Esercitazione 4. Aprile 2019

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 4. Aprile 2019"

Transcript

1 Esercitazione Aprile ALCUNE NOTE Versione aggiornata! Dal momento che questa esercitazione è stata svolta a più puntate, vi prego (soprattutto chi non ha potuto partecipare alle ore supplementari) di prestare attenzione alle aggiunte e correzioni che sono state fatte di volta in volta. Nel corso di questa soluzione ho indicato i punti che sono stati oggetti di correzioni e commenti. Integrate e le vostre note e se non vi torna qualcosa non esitate a contattarmi! Inoltre, visto che l ho scritta un po velocemente, se trovate qualche errore segnalatemelo, grazie! In particolare TURNO : come vi anticipavo per mail, attenti alla correzione sulla mediana che abbiamo affrontato negli ultimi minuti dell ultima lezione (punto c dell Esercizio 7). Trovate la stessa cosa anche al punto f dell Esercizio (non con la mediana ma con i terzili, ma è lo stesso modo di ragionare). Spero vi risulti chiaro. TURNO : per voi la funzione generatrice dei momenti NON è ancora stata fatta ma la trovate comunque in questa esercitazione (visto che è l ho fatta con il TURNO nell ora supplementare). Riprendetela quando la farete a lezione. in fondo trovate l esercizio della prova parziale dell anno scorso con una traccia di soluzione. Fatelo come preparazione. Esercizio Sia data la seguente funzione k x, x 5 k x, x p(x) k x altrove Buon lavoro! a) Si ricavi il valore del parametro k che rende p(x) una funzione di probabilità per una v.c. discreta X. b) Si ricavi E(X) e var(x) c) Si ricavi la funzione di ripartizione di X e se ne faccia il grafico d) Si calcolino le seguenti probabilità P (X ), P (X.5), P (X.5), P (X > ), P ( < X ), P ( < X X )

2 a) Affinchè p(x) risulti essere funzione di probabilità dobbiamo imporre che e che Per la a) deve essere k. a) p(x), x,..., 5 b) 5 p(x) x OSSERVAZIONE: in classe mi sembra di aver scritto p(x) (trovando quindi una condizione più stringente per k). Non è sbagliato (e può capitarvi di trovarlo scritto anche così) ma non è necessario imporre anche che siano, dal momento che con b) chiediamo che tutte le probabilità sommino a (e implicitamente che siano tutte minori di ; in altre parole, affinchè la loro somma sia, nessuna può essere superiore a ). Quindi è sufficiente p(x). Per la b) si ha Riscriviamo quindi k + k + k + k + k k x, x 5 p(x) x, x x altrove / / / / / 5 b) E(X) 5 x p(x) x p() + p() + p() + p() + 5 p(5) var(x) E[(X E(X)) ] 5 [x E(X)] p(x) x ( ) + ( ) + ( ) + ( ) + (5 ) oppure (assolutamente equivalente) var(x) E(X ) E(X) 5 x p(x) x

3 c) P (X x) i x p(x i) F () i p(x i) F () i p(x i) p() F () i p(x i) p() + p() + F () i p(x i) p() + p() + p() F () i p(x i) p() + p() + p() + p() F (5) i 5 p(x i) p() + p() + p() + p() Quindi x < x < x < 6 x < 8 x < 5 x

4 d) P (X ) P (X.5) P (X.5) F (.5) P (X > ) P (X ) F () P ( < X ) F () F () P ( < X, X ) P ( < X X ) P (X ) P (X ) P (X ) / 8/ Esercizio Sia data la seguente funzione k x + x p(x) k (x ) x /6 x altrove a) Si ricavi il valore del parametro k che rende p(x) funzione di probabilità per una v.c. discreta X. b) Si ricavi la funzione di ripartizione di X se ne tracci il grafico. c) Si ricavino la media e la varianza di X. d) Si consideri la variabile casuale Y X +. Si calcolino media e varianza di Y. TRACCIA di soluzione a) In questo caso è immediato verificare p(x) perchè sostituendo x la funzione di probabilità diventa k x, x p(x) /6 x altrove che è sempre positiva (ovviamente sia k che /6 sono positivi). Imponendo che (fatelo) p(x) x 5 otteniamo k ±. Vanno bene entrambi i valori! b) c) E(X).75 e var(x) 5/8. d) Vi ricordo il risultato teorico x < 5 x < x < x

5 E(aX + b) ae(x) + b var(ax + b) a var(x) Nel nostro caso quindi Esercizio Sia data la seguente funzione E(Y ) E(X) +.5 var(y ) k/ x /6 x p(x) k / x altrove a) Si ricavi il valore della costante k che rende p(x) funzione di probabilità per una v.c. discreta X e se ne tracci il grafico. b) Si determini la funzione di ripartizione di X se ne tracci il grafico. c) Si calcolino il valore atteso E(X) e la varianza var(x). d) Sia Y + X. Si ricavino le funzioni generatrici dei momenti di X e di Y utilizzando la nota relazione tra le due f.g.m. Verificare i risultati ottenuti al punto c). e) Si determini il momento terzo standardizzato. f) Si calcolino i terzili e si rappresentino sui grafici precedenti TRACCIA di soluzione a) k perchè: Per la condizione a) p(x) x,, dobbiamo imporre solo che il primo pezzo sia positivo (gli altri due pezzi sono sempre positivi). Quindi vogliamo che da cui k k. Dalla condizione b) x p(x) otteniamo che k k ovvero dobbiamo risolvere l equazione di secondo grado k + k 5 da cui k (ok) e k 5 b) (che non rispetta la condizione ricavata da a) k ). x < 8 x < 7 6 x < x 5

6 c) E(X).875 e var(x).. d) Funzione generatrice dei momenti è definita come m X (t) E(e tx ) che nel nostro caso (variabile discreta) diventa m X (t) E[e tx ] e tx p(x) x e t p() + e t p() + e t p() e t 8 + et 6 + et 6 Dalla teoria abbiamo che chiamata Y bx + a si può ricavare la funzione generatrice dei momenti di Y partendo da quella di X usando il seguente risultato Quindi nel nostro caso m Y (t) e at m X (bt) m Y (t) e t m X (t) [ e t e t 8 + et 6 + ] e6t 6 Per ricavare valore atteso e varianza dalla generatrice ricordiamo che la derivata r esima della fgm valutata in ci dà il momento r-esimo. Quindi per calcolare il valore atteso (momento primo) facciamo la derivata della fgm e la valutiamo in, m X(t) e t 8 + et 6 + et 7 6 E(X) m X(t) t Per la varianza in modo del tutto analogo calcoliamo il momento secondo (derivata seconda valutata in ) e poi sottraiamo il quadrato del valore atteso. m X(t) e t et + et 6 6 6

7 e) Il momento terzo standardizzato è ( E var(x) E(X ) E(X ) m X(t) t E(X ) (.875). ) [ (X ) ] X E(X).875) E var(x). (.) / E[(X.875) ] (.) / E[X X(.875 ) X (.875)] [ E(X (.) / ) E(X) 6.565E(X ) ] Valore atteso e momento secondo li abbiamo già dai punti precedenti. Manca da determinare E(X ). Potete usare la fgm come prima (derivata terza,...) oppure la semplice uguaglianza Finitelo voi! E(X ) x p(x) x f) I terzili sono i quantili di ordine / e /. Per il primo terzile: x / min {x tale che F (x) /} Ci dobbiamo chiedere per quali x la F (x) è maggiore o uguale a /. Guardiamo come è fatta la F scritta al punto b). Dal secondo pezzo (che vale /8) la F (x) è maggiore di / (/8 > /!) quindi la F è maggiore di / per gli x da in poi. Il minimo è! Quindi Per il secondo terzile: x / min{x } x / min {x tale che F (x) /} Ci dobbiamo chiedere per quali x la F (x) è maggiore o uguale a / e poi prendere il minimo di queste x. Sia /8 che 7/6 sono minori di / quindi l unico pezzo in cui la F è maggiore di / è quando è uguale a, per x da in poi. Il minimo è! Quindi Esercizio Sia data la funzione x / min{x } kx x / < x f(x) / kx < x altrove a) Si ricavi il valore di k che rende f(x) una funzione di densità per una v.c. X e se ne tracci il grafico. b) Si ricavi E(X) e var(x) 7

8 c) Dopo aver ricavato la funzione di ripartizione F (x), si determinino il primo quartile e la mediana, fornendone il significato. a) Affinchè f(x) sia funzione di densità devono verificarsi a) f(x) x (NON f(x) ) ATTENZIONE soprattutto a chi non ha partecipato alla lezione supplemenatre in cui abbiamo ripreso e commentato questa condizione a). Integrando + f(x)dx b) + f(x)dx kxdx + dx + ( ) kx dx kx + x ( ) + x kx ( ) k + ( ( ) + k 6 + k ) k + 5 k + da cui k. Con k abbiamo che f(x) x (condizione a)). La densità diventa quindi x/ x / < x f(x) / x/ < x altrove

9 b) E(X) + x xf(x)dx dx + x + x + ( ) + xdx + ( + x ( ) x dx x ) ( ) var(x) + x f(x)dx E(X) x x dx + x ( dx + x x c) La funzione di ripartizione per variabili casuali continue è Nel nostro caso quindi Per valori di x < Per x x f(t)dt x F (x) dt x t dt t x x ) dx ( ) Abbiamo integrato il primo pezzo della funzione di densità f fino ad x. Per < x x f(t)dt t x dt + dt t + t x + x x Abbiamo integrato il primo pezzo di f da a e il secondo pezzo fino a x. Per < x In sintesi abbiamo x f(t)dt t + t + t dt + ) x ( t t dt + x ( ) t dt + + x x + x + x 5

10 x < x x x x < x + x 5 < x x > d) Mediana La mediana x.5 è il quantile di ordine.5 (o secondo quartile). Per calcolarla analiticamente dobbiamo risolvere x.5 F (.5) Consideriamo la funzione di ripartizione per < x (cioè dove vale x/ /) e risolviamo Otteniamo x.5. x.5 Significato: almeno metà della popolazione ha un valore di X /. Primo quartile (è il quantile di ordine.5). Stessa cosa ma con p.5. Considero la funzione di ripartizione per x e ottengo x.5 da cui x.5. Significato: il 5% della popolazione ha un valore X, il 75% della popolazione ha un valore di X. Esercizio 5 Si consideri la seguente funzione di ripartizione della v.c. continua X { x F X (x) k ( e x ) x > a) Si dimostri che il parametro k può assumere solo il valore. b) Si calcoli la funzione di densità f X (x).

11 c) Si calcoli la mediana di X e si commenti il valore ottenuto. d) Si calcoli P (X > X > ) TRACCIA di soluzione a) Tra le proprietà della funzione di ripartizione Quindi dobbiamo imporre che lim x + k lim x + ( e x ) e x va a quando x + quindi la quantità tra parentesi tende a e il tutto lim x + k Imponiamo quindi che da cui k. k b) f(x) df (x) dx d dx ( e x ) xe x c) Mediana è uguale a.5887 (equazione esponenziale!) d).5 Esercizio 6 Sia data la seguente funzione di riaprtizione x < F X (x) x x < x / x k x > k a) Si ricavi il valore di k che rende questa funzione una funzione di ripartizione per una v.c. continua X e se ne tracci il grafico. b) Si ricavi la funzione di densità f(x) e se ne ricavi il garfico. c) Calcolare P (X >. X >.7) d) Si ricavi il valore atteso di X. a) Per le proprietà della funzione di ripartizione dobbiamo avere che lim x lim x + lim F (x + h) F (x) h

12 ovvero deve essere continua nei salti. Quindi dobbiamo avere che in k sia continua, cioè k (abbiamo imposto che in k il secondo pezzo della F e il terzo siano uguali). Ricaviamo k b) Per ricavare la densità dalla ripartizione bisogna derivare. Derivando si ottiene f(x) df (x) dx x x < f(x) x / altrove

13 c) P (X >., X >.7) P (X >. X >.7) P (X >.7) P (X >.) P (X.) P (X >.7) P (X.7) F (.) F (.7) (. /).7 (.7) d) Esercizio 7 Si consideri la seguente funzione E(X) + x xf(x)dx xx dx + x dx + / / + x / 8 x dx xdx { x k y x, e y,, p(x, y) altrimenti a) Si supponga che p(x, y) sia la funzione di probabilità di una variabile casuale bivariata discreta. Si dimostri che il valore di k può essere solo pari a. b) Si ricavi la funzione di ripartizione di Y, e se ne tracci il grafico. c) Si calcolino la mediana di Y e E(Y ). d) Si determini la probabilità P (X > Y < ). a) Se è funzione di probabilità allora deve valere che p(x, y) ovvero da cui b) Riscriviamo (x,y) k + k + k + k + k + k k. X - Y tot / / / / / / / / tot 6/ / 6/ Notiamo che sommando le colonne otteniamo la distribuzione marginale di Y e sommando le righe la marginale di X. La funzione di probabilità di Y è quindi (dalle colonne)

14 6/ y p(y) / y 6/ y Da cui la funzione di ripartizione F Y (y) è y < 6 F Y (y) y < y < y c) E(Y ) 8. (fatelo voi) Per la MEDIANA ATTENZIONE: Correggete rispetto a quanto ho detto in classe (TURNO ). Per il TURNO non l abbiamo fatto in classe ma guardatelo. La mediana di Y è definita come y.5 min{y tali che F (y).5} Dobbiamo individuare per quali y la F è maggiore di.5 e poi prendere il minimo di questi y. Partiamo dal secondo pezzo della F e 6 > /. quindi da in poi la F sarà maggiore di y.5 min{y tali che F (y).5} min{y } La mediana è! Per mettervi alla prova e vedere se avete capito mostrate che il terzo quartile è. d) P (X >, Y < ) P (X > Y < ) P (Y < ) + 6 +

15 Esercizio della Prova parziale 8 - Soluzioni Sia data la funzione { x < f(x) x x a) Si verifichi che la funzione f è una funzione di densità. Notate che f non dipende da nessun parametro. Dobbiamo solo verificare che verifichi le condizioni a) b). Verificare a) è immediato (/x è sempre positivo) quindi dovete solo verificare b) risolvendo l integrale e mostrando che fa. b) La funzione di ripartizione è c) Il nono decile è x..5 d) + x dx x < F X (x) x x P (X > X > 5).5 5

Esercitazione Maggio 2019

Esercitazione Maggio 2019 Esercitazione 6 9 Maggio 019 Esercizio 1 E noto che la durata di un determinato tipo di Hard Disk per Server segue la legge esponenziale con media pari a 8 anni. a) Calcolare la probabilità che un Hard

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Correzione terzo compitino, testo A

Correzione terzo compitino, testo A Correzione terzo compitino, testo A 24 maggio 2 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

Correzione terzo compitino, testo B

Correzione terzo compitino, testo B Correzione terzo compitino, testo B 4 maggio 00 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Variabili aleatorie unidimensionali: v.a. non notevoli discrete e continue indici, momenti e funzione generatrice dei momenti

Variabili aleatorie unidimensionali: v.a. non notevoli discrete e continue indici, momenti e funzione generatrice dei momenti Sessione live #4 Variabili aleatorie unidimensionali: v.a. non notevoli discrete e continue indici, momenti e funzione generatrice dei momenti Lezioni CD: - 3-4 Esercizio Consideriamo le seguenti funzioni:

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie.

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. 9 e 11 Dicembre 2008 Richiami di teoria Come si calcolano le densità marginali Esercizi Una v.a. n-dimensionale (o vettore aleatorio

Dettagli

Secondo scritto. 8 luglio 2010

Secondo scritto. 8 luglio 2010 Secondo scritto 8 luglio 010 1 Parte 1 Esercizio 1.1. Facciamo riferimento alle pagine e 3 del libro di testo. Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna fare attenzione,

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità Esercitazione del /5/8 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Somma di variabili aleatorie indipendenti. Caso discreto. Siano X e Y due variabili aletaroie discrete

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009 MATEMATICA E STATISTICA CORSO A III COMPITINO Marzo 9 SOLUZIONI. () Sia X una variabile aleatoria binomiale con valor medio uguale a 5/; la varianza di X può valere? Giustificare la risposta. Il valor

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (55AA) A.A. 28/9 - Esercitazione 28--9 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

(iii) sia Y := X 2, si trovi la distribuzione di Y. (i) anché (0.1) sia una densità di probabilità deve vericarsi. 1 = Cxe x2. 2 1[0, ] (x)dx = Cxe x2

(iii) sia Y := X 2, si trovi la distribuzione di Y. (i) anché (0.1) sia una densità di probabilità deve vericarsi. 1 = Cxe x2. 2 1[0, ] (x)dx = Cxe x2 1 Esercizi settimana 6 Esercizi applicati Esercizio 1. Sia X una variabile aleatoria assolutamente continua (VAAC) con densità Si calcoli: f X (x) = Cxe x2 2 1[, ] (x), x, C >. (.1) (i) la costante C >

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

CP110 Probabilità: esame del 20 giugno 2017

CP110 Probabilità: esame del 20 giugno 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 6-7, II semestre giugno, 7 CP Probabilità: esame del giugno 7 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una

Dettagli

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCITAZIONE

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCITAZIONE MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCITAZIONE 5-3-09 ES1-Se la probabilità di colpire un bersaglio è 1/5 e rimane tale ad ogni tentativo, calcola la probabilità che, sparando

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Statistica Matematica A

Statistica Matematica A Statistica Matematica A ENG A-Z Esercitatori: dott.ssa E. Rosazza - dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O, A, O, A, A,

Dettagli

Variabili aleatorie n-dim

Variabili aleatorie n-dim Sessione Live #6 Settimana dal 6 maggio al giugno 003 Variabili aleatorie n-dim Funzioni di ripartizione e di densità (F.D.R. e f.d.d.) congiunte e marginali, valori medi e momenti misti, funzione generatrice

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Esercizio. Foglio di esercizi 4 - Aprile 9 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Un punto viene scelto a caso uniformemente nel cerchio di raggio 3 centrato nell origine. Dette

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI, RICHIAMI Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione Nel

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

Esercitazione del 23/10/2006

Esercitazione del 23/10/2006 Insegnamento di Probabilità ed Inferenza Statistica Prof. P.F. Perri Esercitazione del //6 Esercizio Si consideri la funzione.5 per f ( ).5 per altrove ) Stabilire se f ( ) può ritenersi una funzione di

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia Variabili aleatorie continue: la normale Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia 2015-16 1 / 40 Distinzione Le variabili aleatorie possono essere 1 discrete 2 continue 2

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a.

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. La media MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. X n = 1 n è detta media. n X i, i=1 In altre parole, se le X 1,...,X n sono il risultato

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Correzione Esercitazione 2

Correzione Esercitazione 2 Correzione Esercitazione Esercizio. Per contare correttamente i casi favorevoli all uscita del 9 e all uscita del bisogna considerare i modi in cui si possono ottenere le loro scomposizioni: in particolare,

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modelli di variabili casuali Un modello di v.c. è una funzione f(x) che associa ad ogni valore x di una v.c. X la corrispondente probabilità. Obiettivo: calcolo della probabilità per tutti i valori che

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B P A B P B A x si giunge al concetto di distribuzione condizionata della v.a.

Dettagli

V. c. multidimensionali e distribuzioni di funzioni di v.c.

V. c. multidimensionali e distribuzioni di funzioni di v.c. Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1 ANNO ACCADEMICO 7/8 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/8 Esercizio. I giocatori A e B giocano con un mazzo di 4 carte, senza le figure, con le seguenti regole: - ad ogni turno

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

COGNOME E NOME MATRICOLA FIRMA. METODI MATEMATICI PER L INGEGNERIA DELL INFORMAZIONE (Comunicazioni Elettronica a.a.

COGNOME E NOME MATRICOLA FIRMA. METODI MATEMATICI PER L INGEGNERIA DELL INFORMAZIONE (Comunicazioni Elettronica a.a. ..................................................................................................................... COGNOME E NOME MATRICOLA FIRMA METODI MATEMATICI PER L INGEGNERIA DELL INFORMAZIONE

Dettagli

Esercizi settimana 9. Esercizi applicati. Esercizio 1. Sia f denita da. f(t) = 0 t 0, con α, θ > 0. Si calcoli il tasso istantaneo di guasto denito da

Esercizi settimana 9. Esercizi applicati. Esercizio 1. Sia f denita da. f(t) = 0 t 0, con α, θ > 0. Si calcoli il tasso istantaneo di guasto denito da 1 Esercizi settimana 9 Esercizi applicati Esercizio 1. Sia f denita da f(t) = { αθ α (θ+t) α+1 t >, t, con α, θ >. Si calcoli il tasso istantaneo di guasto denito da e si dica se r è crecente. r(t) :=

Dettagli

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica Statistica Corso Base (Serale) Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Variabili casuali Esercizio 1. Determinare la distribuzione di probabilità e la funzione di ripartizione della variabile

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

2. (3p) Qual è la probabilità che un cliente acquisti un componente difettoso?

2. (3p) Qual è la probabilità che un cliente acquisti un componente difettoso? 1 COMPITO A Esercizio 1 Una ditta produce componenti meccaniche di precisione in lotti che contengono l 1% di componenti difettosi. Ogni componente viene testato prima di essere venduto al cliente, con

Dettagli

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico).

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). VARIABILI CASUALI 1 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l esito di una estrazione del Lotto; il risultato di una

Dettagli

Statistica. Lezione : 17. Variabili casuali

Statistica. Lezione : 17. Variabili casuali Corsi di Laurea: a.a. 2018-19 Diritto per le Imprese e le istituzioni Scienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili casuali Lezione : 17 Docente: Alessandra Durio 1 Contenuti

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Claudia Furlan Anno Accademico 006-007 Ringrazio Carlo Gaetan, Nicola Sartori e Aldo Solari per il materiale, aggiunte e

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del /0/0 Istituzioni di Calcolo delle Probabilità David Barbato Funzione di ripartizione Sia F X una funzione da in. consideriamo le seguenti condizioni: F X è non decrescente lim ( ) x F

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1

Dettagli

Esercitazione 1. 6 Marzo 2019

Esercitazione 1. 6 Marzo 2019 Esercitazione 1 6 Marzo 019 Esercizio 1 Su un collettivo di 100 appartamenti ubicati nella stessa zona della città vengono rilevati i seguenti caratteri: X 1 affitto mensile pagato dal locatario (in Euro)

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 2 5.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. La v.c. Normale: uso delle tavole E noto che un certo tipo di dati si distribuiscono secondo una gaussiana di media 10

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli