Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)"

Transcript

1 Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaboraione di Dati, Segnali e Immagini Biomediche (Parte 3) Prof. Giovanni Sparacino Dipartimento di Ingegneria dell Informaione Università di Padova web: http: RIPASSO SISTEMI LINEARI: LEGAME INGRESSO-USCITA {x(n)} Dominio del tempo y y n n n k h k a y x nk SISTEMA LINEARE {y(n)} n ayn... anyn N + bxn + bxn b M x nm (sistemi ARMA) Dominio trasformate Y() H( b Y() + a )X() + b + a b M a M N N X() H( B( A( B( ) A( ) X() ) ) b ) + a (sistemi ARMA) + b a + b M a M N N

2 RIPASSO TEORIA: DEFINIZIONE DI RISPOSTA IN FREQUENZA La circonferena in rosso è, al variare di f, il luogo dei punti sul piano complesso tali che ej π f/fs e Consideriamo H() per tutti i valori di sul cerchio unitario ej π f/fs Tale restriione è una funione complessa, ma di variabile reale f Indichiamo tale funione con H(e jπ f /F s ), o con H(f), che chiamiamo risposta in frequena del sistema (Fs/) (Fs/) Ovviamente, poichè l argomento e jπ f /Fs è periodico rispetto ad f di periodo F s, la funione H(e jπ f /Fs ) è periodica rispetto ad f di periodo F s Im j π f/fs () Re PIANO COMPLESSO Oss. Alcuni autori preferiscono considerare la risposta in frequena in funione 3 della variabile ωπf/fs, usando quindi la notaione H(e j ω ) o H(ω) RIPASSO TEORIA: SIGNIFICATO DELLA RISPOSTA IN FREQUENZA La risposta in frequena H(e jπfts ) di un sistema lineare e tempo-invariante è una funione complessa di variabile reale f che, al suo variare fra e Fs, indica quanto, a regime, il sistema amplifica (vd. modulo) e sfasa (vd. fase) una sinusoide discreta di frequena f in ingresso al sistema sin(π f kts) H(e SISTEMA jπfts ) sin(π f kts + H(e jπfts )) SCHEMA VALIDO SOLO A REGIME!!! H(e jπfts ) viene usualmente studiata solo per f fra e Fs/

3 RISPOSTA IN FREQUENZA PER SISTEMI ARMA IN MATLAB: IL COMANDO FREQZ y n a y n ayn... anyn N + bxn + bxn b M x nm b Y() + a + b + a b M a M N N X() B( A( ) X() ) In Matlab B [b,b A [,a,...,b,...,a N M ]; ]; attenione a non dimenticarlo!!! Su B ed A agiscono i comandi filter, freq, Usando l istruione [H,F] freq(b,a,n,fs), si trovano N campioni, equispaiati fra ed Fs/, della risposta in frequena del sistema ARMA a coefficienti in B ed 5 A Esempio H( B( ) A( ) ) +.8 L istruione [H, F]freq([ -],[.8],,5) crea un vettore reale F e un vettore complesso H di dimensione che contengono, rispettivamente valori equispaiati fra e 5 (metà della frequena di campionamento, in questo caso 5 H) e i relativi campioni della risposta in frequena del sistema ARMA y(n) -.8y(n-)+x(n)-x(n-) (riferito a segnali campionati a 5 H) Per accedere al modulo di H uso l istruione abs, per accedere alla fase l istruione angle 6

4 H( B( ) A( ) ) DIAGRAMMA POLI-ZERI: IL COMANDO ZP_PLOT Dall ispeione del diagramma poli-eri, ottenuto dalla funione di trasferimento H() (notare che è messa in funione di ): N() H () D() si può capire qualitativamente come è fatta la risposta in frequena Esempio: H( B( ) A( ) ) +.8 equivale anche a H() N() D() +.8 Per il diagramma poli-eri, usare la custom function p_plot function []p_plot(,p,fc) %ZP_PLOT Disegna gli eri e i poli di una funione di trasferimento. % ZP_PLOT(, p, Fc) disegna il cerchio di raggio unitario, riferendolo % ad una frequena di campionamento Fc, % disegna gli eri, contenuti nel vettore, col simbolo 'o' in nero % disegna i poli, contenuti nel vettore p, col simbolo 'x' in rosso 8

5 H( ) B( A( ) ) +.8 H() N() D() +.8 H(), ristretta ai sul cerchio unitario, è H(e jπf / F s ) N(e D(e jπf / F s jπf / F s ) ) e e jπf / F jπf / F s s Esempio Consideriamo H() con due eri, complessi e coniugati, sul cerchio e due poli pure complessi e coniugati H() ( )( ) ( p )( p ) poli (x) e eri (o) sul piano complesso 5H 6H Considerare il modulo di H() per tutti i valori e j π f/fs per f (,F s /) significa calcolare: H p ej π f/fs H H() p p ovvero fare il prodotto tra due rapporti tra segmenti. Il secondo rapporto è sempre circa uno, mentre il primo diventa nullo in corrispondena della frequena 6 H. p

