Politecnico di Bari Facoltà di Ingegneria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Politecnico di Bari Facoltà di Ingegneria"

Transcript

1 Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti Ing. Mariagrazia Dotoli

2 Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti Modelli di un sistema lineare tempoinvariante Un modello di sistema lineare tempo-invariante (LTI) si individua in Matlab con quattro forme possibili: attraverso la sua funzione di trasferimento, attraverso i suoi zeri e poli, attraverso un suo modello in spazio di stato e attraverso la sua rappresentazione in fratti semplici. Data per esempio la funzione di trasferimento s + 5s + s + 6 (s) =, s + 6s + s + 6 G essa si definisce in Matlab attraverso i due vettori contenenti i coefficienti del numeratore e del denominatore:» num=[ 5 6];» den=[ 6 6]; Determiniamo nel seguito lo stesso modello attraverso gli zeri e poli, un modello in spazio di stato e infine il modello con i fratti semplici. Le funzioni Matlab usate corrispondenti sono tfzp, tfss e residue, così come quelle che realizzano il passaggio inverso sono ovviamente zptf, sstf e la stessa residue.» [z,p,k]=tfzp(num,den) z = p = k = i i » [A,B,C,D]=tfss(num,den) A =

3 B = C = D =» [R,P,K]=residue(num,den) R = P = K = Ricordiamo che la funzione di trasferimento del sistema si può rappresentare visivamente con la procedura printsys.» printsys(num,den,'s').5.5 Mappa poli-zeri del sistema s^ + 5 s^ + s s^ + 6 s^ + s + 6 Imag Axis Real Axis Un altra procedura utile è pzmap, che mappa nel piano di Gauss gli zeri (o) e i poli (x) del sistema, come in figura.» pzmap(num,den),axis([ ]),grid» title('mappa poli-zeri del sistema')

4 Infine, dall espressione in fratti semplici del sistema, si ha che la funzione di trasferimento vale 6 4 G (s) = s + s + s + e la risposta all impulso del sistema vale g(t) = ( 6e t 4e t + e t )(t) + δ (t) per cui un possibile modo per visualizzare graficamente tale risposta consiste nell uso della funzione residue. In realtà, esiste una opportuna funzione Matlab del Control System Toolbox, detta impulse, che assolve al compito di calcolare e visualizzare la risposta all impulso di un sistema, nota la sua funzione di trasferimento. Ne vediamo l uso nel paragrafo successivo.. Esempio: analisi della risposta nel tempo di sistemi del primo ordine con Matlab Prendiamo in considerazione quattro diverse funzioni di trasferimento e analizziamone le corrispondenti risposte all impulso e al gradino, rispettivamente attraverso le funzioni impulse e step. I grafici sono riportati alla pagina seguente.» num=[];» den=[ ];» printsys(num,den,'s') s + Aggiungiamo ora un polo reale in, dominato da quello in.» num=[];» den=[ ];» printsys(num,den,'s') s^ + s + Vediamo cosa accade aggiungendo uno zero.» num=[ ]; 4

5 » den=[ ];» printsys(num,den,'s') s s + Infine, spostiamo il polo da a 5.» num4=[5];» den4=[ 5]; 5 Risposte all'impulso From: U()» printsys(num4,den4,'s') Amplitude To: Y() s Time (sec.)» impulse(num,den), hold on, impulse (num,den)» impulse (num,den), impulse(num4,den4)» title( Risposte all impulso ) Si vede come le risposte all impulso dei primi due sistemi siano quasi coincidenti, poiché G (s) ha infatti in più un polo dominato in, a parte il valore iniziale differente. Nel terzo sistema cambia il valore iniziale della risposta all impulso a causa della presenza dello zero; inoltre il residuo aumenta notevolmente, passando da a -9, per cui la risposta si appiattisce più tardi. Infine, nel quarto sistema la risposta all impulso è più rapida, poiché il polo dominante è spostato da a 5.» [R,P,K]=residue(num,den) R = Risposte al gradino From: U() P = Amplitude To: Y() 5-4 K = Time (sec.) Analogamente si possono confrontare le risposte a gradino dei sistemi.» step(num,den), hold on, step (num,den)» step (num,den), step(num4,den4) 5

6 » title( Risposte al gradino ) Si nota ancora che le risposte al gradino dei primi due sistemi sono quasi coincidenti.. Nel terzo sistema cambia il valore iniziale della risposta al gradino a causa della presenza dello zero; inoltre il residuo aumenta notevolmente, passando da - a 9, per cui la risposta si appiattisce dopo. Infine, nel quarto sistema la risposta al gradino è più rapida, poiché il polo dominante si è spostato da a 5.» [R,P,K]=residue(num,conv(den,[ ])) R = P = K = - - []» [R,P,K]=residue(num,conv(den,[ ])) R = Risposta alla rampa From: U() P = K = - [] Amplitude To: Y() Time (sec.) Osservando le risposte al gradino, per esempio utilizzando la funzione zoom per osservare delle zone circoscritte, si può determinare il tempo di assestamento del sistema, e verificare che dopo tre o quattro costanti di tempo le risposte si assestano. Infine, si può usare la stessa funzione step per determinare la risposta alla rampa lineare (ed eventualmente per segnali canonici di ordine superiore). La trasformata di Laplace della risposta alla rampa vale infatti Y(s) = G(s) s G(s) = = G s s (s) * s 6

7 dunque la risposta alla rampa è anche determinabile come risposta al gradino del sistema con funzione di trasferimento G * (s) definita come segue. Vediamo per esempio la risposta alla rampa del primo sistema.» numstar=num;» denstar=conv(den,[ ]);» step(numstar,denstar)» title( Risposta alla rampa ). Esempio: analisi della risposta nel tempo di sistemi del secondo ordine con Matlab Prendiamo in considerazione quattro diverse funzioni di trasferimento e analizziamone le corrispondenti risposte al gradino. I grafici sono riportati alla pagina seguente.» num=[];» den=[ ];» printsys(num,den,'s') s^ + s +» num=6;» den=[ 6];» printsys(num,den,'s') s^ + s + 6» num=[5];» den=[ 8 5];» printsys(num,den,'s') s^ + 8 s + 5» num4=[5 ]; 7

8 » den4=[ ];» printsys(num4,den4,'s') 5 s s^ + s + Per ogni coppia di poli determiniamo il coefficiente di smorzamento e la pulsazione naturale per mezzo della funzione damp.» damp(den) Eigenvalue Damping Freq. (rad/s) -.e+ +.e+i.6e-.6e+ -.e+ -.e+i.6e-.6e+» damp(den) Eigenvalue Damping Freq. (rad/s) -.e+ + 5.e+i.96e- 5.e+ -.e+ - 5.e+i.96e- 5.e+» damp(den) Eigenvalue Damping Freq. (rad/s) -4.e+ +.e+i 8.e- 5.e+ -4.e+ -.e+i 8.e- 5.e+» damp(den4) Eigenvalue Damping Freq. (rad/s) -.e+ +.e+i.6e-.6e+ -.e+ -.e+i.6e-.6e+ Vediamo ora come valutare la risposta al gradino scegliendo il vettore dei tempi e nel contempo memorizzando quello delle ordinate..8.6 Risposte al gradino Sistema Sistema Sistema Sistema 4.4» t=:.:6;» t=:.:6;» t=:.:6;» t4=:.:6;..8.6» [y,x]=step(num,den,t);» [y,x]=step(num,den,t);

9 » [y,x]=step(num,den,t);» [y4,x4]=step(num4,den4,t4);» plot(t,y,'-',t,y,'-.',t,y,'--',t4,y4,':'),grid» legend('sistema ','Sistema ','Sistema ','Sistema 4')» title('risposte al gradino') Rispetto al primo sistema, nel secondo i poli hanno uguale parte reale e parte immaginaria più grande, dunque l inviluppo non varia (e il tempo di assestamento è confrontabile), mentre la tendenza ad oscillare aumenta, ossia i picchi della risposta sono ravvicinati. Nel terzo sistema, viceversa, la parte immaginaria è invariata e la parte reale è maggiore, dunque l inviluppo è più veloce (quindi il tempo di assestamento è più piccolo) e la tendenza ad oscillare è uguale, ossia i picchi si ripetono alla stessa distanza. Infine, nel quarto sistema è stato aggiunto uno zero, che lascia invariato l andamento della risposta ma ne cambia i residui, amplificandoli. Visualizziamo ora gli istanti di entrata nella banda di assestamento al 5% (i tempi di assestamento dei quattro sistemi).» hold on» yf=y(length(y));» yb=(yf+yf*.5)*ones(size(y));» yb=(yf-yf*.5)*ones(size(y));» plot(t,yb,'m-',t,yb,'m-')» zoom Si determinano graficamente dei tempi di assestamento per i quattro sistemi che valgono, nell ordine, circa.5,.7,.7,.7 secondi. Si tratta in tutti i casi di misure coerenti con la formula ricavata approssimando la risposta al gradino con il suo inviluppo esponenziale: t s5% δω n dove δ e ω sono rispettivamente il coefficiente di smorzamento e la pulsazione naturale della coppia di poli complessi e coniugati. Avendo memorizzato i valori delle ordinate yi, si può calcolare per ogni sistema la sovraelongazione percentuale.» Mp=(max(y)-y(length(y)))/(y(length(y))-y())* Mp = 5.8» Mp=(max(y)-y(length(y)))/(y(length(y))-y())* Mp = 5.4» Mp=(max(y)-y(length(y)))/(y(length(y))-y())* Mp = 9

10 .56» Mp4=(max(y4)-y4(length(y4)))/(y4(length(y4))-y4())* Mp4 = Bibliografia R. C. Dorf, R. H. Bishop, Modern Control Systems, settima edizione, 995, Addison-Wesley. K. Ogata, Modern Control Engineering, terza edizione, 997, Prentice Hall. H. Saadat, Computational Aids in Control Systems Using Matlab, 99, Mc Graw-Hill. M. Tibaldi, Note introduttive a Matlab e Control System Toolbox, 99, Progetto Leonardo.

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice ITIS J.F. Kennedy prof. Maurilio Bortolussi 1 Indice 1 I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO 2 1.1 Introduzione........................................ 2 1.2 La funzione di trasferimento...............................

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Cenni su Matlab (e toolbox Control Systems + Symbolic) Dott. Ingg. Marcello Bonfè e Silvio Simani Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 / 974844

Dettagli

MATLAB Esercitazione #1: (dominio di Laplace)

MATLAB Esercitazione #1: (dominio di Laplace) Matlab Es# MATLAB Esercitazione #: (dominio di Laplace) Costruzione F.d.T. e operazioni elementari: num,den,tf; *,+-,/» help tf TF Creation of transfer functions or conversion. You can create SISO or MIMO

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema Introduzione Lo scopo di questa trattazione è quello di analizzare un sistema fisico (veicolo a trazione elettrica) e progettare un adeguato sistema di controllo. Per cercare di ottenere risultati simili

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Risposta RLC serie Analisi nel dominio del tempo. Laboratorio di Sistemi. Classe IV - Risposta dei circuiti: RLC serie con gradino di tensione

Risposta RLC serie Analisi nel dominio del tempo. Laboratorio di Sistemi. Classe IV - Risposta dei circuiti: RLC serie con gradino di tensione 12/02/09 IPSIA Antonio Pacinotti - Pistoia Risposta RLC serie Analisi nel dominio del tempo Laboratorio di Sistemi Classe IV - Risposta dei circuiti: RLC serie con gradino di tensione Gualtiero Lapini

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza Capitolo 4 Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza 1. Introduzione In questo capitolo ci occuperemo dell analisi nel dominio della frequenza di sistemi dinamici lineari tempo-invarianti.

Dettagli

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente CAPITOLO 6 ANALISI IN REGIME PERMANENTE 6.1 Circuiti dinamici in regime permanente I Capitoli 3 e 4 sono stati dedicati, ad eccezione del paragrafo sugli induttori accoppiati, esclusivamente all analisi

Dettagli

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Esercizio T T V V on riferimento al circuito di figura, si assumano i seguenti valori: = = kω, =. µf, = 5 V. Determinare

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaboraione di Dati, Segnali e Immagini Biomediche (Parte 3) Prof. Giovanni Sparacino

Dettagli

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Università di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Ing. dell' Informazione Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Relatore: Prof. Alessandro Beghi Presentata

Dettagli

Controllori PID, metodi di taratura e problemi d implementazione

Controllori PID, metodi di taratura e problemi d implementazione Controllori PID, metodi di taratura e problemi d implementazione Prof. Luigi Glielmo Università del Sannio L. Glielmo 1 / 23 Contenuto della presentazione Controllori PID Metodi di taratura in anello aperto

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica Centro sui Rischi nelle Costruzioni INDICE DELLA PRESENTAZIONE - Concetti base di dinamica dei sistemi discreti oscillazioni libere e smorzamento

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Controllo a Retroazione della velocità di un veicolo

Controllo a Retroazione della velocità di un veicolo Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica Elaborato finale in Controlli Automatici Controllo a Retroazione della velocità di un veicolo Anno Accademico 2011/2012 Candidato: Marco Ferro

Dettagli

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 COGNOME: Montanino NOME: Annaclaudia MATRICOLA: 1056715 DATA: 13 gennaio 2014 email: annaclaudia.montanino@studenti.unipd.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Laboratory of Automation Systems p. 1/46 LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Prof. Claudio Bonivento CASY-DEIS, University of Bologna claudio.bonivento@unibo.it Laboratory of Automation

Dettagli

Manuale utente. 1 Installazione

Manuale utente. 1 Installazione Manuale utente 1 Installazione L installazione di Multitool può essere effettuata su un personal computer di fascia medio-bassa sul quale sia installato un sistema operativo Microsoft tra i seguenti: Windows

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Quantizzazione Il segnale y(t) non solo è campionato sull asse dei tempi, ma anche i valori di ordinata sono

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri ruggieri@uniroma2.it Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html INTRODUZIONE A MATLAB Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli