Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1"

Transcript

1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/ Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13. (per casa) 1 c) h() = (per casa). Determinare (ove possibile) f g e g f per le seguenti funzioni: a) f() = e g() = 4 1. b) f() = 3 e g() = Determinare l inversa (e il relativo dominio) delle seguenti funzioni: a) f() = ( 3 1) 1 3. b) g() = ln( + e 3 ). 4. (per casa) Sia f la funzione con dominio [0, 5] definita da f() = { 5 se se 3 < 5 Dire se la funzione è invertibile e, in caso di risposta affermativa, determinarne l inversa. 5. (per casa) Tracciare il grafico della funzione f() = ( ) 1 6. In un azienda si sostengono costi di produzione in dipendenza della quantità q di bene prodotto pari a C(q) = q e si vende il prodotto al prezzo unitario p = 15. a) Scrivere la funzione ricavo R(q). b) Scrivere la funzione profitto Π(q) e rappresentarne il grafico. c) Calcolare il punto q di intersezione tra tale grafico e l asse delle ascisse. Qual è il significato economico di tale punto? 7. (per casa) La spesa C di una famiglia in beni di consumo è collegata al reddito Y della famiglia stessa nel seguente modo: quando il reddito è di 1000, la spesa per beni di consumo è 900e quando il reddito viene incrementato di 100, la spesa per beni di consumo aumenta di 80. Esprimere la spesa in funzione del reddito, supponendo la relazione lineare.

2 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 Esercitazione : 01/10/ Calcolare i seguenti limiti a) lim b) lim 0 + e 1 c) lim d) lim Date f 1 () =, f () = e f 3 () =. Calcolare a) lim + f 1 (); lim + f (); lim + f 3 (). b) lim + f 1 () + f (); lim + f 1 () f (); lim + f 1 () f 3 (). c) lim + f 1 () f (). 3. Per quali valori del parametro a reale, la seguente funzione f è continua su tutto il suo dominio? { a 1 se 1 f() = se > 1 4. [Appello del 3 Luglio 010]. Data la funzione e se 0 f() = + 1 se 0 < 3 + se > 3 a) Studiare la continuità di f. b) Studiare la derivabilità di f. 5. Tracciare il grafico della funzione f() = ( ) 1. Stabilire D f, R f (immagine di f). Discutere continuità ed derivabilità di f. 6. [Appello del 7 Novembre 009]. Stabilire se l equazione 4 ln(1 + ) = 4 1 ammette almeno una radice in [0, 1]. Eventualmente, dire se la radice è unica su [0, 1]. Suggerimento: Si veda il Teorema dei valori intermedi. Pag. 73 del libro di testo.

3 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 3 Esercitazione 3: 04/10/ Regole di derivazione di funzioni esponenziali: Derivare le seguenti funzioni: f 1 () = ; f () = 3 ; f 3 () = e 1 ; f 4 () = e 3.. Regole di derivazione di funzioni logaritmiche: ( ) Derivare le seguenti funzioni: g 1 () = ln( 1+e + 1); g () = ln Regole di derivazione di somma/prodotto/rapporto: Derivare la seguente funzione: f() = 4. Regole di derivazione di funzione composta: e. a) Calcolare la derivata di F () = f(g()) in 0 = con f() = 3 e g() =. b) Derivare h() = [Appello del 19 Gennaio 010]. Data f() = 3 +. a) Determinare intervalli in cui f e decrescente. b) Scrivere l equazione della retta tangente al grafico di f in = Data f() = 3, calcolare il tasso di variazione medio di f su [0, 1 3 ]. Calcolare anche il tasso di variazione istantaneo (assoluto) di f in a = 1 3. (per casa) Data g() = e 3, calcolare il tasso di variazione medio di g su [0, 8]. Calcolare anche il tasso di variazione istantaneo (assoluto) di g in a = [Appello del 19 Gennaio 010]. a) Mostrare che 1 + e, per ogni 0. b) Mostrare che (1 + )(1 + y) e +y, per ogni, y 0. Esercizi per casa: 1,,3,4,5,6,7,8,9 pag ,1 pag. 1

4 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 4 Esercitazione 4: 15/10/ Risoluzione dei seguenti limiti mediante la regola di de l Hopital: a. lim 0 e 1 ; ln(+1) b. lim 0 ; [per casa] c. lim ; d. lim + [ln()].. Confronto di infiniti: a. lim r +, con r > 0 e c > 1. c [ ] Soluzione mediante raccoglimento della potenza r: lim r r. + c = lim + c r [ln()] b. lim r +, con r > 0 e s > 0. s [ ] [ln()] Soluzione mediante raccoglimento della potenza r: lim r ln() r. + = lim s + r s 3. Altri limiti a. lim 0 + e 1. Risoluzione mediante passaggio a forma [ 0 0 ]: lim 0 + e 1 = lim e Proposto uso di de l Hopital oppure sostituzione y = 1/ e successivo confronto di infiniti. b. lim 0 + ln(). Risoluzione mediante passaggio a forma [ ]: lim 0 + ln() = lim ln() c. [Per casa... difficile!] lim + 3 ( ). [Soluzione: 0] 4. [Appello del 7 Novembre 009]. Data la funzione f() = e. a) Calcolare f () e f (). Dire dove f è crescente. b) Trovare il minimo di f in [0, ] e dedurre il segno di f in tale intervallo. 5. Calcolare punti di massimo/minimo locali e globali per le seguenti funzioni: a) f() = ( + 1)e ; b) g() = ln + 1. [per casa] { + 3 se 3 0 c) h() = + 4 se 0 < (attenzione! h() è continua in = 0? quanto vale h(0)? h ammette massimo?)

5 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/ [Per casa] Considerare f, g e h definite nell Esercizio 5. Completare lo studio delle tre funzioni proposte e traccirane il grafico, ovvero: - Calcolare dominio e limiti ai bordi del dominio; - Studiare segno, monotonia e concavità; - Esibire punti di massimo/minimo e punti di flesso. 7. [Appello del 6 Febbraio 010]. Sia q(p) = 100 4p la domanda di un prodotto in funzione del prezzo unitario p. Siano R(q) = 1 4 q(100 q ) e C(q) = q rispettivamente il ricavo e il costo come funzioni della domanda. a) Determinate la funzione profitto π in funzione del prezzo p. b) Calcolare π (p) e studiarne il segno. Per quale prezzo p si ha un profitto massimo? Qual è il massimo profitto? 8. Data f() con la seguente proprietà: - f() ha un solo punto critico = a (dove a punto interno al dominio di f); - f () 0 per a e f () 0 per a. Questo ci dice che a è punto di massimo locale. Dire se: E sicuramente vero che è punto di massimo globale per f? Soluzione: La risposta è NO. Come controesempio studiare il grafico di f() = 1 e. Questa funzione ammette un solo punto critico = 1 dove la derivata prima si annulla; inoltre f () 0 per e f () 0 per. Si può dimostrare (ad esempio studiando i limiti al bordo del dominio) che = 1 è massimo locale ma non massimo globale. (Perché? quale ipotesi su f, necessaria per l utilizzo di questo criterio di ottimalità, viene a mancare in questo esempio?) OSSERVAZIONE: Attenzione quando utilizzate criteri per stabilire se punti ma/min locali sono anche globali.

6 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 6 Esercitazione 5: 5/10/ Ancora su ottimizzazione in una variabile [Appello del 6 Febbraio 010]. Sia q(p) = 100 4p la domanda di un prodotto in funzione del prezzo unitario p. Siano R(q) = 1q(100 4 q ) e C(q) = q rispettivamente il ricavo e il costo come funzioni della domanda. a) Determinate la funzione profitto π in funzione del prezzo p. b) Calcolare π (p) e studiarne il segno. Per quale prezzo p si ha un profitto massimo? Qual è il massimo profitto? Integrazione. Metodo risolutivo di intergali per parti. (par 9.5 SH) a. Calcolare l integrale d. [Sol: + 4] 3 3 b. Calcolare l integrale 0 e d. [Sol: (e 1)] c. [Per casa.] Calcolare l integrale e d. [Sol: ( + 1)e + C] 3. Metodo risolutivo di intergali per sostituzione o cambio di variabile. (par 9.6 SH) Valgono le seguenti relazioni f(g()) g ()d = f(u)du; dove u = g() (du = g ()d); b f(g()) a g ()d = β f(u)du; dove u = g() (du = α g ()d) e α = g(a), β = g(b). a. Calcolare l integrale b. Calcolare l integrale 3 ( 3 + 1) d. [Sol: (3 +3) + C] ln 0 e 3 e 3 +1 c. [Per casa.] Calcolare l integrale ln 9 ln d. [Sol: ] 3 ( + 1) d. [Sol: ( +1) + C] 4 4. Considerare le funzioni g() = ( )(ln() + 1) e G() = 1 g(t)dt. a) Studiare il segno di G() limitandosi all intervallo [1, ] e senza calcolare l integrale. (suggerimento: che relazione c tra G e g e qual è il segno di g su [1, ]?) Soluzione: G() 0 su [1, ] b) Provare che F () = G() monotona crescente sull intervallo [1, ]. 5. [Per casa.] [Appello del 19 Gennaio 010.] Determinate il valore del parametro a reale in modo che risulti 4 (y 3 + ay ) dy = 10. Esercizi consigliati per casa: 1 e 13 pg 331-1,,3,4 pg 341-1, pg 35-1,,3 pg 355

7 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 7 Esercitazione 6: 05/10/010 Ancora su integrazione: 1. [Appello del 19 Gennaio 010.] Determinate il valore del parametro a reale in modo che risulti 4 (y 3 + ay ) dy = 10.. a) Determinare la forma generale di una funzione f() se la sua derivata seconda ha la forma f () = 3 + e. [Sol: e C + D, con C, D R] 0 b) Dire poi qual è f() se inoltre f(0) = e f (0) = 1. [Sol: e ] 0 3. [Per casa.] Determinare la funzione f() nel caso in cui f () = a + b con a, b costanti reali e inoltre i) f (1) = 4; ii) f (1) = 9; iii) 1 1 f()d = 6. [Sol: f() = ] 4. Data f() = (e e ). a) Calcolare l integrale definito di f() sull intervallo [ 1, 1]. b) Calcolare l area A delimitata dal grafico di f(), dall asse e dalle rette di equazione = 1 e = [Appello del 7 Novembre 009.] Calcolare l integrale 0 e 1 e d. Matematica Finanziaria: 1. [Appello del 3 Luglio 010.] Vi vengono offerte le seguenti alternative: a. ricevere la somma Euro, tra 10 anni; b. ricevere Euro ogni anno per 5 anni, a partire da subito; c. ricevere 5000 Euro subito e la stessa somma tra 5 anni. Supponendo che il tasso di interesse annuo sia del 5%, quale alternativa preferite (in assenza di inflazione)?. a) Dato il tasso annuale effettivo i = 8% (capitalizzazione composta), calcolare i rispettivi tassi (equivalenti) su base semestrale e mensile. [Sol: Usando la formula () in Appendice si trova i 3, 9%; i 1 0, 64%] b) [Per casa.] Dato il tasso semestrale i = 3, 4% (capitalizzazione composta), calcolare il tasso trimestrale equivalente. [Sol: Usando due volte la formula () in Appendice si trova i 4 1, 69%.]

8 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/ Se devo accendere un prestito mi conviene: 1) contratto con tasso annuo nominale del 1.5% e interesse pagato annualmente; ) contratto con tasso annuo nominale del 0.0% e interesse pagato trimestralmente?.[sol: Il primo. Infatti usando la formula (3) in Appendice si verifica che il tasso effettivo in 1) è 1.5% e in ) è 1.55%. Trattandosi di un debito, mi conviene il tasso minore.] 4. Posso scegliere come estinguere un debito di Euro in tre modi diversi. Supponiamo che il tasso annuo effettivo sia fissato al 5% in tutti i casi. 1) Pago una rata di 1000 Euro tra 5 anni. ) Pago 4 rate da 400 Euro ogni sei mesi a partire da subito. 3) Pago 4000 Euro subito e 600 Euro tra tre anni. Sol: Calcolando il valore attuale netto dei tre finanziamenti si trova: V AN 1 = ; 1,05 5 V AN = ; 1, ,05 1 1, V AN 3 = ,05 3 Il secondo mi produce un valore attuale netto maggiore e dunque è preferibile. 5. Quanto ho versato 5 anni fa per avere oggi Euro se il tasso annuo nominale pagato trimestralmente è 10%? [Sol ,55 Euro]. 6. Una carta di credito prevede un tasso (di debito) effettivo mensile del % sul saldo debitorio. Qual è il tasso annuo effettivo? E il tasso nominale pagato mensilmente? [Sol. Tasso effettivo è 6, 8% e TAN (pagato mensilmente) è 4%. Notare che TAN è inferiore!] Appendice alla Esercitazione 6: Tassi equivalenti in capitalizzazione composta Supponiamo di lavorare in capitalizzazione composta e di conoscere il tasso annuale effetivo i. Possiamo definire un tasso equivalente riferito a un periodo diverso dall anno. In particolare è comodo definire tassi di periodo riferiti a porzioni di anno come semestri, trimestri, mesi,... Definiamo dunque i n il tasso riferito a un periodo di durata 1/n di anno. Ad esempio: i è riferito a un semestre (1/ anno); i 4 è riferito a un trimestre (1/4 di anno) e così via. Che relazione c è tra i e i n? Dato che i tassi sono equivalenti, le quantità di denaro capitalizzate (o scontate) non variano a seconda del tasso che voglio considerare. Vale allora la seguente relazione fondamentale: (1 + i) = (1 + i n ) n (1) dove sto considerando un investimento su un capitale unitario (1 Euro) per un periodo di un anno 1. Il termine a sinistra dell equazione (1) mi fornisce il montante calcolato secondo la usuale capitalizzazione in base annua, il termine a destra mi dice invece qual è il montante calcolato 1 Se più in generale considerassi un capitale non unitario C e un periodo di durata dell operazione finanziaria generico t, la validità dell equazione (1) non sarebbe compromessa.

9 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 9 secondo la capitalizzazione in termini di tempi espressi come 1/n di anno. L elevazione alla potenza n-sima riflette proprio il fatto che su base 1/n investo il denaro per n periodi (cioè un anno!). Utilizzando l equazione (1) posso ora scrivere i in funzione di i n o viceversa. Ottengo le relazioni { i = (1 + in ) n 1 () i n = (1 + i) 1 n 1 Supponiamo ora che gli interessi siano capitalizzati n volte l anno e che il tasso di periodo vigente sia i n. Viene spesso utilizzato come indicatore annuale sintetico il cosiddetto tasso annuo nominale capitalizzato n volte l anno. Esso è chiamato r e è definito come r = i n n. Il tasso r ha il vantaggio di essere facilmente calcolabile una volta noto i n. Notare che r non è il tasso effettivo con cui si capitalizza! Infatti dall equazione () si ricava che il tasso effettivo in funzione del tasso nominale si esprime come ( i = 1 + n) r n 1. (3) La formula (3) qua sopra corrisponde alla formula () a pagina 375 del libro. Vedere gli esercizi 3, 5 e 6 dell Esercitazione 6 per alcuni esempi di calcolo. Oppure gli esercizi 5, 8 pg. 376 del libro.

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : f x =x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12 Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE Esercitazione Finanza Aziendale n 1 : CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE 1 Capitalizzazione: QUANTO VALE DOMANI IL CAPITALE CHE INVESTO OGGI? (determinazione del Montante) Attualizzazione: QUANTO

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012 ESERCIZI PER LE VACANZE CLASSE ^A anno scolastico 011-01 PROBLEMI SULLA RETTA: 1. Scrivi l equazione della retta passante per i punti A(-;-) e B(6;10). Determina la distanza del punto C(-1;) da tale retta.

Dettagli

7 - Esercitazione sulle derivate

7 - Esercitazione sulle derivate 7 - Esercitazione sulle derivate Luigi Starace gennaio 0 Indice Dimostrare il teorema 5.5.3.a................................................b............................................... Dimostrazioni.a

Dettagli

Alcuni probelmi risolti

Alcuni probelmi risolti Alcuni probelmi risolti Esercizio 1: Svolgere l esempio 3 a p.115 del testo. Esercizio (Consideriamo nuovamente i dati dell esempio 3 p. 115 del testo.) Il prezzo P unitario ottenuto da un impresa nella

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

I.T.C. Abba Ballini BS a.s. 2014 2015 cl 4^

I.T.C. Abba Ballini BS a.s. 2014 2015 cl 4^ MODULO 1: LE FUNZIONI- GRAFICI APPROSSIMATI UD 1.1 Saper analizzare le proprietà caratteristiche di una funzione razionale in una variabile Saper ipotizzare il grafico di una funzione razionale Dominio,

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Elementi di matematica finanziaria utili alla comprensione di alcune parti del Corso Definizione di operazione finanziaria Successione di importi di segno

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara Sommario Dipartimento di Economia & Management - Università di Ferrara Sommario Parte I: Capitalizzazione semplice e composta Parte II: Capitalizzazione mista Parte III: Capitalizzazione frazionata e tassi

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato

Dettagli

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA Introduzione Definizione. La matematica finanziaria studia le operazioni finanziarie. Definizione. Una operazione finanziaria è un contratto che prevede scambi di danaro (tra i contraenti)

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G

ISTITUTO TECNICO INDUSTRIALE STATALE G DIPARTIMENTO: ANNO SCOLASTICO 2014/2015 PROGRAMMAZIONE COORDINATA TEMPORALMENTE CLASSE: 4 AII-ABIT - pag. 1 PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - CLASSE: 4AII-4BIT CLASSE E Monte ore

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

3; 2 1 2 ;5 3;0 1; 2

3; 2 1 2 ;5 3;0 1; 2 Risolvere mediante la fattorizzazione le seguenti equazioni. 1. 4 12 +9=0 0; 3 2 2. 7 +14 8=0 1;2;4 3. 4 12 +9=0 3 2 ; 3 2 4. +2 = 3 4 1 2 ;3 2 +4=0 5. +3 +1=0 + 2 =3 6. + +2 4=15 3; 2 1 2 ;5 3;0 1; 2

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - CLASSI: 4AMM-4BME

PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - CLASSI: 4AMM-4BME DIPARTIMENTO: PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - : 4AMM-4BME E Monte ore annuo 132 (99+33) Libro di Testo L. Sasso: Nuova Matematica a colori Edizione Verde, VOL.3-4 SETTEMBRE OTTOBRE

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Regime finanziario dell interesse semplice: formule inverse

Regime finanziario dell interesse semplice: formule inverse Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

( ) ( ) Verifica di matematica classe 5 a A LST

( ) ( ) Verifica di matematica classe 5 a A LST Verifica di matematica classe 5 a A LST - Dopo aver dato le definizioni di asintoto orizzontale, verticale ed obliquo, determina il Dominio e scrivi le equazioni degli asintoti della seguente funzione.

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

TEST FINANZA OTTOBRE 2013

TEST FINANZA OTTOBRE 2013 TEST FINANZA OTTOBRE 03. Si consideri la funzione f ( ) ln( e ). Determinare l espressione corretta della derivata seconda f ( ). e f( ) ( e ) A B f( ) e f( ) ln ( e ) C D f( ). Dati i tre vettori (, 3,

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 8 Insegnante MARINO CRISTINA Classe 5AT Materia matematica preventivo consuntivo 99 0 titolo modulo 51 RIPASSO 52 FUNZIONI REALI DI VARIABILE 53 CALCOLO INFINITESIMALE

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria Venezia, 12 maggio 2010 Il problema La matematica finanziaria fornisce gli strumenti necessari per il confronto di flussi di moneta o capitali che si verificano in momenti

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING http://suite.sogiscuola.com/documenti_web/vris017001/documenti/9.. 1 di 7 04/12/2013 118 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING ANNO SCOLASTICO2013/2014

Dettagli