6 modulo H fase H TROVARE POLI e ZERI DI H() IN MATLAB. PRIMO PASSO: PASSARE DA H( - ) a H() Per calcolare correttamente poli e eri di H(), bisogna passare prima a potene positive, moltiplicando numeratore e denominatore di H( - ) per max(m,n) n n... n n Y() P + P X() Q Q d + d d + d Q P Q P N() X() D() In Matlab N [np,np,...,n ]; [d,d,...,d ]; D Q Q roots(n); proots(d); radici (complesse) del polinomio N() radici (complesse) del polinomio D()

7 Ricordare Per invocare correttamente la freq, bisogna fare riferimento a H() in funione di - (quella che corrisponde all equaione alle differene) Per trovare correttamente poli e eri (ovvero per non rischiare di omettere eri o poli multipli nell origine) mediante la roots, H() va portata in funione di 3 ESERCIZIO 3. Si consideri il sistema MA y(n) x(n)-x(n-) ) Disegnare il diagramma eri-poli servendosi della funione p_plot(eri, poli, freq_sampling) ) Dal diagramma, tracciare carta e penna il grafico del modulo della risposta in frequena, relativamente ad una frequena Fs5 3) Confrontare il proprio grafico con quello che emerge dopo aver usato l istruione [H,F] freq(b,a,n,fs) ) Che caratteristiche ha il filtro? Il sistema è a fase lineare? Come mai? 5) Qual e il guadagno in banda passante del sistema? Come si potrebbe normaliare ad?

8 BOZZA DI SOLUZIONE H() ( ) eri[]; poli[]; Fc5; p_plot(eri, poli, Fc) Per costruire a mano il diagramma del modulo della risposta in frequena, valuto il rapporto tra la distana dallo ero (segmento nero) e quella dal polo (segmento rosso), al variare di f 5 BOZZA DI SOLUZIONE H() ( ) eri[]; poli[]; Fc5; p_plot(eri, poli, Fc) b[ -]; a[]; Fc5; [H,F]freq(b,a,8,Fc); figure() subplot() plot(f,abs(h)) subplot() plot(f,angle(h)).5 poli (x) e eri (o) sul piano complesso 5H H X H

9 ESERCIZI DA FARE IN AULA ESERCIZIO 3. Considerare il filtro H() (- - )/( ) e, dal diagramma ero-poli, tracciare carta e penna il grafico del modulo della risposta in frequena, relativamente ad una frequena Fs5 H. Scrivere poi un programma Matlab che disegni diagramma ero-poli e risposta in frequena del filtro. Che caratteristiche ha il filtro? Confrontare la risposta in frequena ed il diagramma poli-eri con quelli dell eserciio 3.. Qual e il guadagno in banda passante del sistema? ESERCIZIO 3.3 Scrivere un programma Matlab che disegni diagramma ero-poli e risposta in frequena del filtro H() relativamente ad un campionamento a H Il sistema è a fase lineare? Come mai? Qual è il guadagno statico e come si potrebbe normaliare ad? 7 SOLUZIONE 3. H() poli (x) e eri (o) sul piano complesso 5H H X H

10 SOLUZIONE 3.3 H() ( + + ) +.5 poli (x) e eri (o) sul piano complesso 5H 3.5 5H X H ESERCIZIO 3. Dal diagramma poli-eri, valutare la stabilità dei sistemi A e B descritti dalle seguenti equaioni alle differene A) y(n).7y(n-)-.y(n-)+.5x(n)+.5x(n-)+.x(n-) B) y(n).5y(n-)-.5y(n-)+.5x(n)+.5x(n-)+.x(n-) Calcolare e visualiare la risposta all impulso unitario (arrestarsi alla lunghea ), (istruione filter)

11 SOLUZIONE 3. a) sistema stabile y(n).7y(n-)-.y(n-)+.5x(n)+.5x(n-)+.x(n-).5 poli (x) e eri (o) sul piano complesso ingresso 5H H H uscita SOLUZIONE 3. b) sistema instabile y(n).5y(n-)-.5y(n-)+.5x(n)+.5x(n-)+.x(n-).5 poli (x) e eri (o) sul piano complesso 5H.8 ingresso H H 6 uscita

12 ESERCIZIO 3.5 ULTERIORI ESERCIZI (DA FINIRE EVENTUALMENTE A CASA ENTRO IL PROSSIMO LAB) Si consideri il sistema MA (vd eserciio., leione scorsa) y(n) x(n)+x(n-)+x(n-)+x(n-3)+x(n-) riferito a Fs H Disegnare il diagramma eri-poli servendosi della funione p_plot(eri, poli, freq_sampling) Dal diagramma, tracciare carta e penna il grafico del modulo della risposta in frequena Confrontare il proprio grafico con quello che emerge dopo aver usato l istruione [H,F] freq(b,a,n,fs) Capire, dalla risposta in frequena, il motivo della risposta nulla (a regime) al segnale sinusoidale per certe frequene critiche (vd eserciio., leione scorsa) ESERCIZIO 3.6 Usando l istruione [H,F] freq(b,a,n,fs), valutare il grafico della risposta in frequena del sistema descritto dall equaione y(n) y(n-) + x(n) - x(n-5) riferito a Fs H. Capire similitudini e differene con quanto trovato all eserciio precedente 3 Accenno soluione 3.5 y(n) x(n)+x(n-)+x(n-)+x(n-3)+x(n-) H( H() ) H() 3 ( ) Per trovare le radici di numeratore e di denominatore di H(): eriroots([ ]) poli[ ] Per ottenere il diagramma eri-poli in Matlab rispetto alla frequena di H p_plot(eri,poli,)

13 poli (x) e eri (o) sul piano complesso 5H B[ ]; A[]; N5; Fs/.; [H,F] freq(b,a,n,fs); figure() subplot() plot(f,abs(h)) title(['risposta in frequena (Fs' numstr(fs) ')']) ylabel('modulo') subplot() plot(f,angle(h)); ylabel('fase (radianti)') xlabel('frequena (H)') 5 risposta in frequena (Fs) modulo 3 5H x H molteplicità fase (radianti) frequena (H) 5 Accenno soluione 3.6 y(n) y(n-) + x(n) - x(n-5) H() 5 5 H() 5 Per ottenere il diagramma eri-poli: poli (x) e eri (o) sul piano complesso 5H eriroots([ -]) poliroots([ - ]) p_plot(eri,poli,) 5H x molteplicità x H Il diagramma ero-poli coincide con il precedente, a parte la presena di un polo e di uno ero aggiuntivi in (fattore (-) comune sia a numeratore che a denominatore) 6

14 Accenno soluione 3.6 % realiaione ARMA clear all 5 risposta in frequena (Fs) B[ -]; A[ -]; N5; Fs/.; [H,F] freq(b,a,n,fs); figure() subplot() plot(f,abs(h)) title(['risposta in frequena (Fs' numstr(fs) ')']) ylabel('modulo') modulo fase (radianti) frequena (H) subplot() plot(f,angle(h)); ylabel('fase (radianti)') xlabel('frequena (H)') 7 ESERCIZIO 3.7 Scrivere un programma Matlab che, considerando una alla volta le seguenti funioni 5 ) H(). (Fc) +.5 ) H() (Fc) ESERCIZI DA FARE PER CASA PER PREPARAZIONE ALL ESAME 3) H() (Fc).9 ) 5) H() + (Fc) + H() (Fc) ) H() (Fc) ) H() (Fc) + ne calcoli poli e eri (istruione roots) ne faccia il diagramma eri - poli sul piano complesso servendosi della funione p_plot(eri, po li, freq_sampling) - cercare di prevedere da questo diagramma come risulterà il grafico della risposta in frequena ne plotti il grafico della risposta in frequena (istruione [H,F]freq(b,a,8,Fc)) si confronti l andamento trovato con la posiione di poli e eri sul piano complesso 8

15 SOLUZIONE 3.7 H(). 5.5 poli (x) e eri (o) sul piano complesso risposta in frequena - MODULO 5H H H risposta in frequena - FASE SOLUZIONE 3.7 H() poli (x) e eri (o) sul piano complesso 8 risposta in frequena - MODULO 5H H H.5 risposta in frequena - FASE

16 SOLUZIONE 3.7 H().9.5 poli (x) e eri (o) sul piano complesso.5 risposta in frequena - MODULO 5H H H risposta in frequena - FASE SOLUZIONE 3.7 H() +.5 poli (x) e eri (o) sul piano complesso risposta in frequena - MODULO H 3.5 H x H risposta in frequena - FASE

17 SOLUZIONE 3.7 H() poli (x) e eri (o) sul piano complesso.5 risposta in frequena - MODULO H H H risposta in frequena - FASE SOLUZIONE 3.7 H() poli (x) e eri (o) sul piano complesso 3H 6 5 risposta in frequena - MODULO H H risposta in frequena - FASE

18 SOLUZIONE 3.7 H() +.5 poli (x) e eri (o) sul piano complesso risposta in frequena - MODULO 3H H H 3 risposta in frequena - FASE

stabilità BIBO La stabilità di tipo BIBO di un sistema LTI impone che la risposta all impulso h(n) sia sommabile in modulo, vale a dire:

stabilità BIBO La stabilità di tipo BIBO di un sistema LTI impone che la risposta all impulso h(n) sia sommabile in modulo, vale a dire: ELABORAZIONE NUMERICA DEI SEGNALI AA. 2007-2008 sistemi LTI e trasformata eta Francesca Gasparini http://www.ivl.disco.unimib.it/teaching.html errore nelle slide della settimana scorsa!!!! R ( )... ( M

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 26-27 Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6) Prof. Giovanni Sparacino

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Rappresentazione grafica di un sistema retroazionato

Rappresentazione grafica di un sistema retroazionato appresentazione grafica di un sistema retroazionato La f.d.t. di un.o. ha generalmente alcune decine di poli Il costruttore compensa il dispositivo in maniera da dotarlo di un singolo polo (polo dominante).

Dettagli

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa Corso di Controlli Automatici Prof. Tommaso Leo Indice UNIT

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Cenni su Matlab (e toolbox Control Systems + Symbolic) Dott. Ingg. Marcello Bonfè e Silvio Simani Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 / 974844

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] FILTRI IIR (Infinite Impulse Response) DOMINIO TEMPORALE (equaione alle differene finite, sistema causale) y M [ n] b [ ] [ ] x n a y n 0

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

ENS - Prima prova in itinere del 07 Maggio 2010

ENS - Prima prova in itinere del 07 Maggio 2010 ENS - Prima prova in itinere del 07 Maggio 0 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli devono

Dettagli

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE Proprietà 2.: L[y(t)] (2.29): u( + ) (2.65): n j= j i Prima della (2.69): A = lim s W (s) Nella Seione 2.6, usa sia t che k per indicare

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche. GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza

Dettagli

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione Assonometria La proieione assonometrica (detta anche assonometria)è la proieione di una figura sopra un piano di rappresentaione (quadro) ottenuta colpendo l oggetto con un raggio di rette parallele (centro

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Margine di fase e margine di guadagno

Margine di fase e margine di guadagno Margine di fase e margine di guadagno Prendiamo in considerazione sistemi per i uali la funzione ad anello aperto, L(s), sia stabile e non presenti dunue, poli a parte reale positiva. In tal caso il criterio

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Caratterizzazione dei segnali aleatori nel dominio della frequenza

Caratterizzazione dei segnali aleatori nel dominio della frequenza Capitolo 5 Caratterizzazione dei segnali aleatori nel dominio della frequenza 5. Introduzione In questo capitolo affrontiamo lo studio dei segnali aleatori nel dominio della frequenza. Prendiamo come esempio

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Esempi di uso e applicazioni di Matlab e simulink ) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Sia dato da integrare una equazione differenziale scalare di

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi Elettronica I - Sistemi Elettronici I/II Esercitazioni con PSPICE 1) Amplificatore di tensione con componente E (file: Amplificatore_Av_E.sch) Il circuito mostrato in Fig. 1 permette di simulare la classica

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

9.4 Modello massimamente piatto (Maximally Flat Design)

9.4 Modello massimamente piatto (Maximally Flat Design) 9.4 Modello massimamente piatto (Maximally Flat Design) Nel capitolo 8, sono stati studiati i modello dei filtri IIR di Butterworth, che nei casi di passa-basso e passa-alto sono massimamente piatti alla

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

Tesina di Identificazione dei Modelli e Analisi dei Dati

Tesina di Identificazione dei Modelli e Analisi dei Dati Tesina di Identificazione dei Modelli e Analisi dei Dati Ceccarelli Egidio e Papi Alessio 19 Luglio 2000 1 Indice 1 Introduzione 3 2 Valutazioni relative all identificazione 3 3 Prove 4 4 Conclusioni 5

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

5 Amplificatori operazionali

5 Amplificatori operazionali 5 Amplificatori operazionali 5.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa 200 Coordinate D Anche nella grafica D gli oggetti da visualiare vengono codificati a partire da primitive che collegano punti. I punti appartengono ad uno spaio tridimensionale. Vengono memoriati utiliando

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform)

PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform) 1 PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform) Si desidera una rappresentazione delle sequenze in dominio ω «adatta» a fare processing con filtri digitali 2 E stato

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Elaborazione nel dominio della frequenza Soluzioni

Elaborazione nel dominio della frequenza Soluzioni Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza Soluzioni 1 La trasformata discreta 1D Calcoliamo lo spettro di x(n) = R L (n) al variare di L = 2, 10, 20,

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

ALGORITMO PER GENERARE COSTANTI MATEMATICHE

ALGORITMO PER GENERARE COSTANTI MATEMATICHE ALGORITMO PER GENERARE COSTANTI MATEMATICHE di Zino Magri ino.magri@libero.it Copyright ZINO MAGRI 03 Vorrei porre alla vostra attenione un algoritmo in grado di generare una π quantità illimitata di costanti

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli