Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018"

Transcript

1 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a Settebre 208 ===================================================================== Preesse da leggere olto attentaente pria di coinciare: In ogni riquadro si deve scrivere per la grandezza richiesta la forula ateatica seguita dal suo valore nuerico a partire dai dati forniti per tutte, o anche solo per alcune, delle grandezze fisiche coinvolte. Il procediento per arrivare alla forula finale va scritto nei fogli protocollo distribuiti specificando la nuerazione data nel testo. Se il procediento non è riportato e/o non è coerente con la forula e col valore nuerico scritti nel riquadro, il risultato viene considerato nullo. Si richiede di usare sepre il sistea di unità di isura internazionale SI. I valori nuerici vanno scritti usando le potenze del 0 e si richiede (salvo casi particolari che verranno segnalati) di riportare solo 2 cifre significative, facendo il calcolo coplessivo e arrotondandolo solo alla fine. Si consegnano il foglio del testo, debitaente copilato, e aleno uno, o più, fogli protocollo a scelta individuale. La coordinate della posizione occupata in aula durante il copito viene fornita dalla docente e serve ad individuare copiti tra loro copiati, che verranno annullati. Dove richiesto, per l accelerazione locale di gravità si usi: g = 9.8 s 2 ===================================================================== Problea : Un blocco di assa si trova su un piano di lunghezza l inclinato di un angolo θ rispetto all orizzontale. ra il blocco e il piano è presente attrito con coefficiente dinaico µ D. Sul blocco, che è inizialente fero alla base del piano, agisce una forza orizzontale costante coe disegnato in figura. Siano = 4.8kg, µ D = 0., θ = π 6 e l = 50c. y q l x. Sapendo che dalla base alla soità del piano la forza copie un lavoro L = 20J trovare il odulo della forza. 2. Trovare l istante t f in cui il blocco raggiunge la soità del piano inclinato. 3. Si calcoli il lavoro totale fatto da tutte le forze diverse da agenti sul blocco fino alla soità del piano inclinato. 4. Una volta raggiunta la soità del piano inclinato, il blocco esce dal piano e continua il suo oto sotto l azione della sola forza di gravità. Trovare la velocità con cui tocca di nuovo il suolo.

2 Problea 2: Una olecola biatoica è costituita da due atoi di uguale assa che si uovono in una sola diensione con una energia potenziale U(x) = α α 2x 2 2 x dove x è la loro distanza relativa e le costanti α, α 2 sono entrabe positive. La olecola ha una configurazione di equilibrio stabile, con gli atoi feri a distanza x eq, che deve corrispondere ad un inio dell energia potenziale.. Scrivete le diensioni fisiche delle costanti α ed α 2 e calcolate x eq in funzione di esse. 2. Scrivete l energia potenziale U(x eq ) e l energia totale E(x eq ) della olecola all equilibrio ipotizzando che gli atoi siano feri (E(x eq ) è detta anche energia di legae della olecola). Una olecola biatoica assorbe ed eette energia ad una precisa frequenza, indicando con ciò che gli atoi vibrano a quella frequenza, cioè la olecola si coporta coe un oscillatore aronico. 3. Considerate l energia potenziale U(x) per x olto vicino alla posizione di equilibrio x eq (cioè vicino a x x eq = 0) e sviluppatela in serie di Taylor fino al terine in (x x eq ) 2. Se ponete U(x eq ) = 0, cioè se prendete coe energia potenziale di riferiento quella corrispondente all equilibrio, troverete l energia potenziale di un oscillatore aronico. Calcolate la costante elastica k di questo oscillatore in funzione delle costanti α ed α Date k e la assa di ciascun atoo, scrivete la frequenza ν = ω/2π di oscillazione della olecola. Sapendo che = kg, e che la olecola assorbe ed eette radiazione alla frequenza ν = Hz, calcolate il valore nuerico della costante elastica k con cui sono accoppiati i due atoi di questa olecola biatoica oonucleare e verificatene le diensioni fisiche. 2

3 Soluzione del problea. Prendiao un sistea di assi cartesiani x, y coe in figura. Il lavoro della forza è dato da L = f i l cos θ. Quindi = L l cos θ = 46.9N d s = 2. Oltre alla forza sul blocco agiscono anche la forza di gravità g = g diretta verticalente verso il basso, la forza di attrito dinaico D e la reazione norale del piano N. Dal prio principio della eccanica scriviao: a = + g + D + N Proiettando questa equazione sui due assi otteniao il seguente sistea: { a x = cos θ g sin θ D a y = sin θ g cos θ + N Lungo l asse y non c è oto, quindi a y = 0. Dall equazione lungo y ricaviao la reazione norale N = sin θ + g cos θ La forza di attrito dinaico è diretta lungo il piano inclinato, è opposta allo spostaento ed il suo odulo vale D = µ D N. Nel nostro caso D = µ D ( sin θ + g cos θ) In conclusione a x = cos θ (g sin θ+µ N D ) = cos θ g sin θ µ D( sin θ+g cos θ) = (cos θ µ D sin θ) g(sin θ+µ D cos θ) Dal oento che l accelerazione è costante, il blocco copie un oto uniforeente accelerato partendo fero dall origine degli assi, quindi la legge oraria è: x(t) = 2 a xt 2 = 2 [ ] (cos θ µ D sin θ) g(sin θ + µ D cos θ) t 2 L istante cercato è quello in cui il blocco ha percorso uno spazio l: t f = 3. La forza di gravità copie un lavoro 2l 2l = a x (cos θ µ D sin θ) g(sin θ + µ D cos θ) = 0.69s Il lavoro della forza di attrito vale L g = f i g d s = gl sin θ L D = µ D l( sin θ + g cos θ) Il lavoro della reazione norale del piano è, invece, nullo perchè questa forza è perpendicolare allo spostaento. Si noti che sia il lavoro della gravità che quello della forza di attrito sono negativi, entre l unico lavoro positivo è quello della forza. L g + L D = 4.97 J 3

4 4. La velocità v l con cui il blocco raggiunge la soità del piano inclinato la possiao ottenere sapendo (vedi punto 2) che il oto lungo il piano è un oto uniforeente accelerato con accelerazione a x e conoscendo il tepo t f ipiegato per percorrerlo tutto: v l = a x t f Oppure possiao usare il teorea delle forze vive: da cui 2 v2 l = L + L g + L D v l = In entrabi i casi troviao lo stesso valore nuerico: 2 ( ) L + L g + L D v l =.45 s Una volta lasciato il piano inclinato il oto del blocco sarà di tipo parabolico sottoposto solaente alla forza di gravità. Per trovare la velocità con cui tocca di nuovo terra si potrebbero integrare le equazioni del oto, a è più conveniente iporre la conservazione dell energia: Da cui v f = 2 v2 l + glsinθ = 2 v2 f [ ] 2 vl 2 + 2glsinθ = ( ) L + L g + L D + 2glsinθ = 2.65 /s 4

5 Soluzione del problea 2. Sappiao che U(x) è un energia: [U(x)] = [J] = [kg][] 2 [s] 2 quindi: [α ] = [J][] 2 = [kg][] 4 [s] 2 [α 2 ] = [J][] = [kg][] 3 [s] 2. Per calcolare x eq dobbiao trovare il inio dell energia potenziale, quindi dobbiao annullare la sua derivata pria: du = α dx x=xeq x 3 + α 2 eq x 2 = 0 x eq = α eq α 2 e la x eq trovata è correttaente una lunghezza. 2. All equilibrio l energia potenziale vale: U(x eq ) = α α 2 2 2α 2 α2 2 α = α2 2 2α Trattandosi di un punto di equilibrio, gli atoi sono feri quindi la loro energia cinetica è nulla e perciò E(eq) = U(x eq ) cioè, l energia di legae della olecola è uguale alla sua energia potenziale all equilibrio (cioè al inio dell energia potenziale, che è negativo) 3. Lo sviluppo in serie di Taylor dell energia potenziale nelle vicinanze della posizione di equilibrio fino al terine quadratico è: U(x x eq ) U(x eq ) + du (x x eq ) + d 2 U dx x=xeq 2 dx x=xeq 2 (x x eq ) 2 U(x eq ) + d 2 U 2 dx x=xeq 2 (x x eq ) 2 dove abbiao usato il fatto che du = 0, dato che la posizione di equilibrio è un punto di inio dell energia potenziale. dx x=xeq Ora, poiché l energia potenziale è sepre la differenza rispetto ad un valore di riferiento che poniao a zero, scegliao per questo valore U(x eq ), che pertanto poniao uguale a zero, ottenendo per l energia potenziale della olecola nelle iediate vicinanze della posizione di equilibrio l espressione: U(x x eq ) 2 α2 4 α 3 (x x eq ) 2 che è l energia potenziale di un oscillatore aronico con costante elastica: k = α4 2 α 3 4. Trattandosi di un oscillatore con due asse ed 2 e costante elastica k, sappiao che la sua frequenza di oscillazione è ω = k/µ, dove µ = è la assa ridotta. Nel caso in questione in cui le asse sono uguali si ha µ = /2 e quindi: ν = 2k 2π da cui: k = 2 ω2 = 2 4π2 ν 2 = kg s 2 = N/ 5

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 04/02/2019

Soluzione degli esercizi dello scritto di Meccanica del 04/02/2019 Soluzione degli esercizi dello scritto di eccanica del 04/02/209 Esercizio Un supporto orizzontale fisso e privo di attrito è costituito da due parti separate da un gradino (vedi figura). Una lastra di

Dettagli

Esercizi svolti di Statica e Dinamica

Esercizi svolti di Statica e Dinamica Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I

Facoltà di Ingegneria Prova scritta di Fisica I Facoltà di Ingegneria Prova scritta di Fisica I 6..6 CMPIT C Esercizio n. Un blocco, assiilabile ad un punto ateriale di assa = kg, partendo da fero, scivola da un altezza h = 7 lungo una guida priva di.

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accadeico 2008-2009 Esercizio n.1: Un punto ateriale di assa è inizialente fero su di un piano orizzontale scabro. Siano µ s e µ d i coefficienti di attrito

Dettagli

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0 Prova Scritta di di Meccanica Analitica 3 luglio 015 Problea 1 Un punto di assa unitaria si uove soggetto al potenziale V (x) = k x + l x x > 0 a) disegnare lo spazio delle fasi e calcolare la frequenza

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Esercizi di Fisica Generale Foglio 3. Forze

Esercizi di Fisica Generale Foglio 3. Forze 31.01.11 Esercizi di Fisica Generale Foglio 3. Forze 1. Un corpo di assa viene sospeso da una olla con costante elastica k, coe in figura (i). La olla si allunga di 0.1. Se ora due corpi identici di assa

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

mv x +MV x = 0. V x = mv x

mv x +MV x = 0. V x = mv x Università degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 15/16, Sessione di Gennaio/Febbraio 16, Esae di FISICA GENEALE 1 1 CFU Prio Appello, POVA SCITTA, 1 Febbraio 16 TESTI E SOLUZIONI

Dettagli

Oscillazioni. Definizione Moto circolare uniforme Moto armonico

Oscillazioni. Definizione Moto circolare uniforme Moto armonico Oscillazioni Definizione Moto circolare unifore Moto aronico Moto aronico e oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%%

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%% Note su uso delle equazioni differenziali in eccanica Spesso la risoluzione delle equazioni del oto si ottiene attraverso la risoluzione di equazioni differenziali lineari a coefficienti costanti. L uso

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

Seminario didattico. Lezione 2: Dinamica del Corpo Rigido

Seminario didattico. Lezione 2: Dinamica del Corpo Rigido Seinario didattico Lezione 2: Dinaica del Corpo Rigido Esercizio n 1 Su un disco di assa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo oento d'inerzia. Al disco, che

Dettagli

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine)

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine) del copito di isica febbraio 1 (Udine) Elettrodinaica E` data una spira conduttrice quadrata di lato L e resistenza R, vincolata sul piano xy, in oto lungo x con velocita` iniziale v. Nel punto x la spira

Dettagli

Esonero 17 Novembre 2017

Esonero 17 Novembre 2017 Esonero 7 Novembre 207 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Università degli Studi di Roma La Sapienza Anno Accademico 207-208 Esercizio Un punto materiale P di massa m = g è appoggiato

Dettagli

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti]

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti] Problea Un uoo di assa si trova sul bordo estreo di una piattafora di assa, a fora di disco di raggio, che ruota attorno al suo asse verticale con velocità angolare costante ω i. L uoo è inizialente fero

Dettagli

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5)

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5) Lezione 5: Sistei ad un grado di libertà: l oscillatore eleentare (5) Federico Cluni 7 arzo 25 Risposta sotto forzante qualsiasi - Integrale di Duhael. Sovrapposizione degli effetti L equazione del oto

Dettagli

Compito di Fisica Generale di Ingegneria CIVILE Giugno 2009

Compito di Fisica Generale di Ingegneria CIVILE Giugno 2009 Copito di Fisica Generale di Ingegneria CIVIE 9 1 Giugno 9 Esercizio 1: Un asse è disposto orizzontalente e passante per il punto O in figura. 'asse è perpendicolare al piano della figura. Una barretta

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

se si perturba la corda spostandola in direzione verticale

se si perturba la corda spostandola in direzione verticale 1 Onde trasversali in una corda tesa all equilibrio la corda e tesa lungo l asse delle Corda tesa quindi ( t, ) = 0 0 per ogni e per ogni t se si perturba la corda spostandola in direzione verticale t

Dettagli

Meccanica Applicata alle Macchine Compito 23/12/02 I modulo: punti 1 e 2 - I eii modulo: punti 1 e 3.

Meccanica Applicata alle Macchine Compito 23/12/02 I modulo: punti 1 e 2 - I eii modulo: punti 1 e 3. Meccanica Applicata alle Macchine Copito //0 I odulo: punti e - I eii odulo: punti e.. La figura rappresenta un cancello con eccaniso di apertura visto in pianta. La diensione della griglia è di, la distanza

Dettagli

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m Esercizio 1 Un corpo di massa, assimilabile ad un punto materiale, viene lanciato con velocità ~v 0 incognita, non parallela agli assi cartesiani. Quando il suo spostamento in direzione x rispetto alla

Dettagli

ESERCIZIO 1. SOLUZIONI a) Durante il ritorno della molla alla posizione di equilibrio, sul corpo agiscono solo la forza

ESERCIZIO 1. SOLUZIONI a) Durante il ritorno della molla alla posizione di equilibrio, sul corpo agiscono solo la forza Soluzioni scritto del settebre 06 ESERCIZIO Un corpo di assa = 50 g si trova su un piano liscio, appoggiato ad una olla inizialente antenuta copressa di una quantità Δx = 0 c. Ad un certo istante, il sistea

Dettagli

Frequenze proprie di una catena unidimensionale

Frequenze proprie di una catena unidimensionale UNIVERSITA DEGLI STUDI DI CATANIA Dipartiento di Scienze MM FF NN Corso di Laurea di prio livello in Fisica Frequenze proprie di una catena unidiensionale Cristalli e quasicristalli Oscillazioni e onde

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 7 VARIAZIOE DELLA VELOCITA accelerazione Principio d inerzia Un corpo perane nel suo stato di oto rettilineo unifore (o di quiete) a eno che non intervenga una forza esterna (I Legge di

Dettagli

SCHEDA DI LABORATORIO MATERIALI

SCHEDA DI LABORATORIO MATERIALI SCHEDA DI LABORATORIO MATERIALI - Supporto di legno - Rotella etrica (sensibilità: 0,001 ) - Scatola con panni per attutire la caduta - Cellulare con applicazione Sensor Kinetics PREREQUISITI NECESSARI

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 8-9 inaica del punto ateriale 7 Legge fondaentale della dinaica ota la forza possiao deterinare l equazione del oto d r a dt al oviento (accelerazione) risaliao alla forza che lo produce rincipio

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 5/03/019 h (10:30-1:30, Aula G10, Golgi) ESERCITAZIONI DINAMICA (SOLUZIONI)

Dettagli

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( ) " ( 1,50 "10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 "10 2 K.

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( )  ( 1,50 10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 10 2 K. Problei di paragrafo 1 Perché la assa inerziale di un granello di polline per quanto piccola è olto aggiore di quella di una olecola di acqua Perché gli urti sono nuerosissii e la loro intensità e frequenza

Dettagli

Prova scritta di metà corso martedì 30 aprile Figura 1

Prova scritta di metà corso martedì 30 aprile Figura 1 Prova scritta di età corso artedì 30 aprile 2013 Laurea in Scienza e Ingegneria dei Materiali anno accadeico 2012-2013 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tepo a disposizione:

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2014

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2014 Preparazione alle gare di II livello delle Olipiadi della Fisica 014 Incontro su tei di fisica oderna Soario dei quesiti e problei discussi durante l incontro. Testi e soluzioni sono estratti dal sito

Dettagli

Equilibrio delle forze

Equilibrio delle forze Esepi di forze Equilibrio delle forze Dovendo sostenere un lapadario che ha una assa di k e sapendo che le corde a nostra disposizione si spezzano quando sono sollecitate oltre i 00 N; ci si chiede se,

Dettagli

Test a Risposta Multipla (Esempio 3)

Test a Risposta Multipla (Esempio 3) Test a Risposta Multipla (Esepio 3) 1. La quantità (G 2 /) 1/3, dove G è la costante di gravitazione universale, una assa e una costante elastica, ha le diensioni di: [a] una lunghezza ; [b] una forza

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezioni 2/3 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezioni 2/3 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Inoratica TUTORATO DI FISICA Esercizio n Lezioni /3 - Meccanica del punto ateriale Due blocchi di assa 3Kg e 5Kg sono uniti da una une inestensibile

Dettagli

risulta parallela al piano e non c'è attrito quindi la forza risultante che agisce sul

risulta parallela al piano e non c'è attrito quindi la forza risultante che agisce sul ESERCIZI DI DIAMICA RISOLTI egli esercizi che seguono ipotizziao che g= 9,80 /s^2 Es. 1 Un oggetto di assa 10,0 kg che si trova su un piano orizzontale liscio viene sottoposto ad una forza di 40,0 parallela

Dettagli

Nome Cognome Numero di matricola Coordinata. Sesto compito di Fisica Generale 1 + Esercitazioni, a.a Gennaio 2019

Nome Cognome Numero di matricola Coordinata. Sesto compito di Fisica Generale 1 + Esercitazioni, a.a Gennaio 2019 Nome Cognome Numero di matricola Coordinata Sesto compito di Fisica Generale + Esercitazioni, a.a. 07-08 9 Gennaio 09 ================================================================ Premesse da leggere

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE Forza gravitazionale terrestre Tutti i corpi sono soggetti all attrazione gravitazionale da parte della Terra, diretta verso il centro della Terra In prossiità della superficie terrestre la forza di gravità

Dettagli

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 Lo studente descriva brevemente il procedimento usato e inserisca i valori numerici solo dopo aver risolto il problema con calcoli simbolici,

Dettagli

Gli strumenti necessari per lo studio

Gli strumenti necessari per lo studio La potenza di un fucile a olla Sunto E possibile deterinare la potenza di un fucile a olla quando sono note la costante elastica K della olla, la isura d della copressione e la assa del proiettile sparato?

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto.

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto. Moto di caduta di un corpo 1. Preessa Un corpo K, supposto puntifore e di assa, cade verso il suolo da un altezza h. Studiaone il oto. Si tratta allora di deterinare: tutte le forze agenti sul corpo; la

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008 FISI per SIENZE IOLOGIHE,.. 007/008 Prova scritta del 1 luglio 008 1) Meccanica Un corpo di assa 0.4 kg poggia su un gradino d orizzontale di altezza H 1 e coprie di un tratto d 10 c una olla di costante

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009 Copito di Fisica Generale I di Ingegneria CIVILE 009 Giugno 009 Esercizio : Un asse è disposto orizzontalente e passante per il punto O in figura L'asse è perpendicolare al piano della figura Una barretta

Dettagli

Problema 1. m F. che è un sistema di due equazioni e due incognite (a e µ s ). Risolvendo si ottiene:

Problema 1. m F. che è un sistema di due equazioni e due incognite (a e µ s ). Risolvendo si ottiene: 1 Problea 1 Un blocchetto di assa = 1 kg è appoggiato sopra un blocco di assa M = 4 kg e lunghezza d = 0.8, alla sua estreità sinistra (vedi figura). Tra i due blocchi vi è attrito (µ d = 0.6µ s ) entre

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

1 Oscillazioni libere (oscillatore armonico)

1 Oscillazioni libere (oscillatore armonico) C. d. L. Ingegneria Inforatica e delle Telecounicazioni A.A. / Fisica Generale PROCESSI OSCILLATORI Oscillazioni liere (oscillatore aronico) Siao in presenza di un sistea la cui equazione che esprie il

Dettagli

s(t) v(t) 0.83 t Cinematica

s(t) v(t) 0.83 t Cinematica Cineatica Es. 1 Un punto ateriale si uove di oto rettilineo secondo la legge s(t)=10 5t+ 3t 2 (1) Dire di che tipo di oto si tratta. Deterinare la velocità istantanea v(t) del punto ateriale, la sua accelerazione

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde Oscillazioni Definizioni Mo/ aronici Propagazione delle onde Il oto aronico e il oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2015

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2015 Preparazione alle gare di II livello delle Olipiadi della Fisica 015 Incontro su tei di fisica oderna Riccardo Urigu Liceo Europeo Spinelli di Torino Soario dei quesiti e problei discussi durante l incontro.

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Esercizio 1. impulso I, inclinato di 45 rispetto all orizzontale (vedi m

Esercizio 1. impulso I, inclinato di 45 rispetto all orizzontale (vedi m Esercizio 1 Si abbia una assa puntifore sospesa ad un punto fisso O da una olla di costante elastica k avente o lunghezza a riposo nulla. La assa della olla sia trascurabile ed il sistea sia all inizio

Dettagli

Eserciziario di Fisica

Eserciziario di Fisica Eserciziario di Fisica Matteo Parriciatu Problea 1 In uno spettroetro di Depster dei fasci colliati di ioni con carica q = 1 18 C attraversano un selettore di velocitá costituito da due piastre etalliche

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali Oscillatore seplice Vibrazioni aroniche libere o naturali k x Se il corpo di assa è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiao della olla kx

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

Fisica Generale - Modulo Fisica I Ingegneria Meccanica Edile Informatica Esercitazione 4 DINAMICA DEL PUNTO MATERIALE

Fisica Generale - Modulo Fisica I Ingegneria Meccanica Edile Informatica Esercitazione 4 DINAMICA DEL PUNTO MATERIALE isica Generale - Modulo isica I Ingegneria Meccanica Edile Inforatica Esercitazione 4 DINAMICA DEL PUNTO MATEIALE Da1. Una particella di assa si uoe lungo l asse x sottoposta all azione di una forza (t)

Dettagli

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55. acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante

Dettagli

teoria cinetica dei gas Problemi di Fisica teoria cinetica dei gas

teoria cinetica dei gas Problemi di Fisica teoria cinetica dei gas Problei di Fisica teoria cinetica dei gas Calcolare la pressione esercitata dalle olecole di un gas perfetto sapendo che la elocità quadratica edia è pari a 84 /s e che la densità è uguale a 8,9 - kg/.

Dettagli

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m.

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m. ESERCIZIO Due asse = 5 kg e = 0 kg sono inizialente fere su un piano orizzontale liscio e appoggiate agli estrei i una olla i costante elastica k = 000 N/, antenuta copressa. A un certo istante, la olla

Dettagli

Fondamenti di Meccanica 13 febbraio 2007

Fondamenti di Meccanica 13 febbraio 2007 Fondaenti di Meccanica 13 febbraio 2007 C M, R F, 2s D corsoio H y, y p, Si vuole studiare il coportaento dinaico del sistea eccanico rappresentato in figura posto nel piano verticale e azionato da un

Dettagli

1 Simulazione di prova d Esame di Stato

1 Simulazione di prova d Esame di Stato Siulazione di prova d Esae di Stato Problea Risolvi uno dei due problei e 5 dei 0 quesiti in cui si articola il questionario Sia y = f) una funzione reale di variabile reale tale che la sua derivata seconda

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

In questa equazione il primo membro è in generale funzione del tempo, della posizione e della velocità, ovvero: F t x v

In questa equazione il primo membro è in generale funzione del tempo, della posizione e della velocità, ovvero: F t x v Capitolo Dinaica del punto ateriale La dinaica del punto ateriale studia il oto di punti ateriali partendo dalle forze che li originano. Pertanto il problea generale della dinaica è quello di deterinare

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio.

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio. Capitolo Soluzioni. La brusca pendenza del fronte dell ipulso suggerisce un repentino allontanaento dall equilibrio ed un passaggio di velocità da zero (posizione alla base) fino al valore assio positivo

Dettagli

si ottiene (come si può facilmente verificare sostituendo la soluzione proposta nell equazione): 1

si ottiene (come si può facilmente verificare sostituendo la soluzione proposta nell equazione): 1 Prisa: legge di Cauchy Per deterinare la relazione tra l indice di rifrazione e la lunghezza d onda delle onde e- si utilizza un odello classico olto seplice, valido per atoi in un gas a che è counque

Dettagli

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come Esperienza n. Forze elastiche Cenni teorici Si dicono elastici i corpi che quando vengono deforati con una copressione o dilatazione reagiscono con una forza di richiao proporzionale alla deforazione.

Dettagli

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un corpo di massa m posto alla base di un piano inclinato di un angolo θ,

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Cap Moti oscillatori

Cap Moti oscillatori N.Giglietto A.A. 005/06- Cap 16.1- Moti oscillatori - 1 Cap 16.1- Moti oscillatori Alcuni tipi di forze o alcune situazioni danno luogo a dei moti di tipo oscillante ovvero a dei moti che si ripetono regolarmente.

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m ESERCIZIO 1 Un corpo di massa m = 100 g è collegato a uno degli estremi di un filo ideale (inestensibile e di massa trascurabile) di lunghezza L = 30 cm. L altro capo del filo è vincolato ad un perno liscio.

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Esercizio 15 Capitolo 3 Pagina 73

Esercizio 15 Capitolo 3 Pagina 73 Esercizio 15 Capitolo 3 Pagina 73 Le due auto in figura, di assa = 1400 kg ed = 1800 kg, entrano in collisione con le elocità ostrate. seguito dell urto restano agganciate tra loro e scorrono sul anto

Dettagli

Fluidodinamica applicata Esercizi Finali

Fluidodinamica applicata Esercizi Finali ESERCZO (NS MENSONE CONOTTO) U Condotto infinito di sezione x Usando l analisi diensionale, studiao la dipendenza del gradiente della pressione dagli altri paraetri del flusso: f (,, U, ) dove U velocità

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Esercizi di Formulazione

Esercizi di Formulazione Politecnico di Milano, Corso di Modellistica e Siulazione Esercizi di Forulazione 1 Il sisografo 1.1 il problea di un sisografo perfettaente orizzontale coe quello rappresentato in - gura. Il odello deve

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 19/02/2019

Soluzione degli esercizi dello scritto di Meccanica del 19/02/2019 Soluzione egli esercizi ello scritto i eccanica el 19/02/2019 Esercizio 1 Una guia è coposta a ue tratti curvilinei senza attrito, connessi a un tratto rettilineo orizzontale scabro BC, con coefficiente

Dettagli

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0.

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0. ESERCIZIO 1 Due blocchi di massa m 1 e m sono connessi da un filo ideale libero di scorrere attorno ad una carrucola di massa trascurabile. I due blocchi si muovono su un piano inclinato di un angolo rispetto

Dettagli

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito)

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito) Cap. 6 Problea 67: potenza per spingere una cassa a elocità costante (con attrito) DATI elocità della cassa costante, orizzontale, di odulo = 0.6 /s assa della cassa = 95 g coefficiente di attrito dinaico

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli