istante (k 1)T ; Aggiornamento di u k esattamente all istante kt. 13-3

4 PROBLEMA DEL CAMPIONAMENTO x(t) x 2 x 3 x 1 x 4 x o 0 T 2T 3T 4T t Problema: ricostruzione univoca di x(t) da una sequenza x k Teorema del campionamento di Shannon Sia x(t) un segnale a banda limitata in [0, ˆω]. Può essere ricostruito dai campioni x k = x(kt ) se ˆω < ω N := π T dove la pulsazione ω N è nota come pulsazione di Nyquist. 13-4

5 RELAZIONI TC - TD Osservazione: f(t) = e at F (s) = 1 s + a f k = e akt z F (z) = z e at Risultato generale per funzioni razionali fratte: i poli della trasformata di Laplace si trasformano in poli della trasformata zeta attraverso la relazione z = e st Alcune considerazioni: La regione di stabilità asintotica è l interno del cerchio unitario Rette orizzontali in s corrispondono a rette radiali in z Rette verticali in s, Re[s] < 0, corrispondono a circonferenze interne al cerchio unitario Analogia fra s = 0 e z = 1 Il tempo di campionamento è un fattore di normalizzazione Rilettura teorema del campionamento 13-5

6 TRASFORMAZIONE LUOGHI A ζ E ω n COSTANTE Pole zero map Pole zero map Imag Axis 0 Imag Axis Real Axis Real Axis 13-6

7 RISPOSTA IN FREQUENZA (REGIME PERMANENTE) u k = A sin θk G(z) y (p) k = F (θ) sin(θk + ϕ(θ)) Teorema della risposta in frequenza F (θ) = A G(e jθ ) ; ϕ(θ) = arg G(e jθ ) Osservazioni: Per sistemi a dati campionati: θ = ωt Non esistono regole per il tracciamento di diagrammi asintotici di Bode I diagrammi di Bode, Nichols, Nyquist si ricavano numericamente 13-7

8 STABILITÀ SISTEMI A TEMPO DISCRETO (TD) u k, U(z) G(z) y k, Y (z) Condizione per la stabilità: Non esistono poli della funzione di trasferimento con modulo maggiore di uno e quelli con modulo unitario sono semplici. Condizione per la stabilità asintotica: Tutti poli della funzione di trasferimento hanno modulo minore di uno. Criteri di Stabilità per Sistemi TD P n (z) = z n + a n 1 z n a 1 z + a 0 Criterio di Jury (c. necessaria e sufficiente) Il polinomio è asintoticamente stabile se e solo se i primi elementi delle righe di indice dispari della Tabella di Jury sono tutti diversi da zero e hanno segno positivo. 13-8

9 SISTEMA TD A RETROAZIONE UNITARIA Y o (z) + L(z) Y (z) Stabilità del sistema TD ad anello chiuso Si può usare il criterio di Nyquist considerando la risposta in frequenza G(e jθ ) e il cerchio unitario come percorso di Nyquist Si può usare il luogo delle radici (il cerchio unitario è la regione di stabilità) Esempi L(z) = L(z) = K z 0.5 K (z 2)(z + 1) 13-9

10 PROBLEMA DEL CAMPIONAMENTO Scelta del passo di campionamento nei sistemi di controllo Relazione approssimata usata in pratica B 3 < ω N < 10B 3 Giustificazione: il limite inferiore è dovuto al Teorema di Shannon e al fatto che nei sistemi di controllo l informazione è contenuta nella banda B 3 il limite superiore deriva dal fatto che al diminuire del tempo di campionamento aumenta il costo dei convertitori ed è richiesta una maggiore velocità di calcolo al controllore digitale Osservazione: nei sistemi di controllo sono sempre presenti dei disturbi alle alte frequenze filtro anti-aliasing prima del campionatore Filtro anti-aliasing del primo ordine F (s) = s/ω N 13-10

11 PROGETTO CONTROLLO DIGITALE: INTRODUZIONE Tecniche basate sulla discretizzazione di un controllore analogico: determinato il controllore analogico e(t) C(s) u(t) farne una realizzazione digitale. e(t) A/D C(z) D/A u(t) Tecniche dirette a tempo discreto: discretizzato il processo u k D/A P (s) A/D y k progettare il controllore direttamente nel tempo discreto

12 TECNICHE DI DIGITALIZZAZIONE e(t) C (s) u(t) e(t) e k u k A/D C(z) D/A, 0 C(s) u(t) Problema: determinare il controllore C(z) in modo che C(jω) C (jω), ω [0, B 3 ] I metodi si basano sul determinare opportune trasformazioni dal piano s al piano z, ovvero z = T (s) C(z) = C (T 1 (z)) Due tecniche: tecniche di integrazione tecniche di matching dei poli e degli zeri (MPZ) 13-12

13 TECNICHE DI INTEGRAZIONE Integrando nell intervallo [kt, (k+1)t] le equazioni { ẋ(t) = Ax(t) + Be(t) u(t) = Cx(t) + De(t) = (k+1)t kt (k+1)t kt x(t)dt [(1 α)x k + αx k+1 ]T α [0, 1] e(t)dt [(1 α)e k + αe k+1 ]T α [0, 1] Metodo di Tustin (α = 1/2): s = T 1 (z) = 2 T z 1 z + 1 Interpretazione grafica formula di integrazione C(z) = C (T 1 (z)) x(t) x k+1 x k t kt (k + 1)T Im[z] 1 Re[z] Dominio del tempo Dominio della frequenza Osservazione: per piccoli valori del tempo di campionamento i poli si addensano nella zona del cerchio unitario vicino al punto z =

14 TECNICHE DI MATCHING Tecniche di matching dei poli e degli zeri (MPZ): i poli e gli zeri del sistema tempo continuo si trasformano secondo la mappa z = e st Procedura per progetto C(z): assegnata C (s) = K m i=1 (s r i) n i=1 (s p i) C(z) risulta C(z) = K d m i=1 (z er it ) n i=1 (z ep it ) dove K d è selezionato in modo da avere lo stesso guadagno in continua del controllore analogico, ovvero K d = K m i=1 ( r i) n i=1 ( p i) n i=1 (1 ep it ) m i=1 (1 er it ) 13-14

15 TECNICHE DI DIGITALIZZAZIONE Confronto fra le tecniche di digitalizzazione C (s) = 5 s + 5 Metodo ω N = 50 rad/s ω N = 10 rad/s 1 MPZ z z Tustin z + 1 z z z

16 TECNICHE DI DIGITALIZZAZIONE Processo P (s) = 1 s 2 Specifiche di controllo 1) yp 0 = 0.2 m o φ = 55o 2) B3 o = 0.8 rad/s ωo a = 0.5 rad/s Progetto controllore analogico C (s) = s s Digitalizzazione controllore Scelta del tempo di campionamento: B o 3 = 0.8 < ω c/2 = π/t < 10 B o 3 = 8 T = 1 s Utilizzo del metodo MPZ C(z) = 0.48 z 0.82 z u k = 0.135u k e k 0.394e k

17 TECNICHE DIRETTE u k u(t) y(t) D/A, 0 P (s) A/D P (z) y k y o k e k u k + C(z) P (z) y k Fase (I). Discretizzazione processo analogico Fase (II). Progetto controllore C(z): 1. Tecniche basate sull analisi dei sistemi a tempo discreto (per esempio, sintesi basate sul luogo delle radici) 2. Tecniche di sintesi diretta per sistemi a tempo discreto 13-17

18 TECNICHE DIRETTE Esempio di uso del luogo delle radici Processo continuo da controllare P (s) = 1 s 2 Specifiche di controllo (riportate sui poli dominanti) Discretizzazione processo analogico (T = 1) 1) yp 0 = 0.2 ζo = 0.5 2) B3 o = 0.8 rad/s ωo n = 0.6 rad/s Controllore selezionato Determinazione di h e a C(z) = h z a z P (z) = 1 2 z + 1 (z 1) 2 u k = he k hae k 1 s = ω o ne j(arcsin ζ+π/2) = j0.52 e s T = j C(e s T )P (e s T ) = 0 h = 0.606; a =

19 TECNICHE DIRETTE Assegnata la funzione di trasferimento desiderata ad anello chiuso W o (z), la sintesi diretta fornisce il controllore digitale C(z) = 1 P (z) W o (z) 1 W o (z) Elementi fondamentali della tecnica di sintesi diretta Realizzabilità del controllore: E(W 0 ) E(P ) Stabilità interna sistema di controllo (singolarità distinte) W 0 (p) = 1 per ogni polo p di P (z) tale che p 1 W 0 (q) = 0 per ogni zero q di P (z) tale che q 1 Scelta di W 0 (z) in modo da soddisfare alle specifiche 13-19

20 TECNICHE DIRETTE Processo continuo P (s) = 1 s Discretizzazione processo analogico: P (z) = T 1 z 1 Scelta della funzione di trasferimento desiderata W o (z) = 1 z Controllore C(z) = z 1 T 1 z 1 = 1 T 13-20

21 MATLAB: CONVERSIONI SISTEMA CONTINUO-DISCRETO SYSD = C2D(SYSC,TS,METHOD) converts the continuous-time LTI model SYSC to a discrete-time model SYSD with sample time TS. The string METHOD selects the discretization method among the following: zoh Zero-order hold on the inputs. foh Linear interpolation of inputs (triangle appx.) tustin Bilinear (Tustin) approximation. prewarp Tustin approximation with frequency prewarping. The critical frequency Wc is specified as fourth input by C2D(SYSC,TS, prewarp,wc). matched Matched pole-zero method (for SISO systems only). The default is zoh when METHOD is omitted

Realizzazione digitale di controllori analogici

Realizzazione digitale di controllori analogici Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Università degli Studi di Siena Sede di Arezzo Corso di Laurea triennale in Ingegneria dell Automazione Appunti del corso di Controllo Digitale A cura di Gianni Bianchini Indice Glossario, abbreviazioni

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Appunti del corso di Controllo Digitale

Appunti del corso di Controllo Digitale Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Corso di Laurea in Ingegneria Informatica e dell Informazione (SA) Appunti del corso di Controllo Digitale A cura di Gianni Bianchini

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Controlli Automatici (01AKS e 02FSQ) Politecnico di Torino Sistema in catena chiusa Il comando feedback genera il sistema LTI SYS con

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 Indice Capitolo 1 Introduzione... 1 Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 2.1 Alcuni semplici modelli.............................. 10 2.1.a Un sistema meccanico

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A)

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI ELABORAZIONE ANALOGICA ELABORAZIONE DIGITALE Vantaggi dell elaborazione

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale Università degli Studi di Cassino e del Lazio Meridionale Area Didattica di Ingegneria Corso di Laurea in Ingegneria Industriale Lezioni del Corso di Misure Industriali 1 Università degli Studi di Cassino

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

analisi di sistemi retroazionati (2)

analisi di sistemi retroazionati (2) : analisi di sistemi retroazionati (2) Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano lovera@elet.polimi.it Indice Piccolo guadagno Stabilita ingresso-uscita Guadagno L 2

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Gianmaria De Tommasi A.A. 2008/09

Gianmaria De Tommasi A.A. 2008/09 Controllo Gianmaria De Tommasi A.A. 2008/09 1 e discretizzazione del controllore 2 Controllore tempo-discreto e suo equivalente tempo- Nell ipotesi di segnale di errore e(t) a banda limitata, nell intervallo

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Controllo Digitale. Gianmaria De Tommasi 1. Ottobre 2012 Corsi AnsaldoBreda

Controllo Digitale. Gianmaria De Tommasi 1. Ottobre 2012 Corsi AnsaldoBreda Controllo Digitale Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Controllo Digitale Napoli - Ottobre 2012

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale STRUMENTAZIONE E MISURE ELETTRICHE Condizionamento ed acquisizione del segnale Prof. Salvatore Nuccio salvatore.nuccio@unipa.it, tel.: 0916615270 1 Circuito di condizionamento Un sensore/trasduttore (S/T)

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Regolatori PID. Corso di Controllo Digitale. a cura di Simona Onori s.onori@disp.uniroma2.it

Regolatori PID. Corso di Controllo Digitale. a cura di Simona Onori s.onori@disp.uniroma2.it Regolatori PID Corso di Controllo Digitale a cura di Simona Onori s.onori@disp.uniroma2.it Novembre 2005 Introduzione I regolatori lineari più usati in ambito industriale sono certamente i PID, o regolatori

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 0 Luglio 2007 - Parte A - (6 p.) - Illustra il metodo della formula di inversione per il calcolo dell antitrasformata

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 12 /09 /2015 Pag. 1 di 4. PROGRAMMAZIONE ANNUALE A.S. 2015 / 16 MANUTENZIONE e ASSISTENZA TECNICA

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 12 /09 /2015 Pag. 1 di 4. PROGRAMMAZIONE ANNUALE A.S. 2015 / 16 MANUTENZIONE e ASSISTENZA TECNICA ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 12 /09 /2015 Pag. 1 di 4 INDIRIZZO SCOLASTICO DISCIPLINA DOCENTE / I CLASSE / I MECCANICA e MECCATRONICA ELETTRONICA LOGISTICA e TRASPORTI LICEO SCIENTIFICO

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli