Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie"

Transcript

1 Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, Lezione 5-31 ottobre 2005

2 Outline 1 Il problema di Cauchy Il problema di Cauchy Stabilità del problema 2 Il metodo di Eulero Il metodo di Crank-Nicolson 3 Convergenza e stima dell errore Stabilità assoluta 4 Solutori Sistema di equazioni differenziali

3 Il problema di Cauchy Il problema di Cauchy Stabilità del problema Problema Sia I un intervallo di R, data f : I R R, trovare y : I R derivabile tale che { y (C) (t) = f (t, y(t)) t I y(t 0 ) = y 0. Teorema Se la funzione f è continua in I R e lipschitziana rispetto a y, cioè esiste L > 0 tale che f (t, y 1 ) f (t, y 2 ) L y 1 y 2 t I, y 1, y 2 R, allora esiste una ed una sola y : I R soluzione del problema di Cauchy.

4 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy senza soluzione Si consideri la funzione f : R 2 R data da { 1 se y 0, t R, f (t, y) = 1 se y < 0, t R, allora il problema di Cauchy { y (t) = f (t, y) per t R y(0) = 0 non ha soluzione.

5 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy con infinite soluzioni { y (t) = 2 y per t R y(0) = 0 Si verifica facilmente che le funzioni: y(t) = 0 t R; y(t) = t t t R sono due possibili soluzioni del problema di Cauchy considerato. Inoltre, per ogni a R si può trovare una soluzione di questo problema di Cauchy con la seguente espressione: { 0 se t < a y(t) = (t a) 2 se t a.

6 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy la cui soluzione non è definita su tutto R. { y (t) = 1 + y 2 per t R y(0) = 0 La funzione f : R 2 R è definita e continua per ogni (t, y) R 2, ma la soluzione y(t) = tan t è definita solo per t ] π/2, π/2[.

7 Dipendenza continua dai dati Il problema di Cauchy Stabilità del problema Consideriamo il seguente problema: { z (t) = f (t, z(t)) + δ(t) per t I z(t 0 ) = y 0 + δ 0. Definizione Sia I un insieme limitato. Il problema di Cauchy si dice stabile se per ogni perturbazione (δ 0, δ(t)) che soddisfa δ 0 < ε, max δ(t) < ε, t I con ε > 0, la soluzione z del problema perturbato verifica: C > 0 : max y(t) z(t) < Cε. t I

8 Dipendenza continua dai dati Il problema di Cauchy Stabilità del problema Proposizione Sia I = [0, T ], f : I R R continua su I R e sia L la costante di Lipschitz di f rispetto a y, cioè vale f (t, y 1 ) f (t, y 2 ) L y 1 y 2 (t, y 1 ), (t, y 2 ) I R. Allora il problema di Cauchy (C) è stabile e vale la seguente maggiorazione max y(t) z(t) elt 1 t I L max δ(t) + e LT δ 0. t I

9 Il metodo di Eulero esplicito Il metodo di Eulero Il metodo di Crank-Nicolson Consideriamo: una partizione dell intervallo I = [t 0, T ] in un numero finito di intervalli [t n, t n+1 ] per n = 0,..., N h 1; h n = t n+1 t n per n = 0,..., N h 1; h = max n h n passo di discretizzazione. In ogni punto t n si cerca un valore u n che approssimi il valore di y n = y(t n ). Metodo di Eulero in avanti u n+1 = u n + h n f (t n, u n ) n = 0, 1,..., N h 1.

10 Il metodo di Eulero Il metodo di Crank-Nicolson Derivazione del metodo di Eulero in avanti Il metodo di Eulero in avanti può essere ottenuto in modi diversi: sostituendo la derivata prima con il rapporto incrementale in avanti: y (t n ) = y(t n+1) y(t n ) h n ; mediante una formula di quadratura, in tutto l intervallo [t n, t n+1 ] si approssima la funzione con il valore che assume nel primo estremo: tn+1 y(t n+1 ) = y(t n ) + y (τ)dτ = y(t n ) + t n tn+1 t n f (τ, y(τ))dτ = y(t n ) + h n f (t n, y(t n )).

11 Il metodo di Eulero all indietro Il metodo di Eulero Il metodo di Crank-Nicolson Metodo di Eulero all indietro u n+1 = u n + h n f (t n+1, u n+1 ) n = 0, 1,..., N h 1. Il metodo di Eulero all indietro si ricava sostituendo alla derivata prima il rapporto incrementale all indietro: y (t n+1 ) = y(t n+1) y(t n ) h n.

12 I metodi di Eulero Il metodo di Eulero Il metodo di Crank-Nicolson Metodi espliciti Il metodo di Eulero in avanti si dice esplicito perché la soluzione u n+1 dipende solo dal valore precedentemente calcolato. Metodi impliciti Il metodo di Eulero all indietro viene detto implicito perché la soluzione u n+1 compare sia a sinistra che a destra tramite la funzione f. Quindi ad ogni passo temporale si deve risolvere un equazione non lineare.

13 Esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Esercizio Dato N R. Si consideri passo costante h = (T t 0 )/N. Scrivere una function che realizzi il metodo di Eulero esplicito a passo costante function [t,u]=eulero avanti(f,t0,t,y0,n) dove t, u sono i vettori che contengono i valori di t n e u n rispettivamente per n = 0,..., N. f è il nome di una function che contiene l espressione di f (t, y) in funzione di t, y. t0, T sono gli estremi dell intervallo I. y0 è il valore iniziale. N il numero dei passi da effettuare a passo costante.

14 Traccia dell esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Calcolare h. Calcolare i punti del vettore t con il comando linspace. Ciclo for n=1:n. Valuta la funzione f in (t n, u n ). Calcola valore della componente n+1 di u.

15 Esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, usando la function dell esercizio precedente, la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

16 Traccia dell esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Assegnare N=[ ]. Per ciascun valore di N (for i=1:length(n)): Calcolare la soluzione dell equazione differenziale con il comando [t,u]=eulero avanti(f,t0,t,y0,n). Valutare la soluzione esatta sol nel vettore t. Plottare la soluzione esatta e la soluzione discreta in un unico grafico. Calcolare l errore relativo: E(i)=norm(sol-u,inf)/norm(sol,inf). Plottare l errore in scala bilogaritmica con il comando: loglog(n,e).

17 Il metodo di Eulero Il metodo di Crank-Nicolson Il metodo di Crank-Nicolson (o dei trapezi) Il metodo di Crank-Nicolson o dei trapezi u n+1 = u n + h n 2 (f (t n, u n ) + f (t n+1, u n+1 )). Il metodo di Crank-Nicolson si ottiene usando la formula di quadratura dei trapezi: tn+1 y(t n+1 ) = y(t n ) + f (τ, y(τ))dτ t n = y(t n ) + h n 2 (f (t n, y(t n )) + f (t n+1, y(t n+1 ))). Il metodo di Crank-Nicolson è implicito

18 Convergenza e stima dell errore Stabilità assoluta Analisi della convergenza per il metodo di Eulero esplicito Consideriamo h n = h per n = 0,..., N h 1. Poniamo e n+1 = y(t n+1 ) u n+1 = y(t n+1 ) u n+1 + u n+1 u n+1 dove u n+1 = y(t n ) + hf (t n, y(t n )) y(t n+1 ) un+1 errore di discretizzazione; un+1 u n+1 termine di propagazione dell errore.

19 Errore di discretizzazione Convergenza e stima dell errore Stabilità assoluta Errore di troncamento locale τ n (h) = y(t n+1) u n+1 h = y(t n+1) y(t n ) h y (t n ). Se y è derivabile due volte, per il metodo di Eulero esplicito si ottiene, per un opportuno ξ n (t n, t n+1 ): y(t n+1 ) u n+1 = y(t n+1 ) y(t n ) hf (t n, y(t n )) Quindi τ n (h) = h 2 y (ξ n ). Definizione = y(t n+1 ) y(t n ) hy (t n ) = h2 2 y (ξ n ). Un metodo si dice consistente se lim h 0 τ n (h) = 0.

20 Propagazione dell errore Convergenza e stima dell errore Stabilità assoluta Per definizione vale: u n+1 u n+1 = y(t n ) + hf (t n, y(t n )) u n hf (t n, u n ) = y(t n ) u n + h(f (t n, y(t n )) f (t n, u n )) e usando la proprietà di Lipschitzianità della funzione f rispetto alla variabile y si ricava: u n+1 u n+1 y(t n ) u n + hl y(t n ) u n = (1 + hl) y(t n ) u n = (1 + hl) e n.

21 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Eulero esplicito Teorema Il metodo di Eulero esplicito è convergente del primo ordine in quanto: max y(t n ) u n el(t t0) 1 1 n N h L Mh 2. Dim Mettendo insieme le stime per l errore di discretizzazione e il termine di propagazione dell errore, si ottiene: e n+1 Mh2 2 + (1 + hl) e n essendo M = max t 0 t T f (t, y(t)). Con un po di calcoli si arriva alla maggiorazione finale: e n+1 el(t n+1 t 0 ) 1 L Mh 2.

22 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Eulero implicito Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, mediante il metodo di Eulero implicito (usare la function euleroimp.m), la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

23 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Crank-Nicolson Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, mediante il metodo di Crank-Nicolson, (usare la function cranknic.m) la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

24 Regione di assoluta stabilità Convergenza e stima dell errore Stabilità assoluta Problema modello { y (M) (t) = λy(t) t > 0 essendo λ y(0) = 1, un numero reale negativo. La soluzione è y(t) = e λt, quindi lim t y(t) = 0. Definizione Sia u n la soluzione ottenuta discretizzando il problema (M) con un metodo numerico. L insieme dei valori di hλ per cui lim n u n = 0 si chiama regione di assoluta stabilità del metodo numerico. Se la regione di assoluta stabilità contiene tutta la semiretta dei numeri reali negativi allora il metodo si dice incondizionatamente stabile.

25 Convergenza e stima dell errore Stabilità assoluta Regione di assoluta stabilità del metodo di Eulero esplicito Applichiamo il metodo di Eulero esplicito al problema (M): u n+1 = u n + hλu n u n+1 = (1 + hλ)u n = (1 + hλ) n+1. Per avere che lim n u n = 0 deve essere 1 + hλ < 1 ossia 0 < h < 2 λ. Il metodo di Eulero esplicito si dice condizionatamente assolutamente stabile.

26 Convergenza e stima dell errore Stabilità assoluta Regione di assoluta stabilità del metodo di Eulero implicito Applichiamo il metodo di Eulero implicito al problema (M): u n+1 = u n + hλu n+1 u n+1 = ( ) 1 1 n+1 1 hλ u n =. 1 hλ Poiché λ < 0 si ha 0 < 1/(1 hλ) < 1 per ogni h. Quindi il metodo di Eulero implicito si dice incondizionatamente assolutamente stabile.

27 Regione di assoluta stabilità Convergenza e stima dell errore Stabilità assoluta Esercizio Risolvere il problema modello y = λy, t [0, 20], y(0) = 1 per λ = 1, 5, 10, usando le function eulero avanti, euleroimp e cranknic, con N = 10, 20, 40, 50, 60, 90, 100, 110, 200, 400.

28 Solutori Sistema di equazioni differenziali Risolutori di equazioni differenziali ordinarie Problemi non stiff ode45 Metodo di Runge-Kutta (4,5). ode23 Metodo di Runge-Kutta (2,3). ode113 Metodo di Adams-Bashforth-Moulton PECE. Problemi stiff ode15s ode23s Altre opzioni Metodo multistep basato su una formula di tipo BDF. Metodo ad un passo. odeset Crea o modifica le OPTIONS. odeplot Grafico della soluzione. odephas2 Grafico del piano delle fasi in 2D. odephas3 Grafico del piano delle fasi in 3D.

29 Solutori Sistema di equazioni differenziali Come si risolve una equazione differenziale usando i solutori di Matlab Scrivere una function che accetta due argomenti t e y e restituisce il valore della funzione function dy=f(t,y) dy=(1-t*y-t^2*y^2)/t^2; F=inline( 1-t*y-t^2*y^2)/t^2, t, y ); Applicare un solutore mediante il comando [t,u] = ode23 ( F, [t0 T], y0) Usare il comando plot per vedere i risultati: plot(t,u)

30 Solutori Sistema di equazioni differenziali Come usare i solutori di ODE in Matlab6 Il comando più semplice per risolvere un equazione differenziale è: [t,u] = solver (odefun,tspan, y0) Input odefun function in cui si valuta f (t, y) tspan vettore contenente gli estremi di integrazione y0 dato iniziale (vettore colonna) bla Output t vettore colonna degli istanti t in cui viene calcolata la soluzione approssimata y array contenente la soluzione, le righe sono le componenti di y ad un certo istante t.

31 Argomenti addizionali Solutori Sistema di equazioni differenziali [t,u] = solver (odefun,tspan, y0,options,p1,p2,...) options struttura che contiene i parametri per cambiare le proprietà di default del solutore p1,p2,... parametri che si possono passare alla odefun. Per definire le options si usa il comando odeset. >> odeset fornisce i valori di default e il nome delle varibili che si possono definire:

32 odeset Solutori Sistema di equazioni differenziali Variabile default descrizione RelTol 1.e-3 tolleranza per l errore relativo AbsTol 1.e-6 tolleranza per l errore assoluto MaxStep tspan /10 valore massimo per il passo InitialStep calcolato passo iniziale scelto OutputFcn Function controlla l output OutputFcn odeplot grafico in funzione di t OutputFcn odephas2 plot del piano delle fasi OutputFcn odephas3 plot del piano delle fasi in 3D OutputSel vettore di interi specifica le componenti del vettore soluzione che si vogliono come output

33 Sistema di equazioni differenziali Solutori Sistema di equazioni differenziali Problema Siano a, b, c e d numeri reali positivi. Cercare y 1 (t) e y 2 (t) tali che risolvano nell intervallo [0, 7] il seguente sistema di equazioni differenziali ordinarie: Porre: a = 1, b = 1, c = 2, d = 3 α = 0.5, 0.7, 1.4, 2.6 β = 1 y 1 = (a by 2)y 1 y 2 = ( c + dy 1)y 2 y 1 = α y 2 = β.

34 Come si risolve il sistema Solutori Sistema di equazioni differenziali Scrivere una function che accetta due argomenti t e y e restituisce il valore della funzione a valori vettoriali function dy=lotkavolterra(t,y) a=1; b=1; c=2; d=3; dy=[(a-b*y(2))*y(1); (-c+d*y(1))*y(2)]; Applicare un solutore mediante il comando [t,u] = ode45 ( lotkavolterra, [0 7], [α;β]) Usare il comando plot per vedere i risultati: plot(t,u) oppure plot(u(:,1),u(:,2)) Per ottenere il piano delle fasi si può procedere come segue: options=odeset( OutputFcn, odephas2 ) [t,u]=ode45( lotkavolterra,[0 7],[α;β],options)

35 Equazione differenziale di ordine n Solutori Sistema di equazioni differenziali Problema Sia f : I R n R. Consideriamo l equazione differenziale: y (n) (t) = f (t, y(t), y (t),..., y (n 1) (t)) y(t 0 ) = α 1 y (t 0 ) = α 2... y (n 1) (t 0 ) = α n t I

36 Equazione differenziale di ordine n Solutori Sistema di equazioni differenziali Il problema di Cauchy per l equazione differenziale di ordine n è equivalente ad un sistema differenziale del primo ordine. Si pone y 1 (t) = y(t), y 2 (t) = y (t),..., y n (t) = y (n 1) (t). Osserviamo che y 2 (t) = y (t) = y 1(t),... y n (t) = y (n 1) (t) = y n 1(t).

37 Solutori Sistema di equazioni differenziali Quindi si ottiene il seguente sistema di equazioni differenziali y 1 (t) = y 2(t) y 2 (t) = y 3(t)... y n(t) = f (t, y 1 (t), y 2 (t),..., y n (t)) y 1 (t 0 ) = α 1 y 2 (t 0 ) = α 2... y n (t 0 ) = α n

38 Esempio: equazione di van der Pol Solutori Sistema di equazioni differenziali y µ(1 y 2 )y + y = 0 dove µ > 0. L equazione si riduce al seguente sistema: { y 1 (t) = y 2 (t) y 2 (t) = µ(1 y 2 1 )y 2 y 1 Posto µ = 1, si costruisce la function che definisce il sistema: function dy = vdp(t,y) dy = [y(2); (1-y(1)^2)*y(2)-y(1)]; Porre µ = 500 e risolvere con ode45. [t,u]=ode45( vdp,[0 20],[2;0]) Usare ode15s per risolvere l equazione nell intervallo [0, 3000]. [t,u]=ode15s( vdp,[0 3000],[2;0]);

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Metodi Runge-Kutta In alcuni esempi precedenti sono stati presentati vari metodi monostep. Esiste

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

Il problema di Cauchy

Il problema di Cauchy Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t)

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

Corso di Analisi Numerica - AN2. Parte 3: metodi alle differenze. per Equazioni Differenziali Ordinarie. Roberto Ferretti

Corso di Analisi Numerica - AN2. Parte 3: metodi alle differenze. per Equazioni Differenziali Ordinarie. Roberto Ferretti Corso di Analisi Numerica - AN2 Parte 3: metodi alle differenze per Equazioni Differenziali Ordinarie Roberto Ferretti Qualche richiamo analitico Filosofia generale dei metodi alle differenze: i metodi

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Introduzione al Simulink

Introduzione al Simulink Introduzione al Simulink pag. 1 L ambiente Simulink Simulink è un ambiente grafico per la simulazione di sistemi complessi Simulink è composto da una libreria di blocchi che descrivono elementi statici

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

PDE Toolbox in Matlab

PDE Toolbox in Matlab PDE Toolbox in Matlab Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 12 Indice 1 Uso di PDE Toolbox con interfaccia grafica Problema e definizioni 2 Esercizi 3 Comandi

Dettagli

APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie

APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie MARCO LIMONGI Istituto Nazionale di Astrofisica Osservatorio Astronomico di Roma 1. EQUAZIONI

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

Analisi Matematica I Palagachev

Analisi Matematica I Palagachev Analisi Matematica I Palagachev Numeri complessi Risolvere nel campo complesso C la seguente equazione: ) 3 z i = i z + 2 Risolvere nel campo complesso C la seguente equazione: z 2 + 2iz = 2 3 Risolvere

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

4 Risoluzione del modello di Lotka-Volterra

4 Risoluzione del modello di Lotka-Volterra praticata, il parametro ε è positivo e quindi si ha un numero di prede maggiore e un numero di predatori minore rispetto al caso senza pesca. 4 Risoluzione del modello di Lotka-Volterra Il sistema di Lotka-Volterra

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica Nome ACCILI LORENZO Fermo, 16 luglio 2014 1. Metodo di Eulero esplicito (descrizione, ordine, regione di stabilità). 2. Formula dei trapezi semplice e composita. Stima dell errore. 1 Nome BASILI DAVIDE

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Procedure di calcolo implicite ed esplicite

Procedure di calcolo implicite ed esplicite Procedure di calcolo implicite ed esplicite Il problema della modellazione dell impatto tra corpi solidi a medie e alte velocità. La simulazione dell impatto tra corpi solidi in caso di urti a media velocità,

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Equazione di Keplero (eqz. nonlineari).

Equazione di Keplero (eqz. nonlineari). Equazione di Keplero (eqz. nonlineari). Risolvere col metodo di Newton, col metodo di bisezione e di punto fisso l equazione di Keplero: E = M + e sin(e) dove e è l eccentricità del pianeta, M l anomalia

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Dispensa per il corso di Analisi Numerica Dipartimento di Matematica e Fisica, Università Roma Tre 1999 2013 1 ESONERO DI ANALISI NUMERICA (AN2) 16.04.99

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica

Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica Capitolo 9 Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica 9.1 Introduzione La soluzione grafica di problemi di ottimizzazione che abbiamo visto nel Capitolo 4 può essere

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Grafici tridimensionali

Grafici tridimensionali MatLab Lezione 3 Grafici tridimensionali Creazione di un Grafico 3D (1/4) Si supponga di voler tracciare il grafico della funzione nell intervallo x = [0,5]; y=[0,5] z = e -(x+y)/2 sin(3x) sin(3y) Si può

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33 Docente: Laura Palagi Homework in Ricerca Operativa gruppo n 33 Turni del Personale Martina Conti

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Miglioramento dell analisi di immagine in GRASS tramite segmentazione

Miglioramento dell analisi di immagine in GRASS tramite segmentazione Segmentazione in GRASS Miglioramento dell analisi di immagine in GRASS tramite segmentazione Alfonso Vitti e Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Italy FOSS4G-it

Dettagli

Lezione2 Ricerca di zeri. http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali. Fernando Palombo

Lezione2 Ricerca di zeri. http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali. Fernando Palombo Lezione2 Ricerca di zeri http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Aritmetica Finita nel Computer Nel computer l aritmetica è a precisione finita cioè

Dettagli

Metodi V 0 -stabili per la risoluzione di equazioni integrali. di Volterra di seconda specie. Concetta Chiapparelli

Metodi V 0 -stabili per la risoluzione di equazioni integrali. di Volterra di seconda specie. Concetta Chiapparelli DOTTORATO DI RICERCA in SCIENZE COMPUTAZIONALI ED INFORMATICHE Ciclo XXIII Consorzio tra Università di Catania, Università di Napoli Federico II, Seconda Università di Napoli, Università di Palermo, Università

Dettagli

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net LEZIONE DI MATLAB 2.0 Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net Cos è Matlab Il programma MATLAB si è imposto in ambiente ingegneristico come strumento per la simulazione e l'analisi dei sistemi

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Scelta intertemporale. Lezione 9. Valori presenti e futuri. Valore futuro

Scelta intertemporale. Lezione 9. Valori presenti e futuri. Valore futuro Scelta Lezione 9 Scelta Di solito il reddito arriva ad intervalli, per esempio lo stipendio mensile. Quindi si pone il problema di decidere se (e quanto) risparmiare in un periodo per consumare più tardi.

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli