1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE"

Transcript

1 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE

2 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro) clienti A B C D V F H S T AS CC FF N. clienti 110 Scatterplot dei dati (diagramma di dispersione) Prezzo 2

3 3 Associazione tra variabili quantitative Si vede che i punti del diagramma si dispongono secondo una nuvola allungata tanto da permettere di affermare che all aumentare di una variabile (es. prezzo) l altra variabile tende a diminuire ma se non si conosce a fondo il fenomeno, questi dati non ci dicono se c è una relazione causa-effetto fra le due variabili. I casi potrebbero essere 2: 1. i clienti tendono ad essere meno numerosi quando il prezzo è più alto e viceversa (relazione: prezzo nr. clienti); 2. quando ci sono gite di gruppi di turisti (e quindi i clienti sono più numerosi), l albergo è disposto a fissare prezzi più bassi (relazione: nr. clienti prezzo)

4 4 Associazione tra variabili quantitative Lo scatterplot ci fa capire se esiste una associazione statistica fra due caratteri quantitativi. Chiedersi se esiste un associazione fra due variabili quantitative equivale a chiedersi: al variare di una, anche l altra tende a variare? (es. se una aumenta, l altra ha la tendenza ad aumentare? a diminuire?) Quando all aumentare aumentare di una variabile, l altra laltratendetende a diminuire si parla di associazione discordante Quando all aumentare di una variabile, ibil l altral tende ad aumentare si parla di associazione concordante Quando al variare di una l altra tende a non variare si parla di assenza di associazione

5 5 Associazione tra variabili quantitative Quale dei due scatterplot mostra una associazione più stretta? Perché? (a) (b) 5 5

6 6 Associazione tra variabili quantitative Risposta intuitiva: iti l associazione èm maggiore nel grafico (b)p perché la nuvola è più stretta. (a) (b) 6

7 7 Associazione tra variabili quantitative E cosa dire dei grafici i seguenti? Quale mostra una associazione i più stretta fra le due variabili? (a) (b) 7

8 8 Associazione tra variabili quantitative Esiste un indice statistico che esprime il grado di associazione fra due variabili? SI. Per capire meglio, riprendiamo la definizione i i di associazione: i al variare di una variabile anche l altra tende a variare, Ci vuole una misura di variabilità congiunta delle variabili

9 9 La covarianza Vi ricordate quale era un indice di variabilità per un variabile quantitativa? SI, la varianza var( N N x ) = ( xi x ) = ( xi x )( xi x ) N N i= 1 i= 1 Per misurare l associazione fra la variabile x e la variabile y si usa la covarianza cov( x, y ) N 1 = cov( y,x ) = ( N N i= 1 x i x )( y i y ) 9

10 10 La covarianza Segno della covarianza cov( x, y ) N = 1 ( x x )( y y N ) i i i=1 Se prevalgono gli addendi positivi il segno sarà positivo, altrimenti negativo 10

11 <0 Quadrante SW <0 <0 ( xi x )( yi y ) variabile y NW NE y y i y y i SW SE x i x x variabile x 11

12 NW NE SW SE DISCORDANZA NW ( i xi x )( y y ) < ( i xi x )( y y ) < 0 0 NE ( i xi x )( y y ) > SE SW x x )( y y ) 0 ( i i > 0 I punti si trovano in maggioranza nei quadranti NW e SE covarianza NEGATIVA (associazione discordante ) 12

13 NW NE SW SE CONCORDANZA NW SE ( xi x )( yi y ) < 0 NE ( xi x )( yi y ) > 0 ( i xi x )( y y ) < 0 SW ( i xi x )( y y ) > 0 I punti si trovano in maggioranza nei quadranti NE e SW covarianza POSITIVA (associazione concordante) 13

14 14 La covarianza LA COVARIANZA 1. Assume valore 0 quando al variare di una variabile l altra rimane costante 2. Assume il massimo in valore assoluto positivo quando i punti sono 2. Assume il massimo in valore assoluto positivo quando i punti sono tutti allineati su una retta crescente e negativo quando i punti sono tutti allineati su una retta decrescente

15 15 La covarianza y y x x costante al variare di y x y costante al variare di x 1. La covarianza assume valore 0 quando al variare di una variabile l altra rimane costante 15

16 16 La covarianza 2. Assume il massimo in valore assoluto positivo quando i punti sono tutti allineati su una retta crescente e negativo quando i punti sono tutti allineati i su una retta decrescente

17 17 La covarianza Valore della covarianza quando c è perfetta relazione lineare crescente cov( x, y ) = sqm( x ) sqm( y ) TUTTI i punti allineati i su una retta crescente (sqm: scarto quadratico medio) 17

18 18 La covarianza Valore della covarianza quando c è perfetta relazione lineare decrescente cov( x, y ) = sqm( x ) sqm( y ) TUTTI i punti allineati i su una retta decrescente (sqm: scarto quadratico medio)

19 19 La covarianza La covarianza fra due variabili non può dirci i se il legame è stretto o no perché il valore della covarianza dipende dall ordine di grandezza delle variabili (e anche dalla loro unità di misura). STATURA (in STATURA (in PESO m) cm) (Kg.) Covarianza (statura in m,,p peso)=0,5456 metri x Kg Covarianza (statura in cm, peso)=54,56 cm x Kg

20 20 Il coefficiente di correlazione Coefficiente di correlazione: e dato dalla covarianza diviso il suo valore massimo r xy = valore cov( x, y ) massimo di cov( x, y ) In particolare: r xy = xy cov( sqm( x ) x, y ) sqm( y ) variabilità congiunta di x e y variabilità di x indipendentemente da y variabilità di y indipendentemente da x

21 21 Il coefficiente di correlazione 1 r xy 1

22 22 Il coefficiente di correlazione Si ricava dalla covarianza dividendola per il suo valore massimo. E quindi un numero puro che varia da -1 a +1. Ci indica la strettezza del legame lineare fra le due variabili (cioè quanto sia plausibile approssimare la nuvola dei punti con una retta) 1. Assume valore 0 quando al variare di una variabile, l altra rimane costante 2. Assume valore prossimo a 0 quando la nuvola di punti non ha una forma approssimabile da una retta (non orizzontale né verticale) 3. Assume valore 1 quando i punti sono tutti allineati su una retta crescente e valore -1 quando i punti sono tutti allineati su una retta decrescente 4. r xy = r yx

23 23 Il coefficiente di correlazione 1. Esso assume valore 0 quando al variare di una variabile l altra rimane costante y y x x costante al variare di y x y costante al variare di x

24 24 Il coefficiente di correlazione 2. Esso assume valore prossimo a 0 quando la nuvola di punti non ha una forma approssimabile da una retta c è incorrelazione (assenza di dipendenza lineare) che non vuol dire indipendenza. Infatti nel grafico a destra si evidenzia un legame quadratico tra i dati

25 25 Il coefficiente di correlazione 3. Esso assume valore 1 quando i punti sono tutti allineati i su una retta crescente e valore -1 quando i punti sono tutti allineati su una retta decrescente Coeff. Correlazione =1 Coeff. Correlazione= -1 25

26 26 Il coefficiente di correlazione 4. r xy = r yx y x x r xy = r yx = -0.6 y

27 27 Correlazione correlazione sul web

28 28 Associazione tra variabili quantitative 2 domande: Quali valori del coefficiente di correlazione fanno ritenere che si sia associazione? A che cosa serve sapere che è presente un associazione fra due variabili?

29 29 Associazione tra variabili quantitative Quali valori del coefficiente di correlazione fanno ritenere che ci sia associazione? Ai nostri scopi : Associazione i negativa Associazione i positiva (discordante) (concordante)

30 30 Associazione tra variabili quantitative A che cosa serve sapere che è presente una associazione o fra due variabili? Se due variabili sono associate, conoscendo il valore di una si possono fare delle congetture abbastanza precise sul comportamento dell altra

31 31 Associazione tra variabili quantitative La y tende ad assumere valori in questo intervallo S l l i i Se la x assume valori in questo intervallo

32 32 Associazione tra variabili quantitative Correlazione e Regressione L obiettivo è l analisi della dipendenza tra 2 variabili quantitative: y (variabile risposta) x (variabile esplicativa) Analizziamo come i valori di y tendano a variare in funzione dei diversi valori di x Una formula matematica può sintetizzare (in modo adeguato e non) il legame che esiste tra x e y per scopi di previsione e controllo La più semplice funzione è la retta che descrive una relazione lineare tra x e y: y = a + bx Esempio: Su un gruppo di pazienti viene rilevato il numero di visite per disagi mentali (crisi d ansia, depressione, attacchi di panico) e il numero degli eventi di particolare rilevanza (gravi e/o felici) che hanno segnato la loro vita. Si vuole indagare se esiste un legame lineare tra disagi (risposta) ed eventi (esplicativa).

33 33 Associazione tra variabili quantitative Si dispone dell elenco dei dati: n coppie di modalità relative ai caratteri quantitativi X=#eventi e Y=#disagi Graficamente: ( x, y ), ( x, y ),...,( x, y ),...,( x, y ) i i n n La nuvola dei punti appare caratterizzata da un trend lineare

34 34 Retta di regressione Sembra plausibile l idea di descrivere il trend della nuvola dei punti con una retta, e approssimare la realtà con un modello matematico, ma quale retta scegliere?

35 35 Retta di regressione La retta dei minimi i iquadrati e i y { = y ŷ i i i { i ŷy i ˆ Cov ( X, Y ) b =, ˆ a M( Y) ˆ bm( X) Var ( X ) = La retta ai mini quadrati è quella che rende minima la somma dei residui al quadrato 2 e = ( y yˆ) 2 valori teorici yˆ i = aˆ + bx ˆ i parametri x y bˆ cov(, ) = var( x) aˆ = y bx ˆ

36 36 Retta di regressione Bontà di adattamento 2 var( yˆ ) R = = r var( y) il coefficiente di determinazione R 2 è il quadrato del coefficiente di correlazione è il raporto tra varianza spiegata e varianza totale, pertanto indica quanta parte dll della variabilità totale è spiegata dl dal modello dll varia tra 0 (non adattamento) e 1 (perfetto adattamento della retta ai dati) indica se il legame lineare ipotizzato per descrivere la relazione tra X e Y è plausibile 2

37 37 Retta di regressione Nell esempio, l equazione della retta è Alcuni risultati ˆy = x Significato di b: il numero di visite aumenta di 1.427per ogni evento importante in più nella vita dl del paziente; Significatoifi di a: anche con0 eventi eccezionali il modello suggerisce 3 sedute!!! Previsione: qual è il numero di disagi che il modello stimato suggerisce per un paziente che dichiara una vita segnata da 5 eventi? ŷ = * 5 = 10 Controllo: quanti eventi avrà subito, secondo il modello stimato, t un paziente ( ) che dichiara di aver avuto 9 disagi? = * x x = = L indice R 2 =0.705 indica un buon adattamento della retta ai dati

38 38 Retta di regressione Esempio 1 Ad alcuni laureati è stato somministrato un questionario per verificare se coloro che hanno completato gli studi con maggior successo hanno realmente più facilità ad inserirsi nel mondo del lavoro. Dai questionari ricaviamo le informazioni riguardanti il tempo X (in mesi) trascorso dalla laurea fino alla stipula del primo contratto di lavoro ed il voto conseguito alla laurea Y. Tali dati sono riportati di seguito: X Y Determinare il grado di dipendenza lineare; 2. Calcolare i coefficienti della retta di regressione, scegliendo opportunamente la variabile dipendente, e commentarne il significato; 3. Valutare la bontà di adattamento del modello ai dati.

39 39 Retta di regressione Cov r 1 N ( X, Y ) x y n M ( X ) M ( Y ) = = ( X Y ) R 2 = i= 1 j= 1 ( X, Y ) ( X ) Var( Y ) i j ij Cov , = = = Var b = ( X, Y ) = = ( Y ) ( X ) b M ( ) = = Cov Var a = M Y 2 [ r( X, )] = = Y X= Y Interpretare, commentare, disegnare i dati e la retta!

40 40 Retta di regressione Esempio 2 Si pensa che esista una relazione lineare tra la cifra spesa per S.Valentino ed il numero di anni di durata della relazione nella coppia. I dati seguenti sono riferiti a 9 coppie di innamorati Durata rapporto (anni) Cifra spesa per S. Valentino (in migliaia i di euro) Utilizzare un indice opportuno per confermare che esiste discordanza d tra i due caratteri; 2. Determinare i parametri della retta di regressione assumendo come variabile dipendente la cifra spesa; 3. Secondo il modello del punto 1, a quanto ammonterà la spesa di una coppia nel critico settimo anno di relazione? 4. Valutare la bontà di adattamento della retta ai dati.

41 41 Retta di regressione Un po di calcoli li Tot X Y X Y X Y = = i = ( X ) = xi = M y Var ( X ) = x i M ( X ) = 6.33 = M i ( Y ) y = i= 1 9 i= i i= Var ( Y ) y M ( Y ) = = Cov( X Y ) x y M ( X ) M ( Y ) = = = 9, 9 1 = 9 i= 1 i 9 i= 1 Cov( X, Y ) 1.89 b = = = a = M ( Y ) bm ( X ) = = Var( X ) y = = Cov ( ) ( X. Y ) r X, Y = = = R = r( X, Y ) Var( X ) Var( Y ) [ ] = i Y= X

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Analisi delle relazioni tra due caratteri

Analisi delle relazioni tra due caratteri Analisi delle relazioni tra due caratteri Le misure di connessione misurano il grado di associazione tra due caratteri qualsiasi sotto il profilo statistico (e non causale in quanto non è compito della

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Statistica, CLEA p. 1/68 Anno Accademico 2014-2015 Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Monia Lupparelli monia.lupparelli@unibo.it http://www2.stat.unibo.it/lupparelli

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Strumenti statistici per l analisi di dati genetici

Strumenti statistici per l analisi di dati genetici Strumenti statistici per l analisi di dati genetici Luca Tardella + Maria Brigida Ferraro 1 email: luca.tardella@uniroma1.it Lezione #1 Introduzione al software R al suo utilizzo per l implementazione

Dettagli

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 COMPITO 4 (3 CREDITI) Nome: Cognome: Matricola: ISTRUZIONI Gli esercizi che seguono sono di tre tipi: Domande Vero/Falso: cerchiate V o

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 24 Il mercato dei beni Prof. Gianmaria Martini Domanda ed offerta Uno degli schemi logici fondamentali dell analisi economica

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Risolvi le seguenti equazioni e disequazioni fra [ 0 ; 2 π ]

Risolvi le seguenti equazioni e disequazioni fra [ 0 ; 2 π ] IV A GAT PRIMA VERIFICA DI MATEMATICA 3 ottobre 0 Risolvi le seguenti equazioni e disequazioni fra [ 0 ; π ].. 3... 6. 7. 8. Risultati:. = π/6 e = 7π/6. =π/ ; =π/6 ; =π/6 3. =π/3 ; =π/3. =π/3 ; =π/3. π/

Dettagli

Esame di Stato 2015 - Tema di Matematica

Esame di Stato 2015 - Tema di Matematica Esame di Stato 5 - Tema di Matematica PROBLEMA Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare.

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. Appunti di Statistica DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. PROCESSO STATISTICO L indagine statistica comprende

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Scheda n. 10: PCA - parte seconda

Scheda n. 10: PCA - parte seconda Scheda n. 10: PCA - parte seconda November 25, 2008 1 Il piano principale Con il comando: > biplot(pca) si ottiene un immagine del piano principale, con la proiezione dei dati e dei vecchi assi (le vecchie

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 LA PREVISIONE DELLA DOMANDA Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 MANUFACTURING PLANNING & CONTROL SYSTEM Resource planning Production planning Demand management Master production

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Mario frequenta la facoltà di Biologia dell Università di Vattelapesca. Vuole avere un buon voto

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) La Regressione Multipla La Regressione Multipla La regressione multipla

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Nome: Alberto Cognome: De Sole Matricola: 01234567890 Codice 9784507811 Esercizio Risposta Voto 1 a b c d e 1 2 V

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CONVENZIONE SULLE CIFRE SIGNIFICATIVE La convenzione usata sul troncamento delle cifre è troncare

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

I COSTI PROF. MATTIA LETTIERI

I COSTI PROF. MATTIA LETTIERI I COSTI ROF. MATTIA LETTIERI Indice 1. LE FUNZIONI DI COSTO --------------------------------------------------------------------------------------------------- 3 2. I COSTI DELL IMRESA NEL BREVE ERIODO

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x).

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x). Problema 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto di conversazione. Indicando con

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli