0 a a determinare la forma di Jordan e la matrice di cambio da base, al variare di a si discuta la stabilità di F al variare di a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "0 a a determinare la forma di Jordan e la matrice di cambio da base, al variare di a si discuta la stabilità di F al variare di a"

Transcript

1 Compito di SISTEMI E MODELLI 09/02/8: PARTE on è ammesso l uso di libri, quaderni o calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione. Consegnare solo la bella copia. LE SOLUZIOI DELLA PARTE E QUELLE DELLA PARTE 2 VAO COSEGATE SU FOGLI PROTOCOLLO DISTITI Ex.. [5 pti Un sistema di irrigazione è costituito dal terreno, un serbatoio di irrigazione ed un serbatoio di recupero, ed è soggetto alle seguenti regole il serbatoio di recupero è alimentato da un flusso che proviene dal terreno, proporzionale alla quantità di acqua nel terreno secondo un coefficiente a =, ed alimenta il serbatoio di irrigazione con un flusso proporzionale alla quantità di acqua nel serbatoio di recupero secondo un coefficiente b = il serbatoio di irrigazione alimenta il terreno con un flusso proporzionale alla quantità di acqua nel serbatoio stesso, secondo un coefficiente non costante, ma inversamente proporzionale alla quantità d acqua nel terreno secondo un coefficiente c = (in pratica, un misuratore di umidità del terreno controlla il flusso entrante, di modo che più il terreno è umido, meno acqua lo irrighi) Si scriva un modello di stato (non-lineare) per tale sistema, evidenziando la sua struttura compartimentale, dove l uscita y rappresenta l acqua totale presente nel sistema. Si determini infine il punto di equilibrio del sistema corrispondente ad y(0) = 8. Ex.2. [4 pti Dato il sistema, dipendente da un parametro reale a seguente a 0 a(a ) ẋ = 0 a 0 x 0 a a determinare la forma di Jordan e la matrice di cambio da base, al variare di a si discuta la stabilità di F al variare di a Ex.3. [5 pti Dato il sistema Σ, dipendente da un parametro reale a x (t + ) = ax (t) + ( a)x 3 (t), x 2 (t + ) = ax 3 2(t) el suo linearizzato nell intorno di x eq = 0, sia Σ LI, si studi la stabilità di x eq = 0 al variare di a reale, quando possibile, ricorrendo all analisi degli autovalori (sia per Σ che per Σ LI ) all equazione di Lyapunov (solo per Σ LI ), utilizzando Q = nei casi critici (solo per Σ), alla funzione di Lyapunov V (x) = x 2 + x2 2 [ b 0 con b scelto opportunamente 0 Ex.4. [4 pti Dato il compartimentale descritto dal grafo, con uscita y = x 5 (Attenzione: le frecce del nodo 3 sono errate, e sono tutte USCETI, non entranti) u(t)" 2" 3" 4" 5" y(t)" si determinino le matrici K, G, H si determino tutti i chiusi, in particolare il massimale e minimali si determinino tutti i punti di equilibrio sapendo che x(0 ) = 0 e che u(t) = δ(t), si determini y(+ )

2 Compito di SISTEMI E MODELLI 09/02/8: PARTE 2 on è ammessa la consultazione di libri o quaderni e l uso di calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione. Consegnare solo la bella copia. LE SOLUZIOI DELLA PARTE E QUELLE DELLA PARTE 2 VAO COSEGATE SU FOGLI PROTOCOLLO DISTITI CO LA PARTE 2 COTEUTA I O PIU DI 4 FACCIATE Ex.5. [4 pti Dato il sistema compartimentale descritto dal grafo, supponendo che sia x(0 ) = 0, u(t) = δ(t) e y(t) = x 2 (t), si discuta la sua identificabilità a priori. Ex.6. [5 pti Si consideri il seguente modello che descrive la cinetica di eliminazione renale di un farmaco y i = 2Ad2 i 2A + B + ɛ i > 0 dove ɛ i sono variabili aleatorie Gaussiane con componenti indipendenti, a media nulla e varianza α. Sono disponibili le seguenti misure: (d, y ) = (, 2); (d 2, y 2 ) = ( 2, ) si calcoli il valore di α per il quale la varianza dello stimatore a massima verosimiglianza del parametro A sia pari a 5; si calcoli la stima a massima verosimiglianza dei due parametri A e B del modello con α fissato al valore trovato al punto precedente. Ex.7. [6 pti Si considerino variabili aleatorie discrete x, x 2,..., x indipendenti ed equidistribuite, con: Si sa che E[x i = V ar(x i ) = λ. P rob(x i = x λ) = λx x! e λ. Si calcoli la stima a massima verosimiglianza di λ (λ ML ); si verifichi l efficienza dello stimatore λ ML. 2

3 Soluzione Ex.. Indicando con x, x 2, x 3 l acqua rispettivamente nel terreno, nel serbatoio di irrigazione en quello di recupero, le equazioni sono del tipo ẋ = x x 2 x, ẋ 2 = x x 2 + x 3, ẋ 3 = x x 3, y = x + x 2 + x 3 che possono essere riscritte in forma pseudo-lineare (nel senso che la matrice F dipende da x) come x 0 ẋ = 0 x x, y = [ x 0 che evidentemente corrisponde ad un compartimentale chiuso (anche se non-lineare), e si ha facilmente ẏ = 0 che implica y(t) = y(0) = 8 (rimane costante nel tempo). La ricerca dei punti di equilibrio conduce facilmente a x 2 = x 2, x 3 = x, x = qualsiasi dei quali l unico compatibile con y(t) = 8 si ottiene risolvendo x 2 +2x 8 = 0, che conduce alle soluzioni x = 4 (priva di senso) ed x = 2, da cui x eq = [ T Soluzione Ex.2. La matrice è triangolare a blocchi con sulla diagonale un blocco pari ad [ a ed un altro blocco a sua volta triangolare con a sulla diagonale, per cui ha λ = a con ν = 3. Se a = 0, la matrice è nulla ed è quindi già in Forma di Jordan (3 miniblocchi con λ = 0) e quindi F J = F, T = I. Se invece a 0, si ha che ker(f ai) è generato dall unico vettore e se a, mentre se a = è generato da e, e 3. el primo caso abbiamo necessariamente un unica catena di autovettori generalizzati lunga 3, mentre nel secondo una lunga 2 ed una lunga. Valutando (F ai) 2 el suo ker, si scopre che esso è generato da e, e 3 nel primo caso, mentre ovviamente esso consiste di tutto lo spazio di stato se a =. Quindi le catene sono, ad esempio e 2 ae 3 a 2 (a )e (se a 0, ), e 2 e 3, e (se a = ) da cui facilmente a 2 (a ) 0 0 a 0 T = 0 0 F J = T F T = 0 a (se a 0, ) 0 a a T = 0 0 F J = T F T = 0 (se a = ), T = I, F = F J = 0 (se a = 0) Ora, se a > 0 c è instabilità (autovalori positivi), se a < 0 stabilità asintotica (autovalori negativi), se a = 0 l autovalore nullo ha molteplicità unitaria nel polinomio minimo, quindi c è stabilità semplice ma non asintotica. Soluzione Ex.3. Il linearizzato è caratterizzato da [ a 0 F = 0 0 λ = 0, a per cui stabilità asintotica per a < enstabilità per a > (per entrambi i sistemi). ei casi a = ± si conclude per la stabilità semplice del lineare, e nulla si può dire per il non-lineare (caso critico). Risolvendo Lyapunov (per Σ LI ) si ottiene [ [ P F F b 0 x y P F = Q, Q =, P = x( a 2 ) = b, y = 0, z = 0 y z el caso a < basta scegliere b = per ottenere P, Q > 0 e quindi la stabilità asintotica. el caso a > nulla si può dire, comunque si scelga b, ma nel caso a = si riesce ad ottenere almeno una soluzione (in realtà infinite) se e solo se b = 0. Infatti in tal caso ( a = e b = 0) P = [ x 0 0, x = qualsiasi 3

4 Ma la scelta x > 0 (ad esempio x = ) rende P > 0, Q 0, da cui la stabilità almeno semplice e per Krasowskii solo semplice, in quanto = ker(q) = span(e ), ed è facile vedere che ci sono infinite traiettorie (x (t) = x 0 se a =, x (t) = ( ) t x 0 se a =, per ogni x 0, ed x 2 (t) = 0) dentro. Usando la V (x) proposta nei casi critici (a = ±) si ottiene V (x) = x 2 2( x 4 2) 0 se a =, V (x) = 4x 4 ( x 2 ) x 2 2( x 4 2) < 0 se a = Quindi nel secondo caso (definita negativa in un intorno di x = 0) si ha la stabilità asintotica, nel primo almeno quella semplice, ma anche in questo caso Krasowskii porta facilmente a concludere per la stabilità solo semplice. Soluzione Ex.4. La matrici sono facilmente le seguenti K = , G = 0 0, H = [ Con le frecce sbagliate (entranti) le matrici sarebbero state diverse, non ci sarebbe stato alcun chiuso, alcun punto di equilibrio diverso da x = 0, e sarebbe ovviamente stato y(+ ) = x(+ ) = 0. Con le frecce corrette, il chiuso massimale è facilmente (, 2, 4, 5), quelli minimali (, 2) e (4, 5), e non ci sono altri chiusi. I punti di equilibrio sono combinazioni lineari a coefficienti non-negativi dei punti di equilibrio corrispondenti ai chiusi minimali, vale a dire v = [ T, v 2 = [ T el compito originario, anche la posizione dell ingresso sarebbe stata sul nodo 3 e non 2 (con ovvie ripercussioni sulla matrice G). L effetto dell impulso sarebbe stato quello di rendere x(0 + ) = [ T, dopodichè il nodo 3 si svuota, el suo contenuto viene equamente distribuito tra esterno, chiuso minimale e chiuso minimale 2, vista l uguaglianza dei relativi coefficienti di flusso. Pertanto 3 è il contenuto asintotico di ciascun chiuso minimale, e quindi x(+ ) = 6 [ 0 T y(+ ) = 6 Invece, nell esercizio proposto con tale figura sbagliata, quello che cambia è x(0 + ) = [ T, x(+ ) = 2 [ T y(+ ) = 0. Soluzione Ex.5. Si ha θ θ 2 0 K = θ (θ 2 + θ 3 ) 0, G = 0, H = [ θ 3 θ 4 0 K è triangolare a blocchi, e dalla struttura di G, H solo il primo blocco 2 2 viene coinvolto nel calcolo della funzione di trasferimento, che risulta pertanto [ [ s + θ θ W (s) = [ 0 2 θ = θ s + (θ 2 + θ 3 ) 0 s 2 + s(θ + θ 2 + θ 3 ) + θ θ 3 da cui il sommario esaustivo θ, θ + θ 2 + θ 3, θ θ 3. Dalla prima abbiamo il valore di θ, ed ora dalla terza anche quello di θ 3, e questi due valori permettono il calcolo univoco anche di θ 2 dalla seconda. Tuttavia, θ 4 non appare mai, quindi il sistema non è identificabile a priori. In effetti, θ 4 apparirebbe nel polinomio caratteristico, ma causa cancellazione zero/polo del fattore (s + θ 4 ), tale parametro non appare in W (s). Soluzione Ex.6. Possiamo riformulare il problema come una regressione lineare in quanto il modello puo essere riscritto nel seguente modo: y i = A(2 2) + B + ɛ i, [ [ [ [ 0 A 2 α 0 da cui è semplice ricavare: Θ =, θ =, y =, Σ =. La matrice della covarianza 2 B 0 α/4 dell errore di stima è data da: (Θ T Σ Θ) = α [

5 Da cui si ottiene: α = 20/7. Riguardo al primo punto, e stata ritenuta corretta anche la seguente interpretazione del modello delle misure: y i = 2Ad2 i 2A + B + ɛ i, > 0. Anche in questo caso possiamo riformulare il problema come una regressione lineare in quanto il modello puo essere riscritto nel seguente modo: da cui è semplice ricavare: Θ = dell errore di stima è data da: Da cui si ottiene: α =. Quindi Σ = I. [ 0, θ = 2 y i = A(2 2) + B + ɛ i [ A, y = B (Θ T Σ Θ) = α [ 2 [ 5 2 2, Σ = In ogni caso la stima a massima verosimiglianza dei due parametri si ottiene risolvendo: [ [ ˆθ = = (Θ ÂˆB T Σ Θ) Θ T Σ 3 y = 2 Soluzione Ex.7 La verosimiglianza risulta: Da cui: la derivata è: ponendola uguale a zero: l λ = L(λ x) = i= λx i x i! e λ, x i > 0 log( λx i x i! ) + λ = log(λ) x i i= l k λ = λ i= x i + i= ˆλ = i= x i i= [ α 0. La matrice della covarianza 0 α log( x i! ) + λ che è effettivamente punto di minimo visto che la derivata seconda è > 0: 2 l k = λ 2 λ 2 i= x i Per verificare l efficienza dello stimatore calcoliamo sia la varianza che l inversa della matrice di informazione di Fisher: i= V ar( x i ) = λ Per Fisher: E[( L(λ x) λ ) 2 = E[ λ 2 x i = λ Poichè la varianza della stima coincide con l inversa della matrice di Fisher, lo stimatore è efficiente. i= 5

Compito di SISTEMI E MODELLI 24/01/18: PARTE 1

Compito di SISTEMI E MODELLI 24/01/18: PARTE 1 Compito di SISTEMI E MODELLI 4//8: PARTE Non è ammesso l uso di libri, quaderni o calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza

Dettagli

Compito di SISTEMI E MODELLI 24/06/19: PARTE 1

Compito di SISTEMI E MODELLI 24/06/19: PARTE 1 Compito di SISTEMI E MODELLI 4/6/9: PARTE on è ammesso l uso di libri, quaderni o calcolatrici programmabili Le risposte vanno giustificate Saranno rilevanti per la valutazione anche l ordine e la chiarezza

Dettagli

guarisce, gli altri rimangono malati; s(t) rappresenta il numero di sani non vaccinati: di questi una percentuale 1 4

guarisce, gli altri rimangono malati; s(t) rappresenta il numero di sani non vaccinati: di questi una percentuale 1 4 Compito di SISTEMI E MODELLI 27/06/8: PARTE Non è ammessa l uso di libri, quaderni o calcolatrici programmabili Le risposte vanno giustificate Saranno rilevanti per la valutazione anche l ordine e la chiarezza

Dettagli

si tracci il grafo corrispondente si determinino tutti i sottosistemi chiusi (in particolare massimale e minimali) e la molteplicità (eventuale)

si tracci il grafo corrispondente si determinino tutti i sottosistemi chiusi (in particolare massimale e minimali) e la molteplicità (eventuale) Compito di SISTEMI E MODELLI 3/7/7: PARTE Non è ammessa l uso di libri, quaderni o calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza

Dettagli

é richiesto (con riferimento a x eq = 0) di

é richiesto (con riferimento a x eq = 0) di Compito di SISTEMI E MODELLI 8//9: PARTE Non è ammesso l uso di libri, quaderni o calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio 2013 - A.A. 2012-2013 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizio Si considerino 3 popolazioni P, P, P 3 che vivono nelle regioni A, B, C le cui numerosità sono

Dettagli

MOVIMENTO DEI SISTEMI LINEARI

MOVIMENTO DEI SISTEMI LINEARI MOVIMENTO DEI SISTEMI LINEARI I sistemi continui x& = Ax + Bu Formula di Lagrange 3 3 e At = I + At + A t + A t! 3! Nei sistemi lineari, quindi x( t) = x ( t) + x ( t) l Inoltre x l (t) e x f (t) sono

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 000 Tempo assegnato: ore e 30 minuti PRIMO ESERCIZIO [7 punti] 1 Dimostrare che, per ogni naturale n, ciascuna

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del --08 Esercizio. 0 punti Studiare al variare del parametro µ R con µ, la stabilità dell origine per il sistema ẋ = µy + y x 3 x 5 ẏ = x

Dettagli

Esercitazione Sistemi e Modelli n.6

Esercitazione Sistemi e Modelli n.6 Esercitaione Sistemi e Modelli n.6 Eserciio Si consideri un allevamento di conigli con il numero di maschi uguale al numero delle femmine. Come variabili di stato si consideri il numero di coppie di conigli

Dettagli

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )?

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )? Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4/2/26 Esercizio I sistemi discreti con un ingresso e un uscita Σ = (F, g, H ) e Σ 2 = (F 2, g 2, H 2 ) sono entrambi raggiungibili

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio Parte 3, 1 Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) Stabilità - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Esame di Controlli Automatici 30 Giugno 2016

Esame di Controlli Automatici 30 Giugno 2016 . (8) Si consideri il sistema Esame di Controlli Automatici Giugno 26 { ẋ = 4 2 2 f ( )( 2 + 2 2 2 4) ẋ 2 = 2 f 2 ( 2 )( 2 + 2 2 2 4) in cui le funzioni continue f e f 2 hanno lo stesso segno dei loro

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

SOLUZIONE della Prova TIPO B per:

SOLUZIONE della Prova TIPO B per: SOLUZIONE della Prova TIPO B per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010 COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 3 Luglio Esercizio. Si consideri il seguente sistema a tempo continuo: ẋ(t) = F x(t) = x(t), y(t) = Hx(t) = [ ] x(t), t. i) Si progetti,

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1 a.a. 2005-2006 Esercizi. Autovalori e autovettori. Soluzioni. Sia A = e sia x =. Dire se x è autovettore di A. Se si dire per quale 8 autovalore. Sol. Si ha =. Il vettore non è della forma λ dunque 8 29

Dettagli

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 5 febbraio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-15 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 9 giugno 203 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A Tempo a disposizione: 1 ora e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

Algebra lineare. Prova scritta - 5 febbraio 2019

Algebra lineare. Prova scritta - 5 febbraio 2019 Algebra lineare Anno accademico 8/9 Prova scritta - 5 febbraio 9 Nome: Cognome: Numero di matricola: Canale: A-L (Fiorenza-De Concini) M-Z (Mondello) Esercizio Punti totali Punteggio 8 8 3 8 4 8 Totale

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

Stabilità per i sistemi dinamici a tempo discreto

Stabilità per i sistemi dinamici a tempo discreto Parte 3, 1 Stabilità per i sistemi dinamici a tempo discreto Parte 3, 2 Stabilità: Le definizioni delle proprietà di stabilità per i sistemi dinamici a tempo discreto sono analoghe a quelle viste per i

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2008 Soluzioni Domanda 1 Con riferimento al seguente sistema: ẋ 1 = x 1 ẋ 2 = 2 x 1 x 2 u ẋ 3 =x 1 5 x 2 x 3 y=3 x 1 2 x 2 1.1 Valutare

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

Identificazione dei Modelli e Analisi dei Dati 6/5/1993

Identificazione dei Modelli e Analisi dei Dati 6/5/1993 Identificazione dei Modelli e Analisi dei Dati 6/5/1993 3. Siano date due V.C. X e Y, di cui è supposta nota la ddp congiunta. Sia Xˆ (Y) uno stimatore di X basato sull'osservazione di Y. Ci si prefigge

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 008 PARTE A Esercizio 1. Si consideri il sistema di equazioni differenziali in R (x, y) ẋ = x 3x + y 3y +

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011 PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 200/20 07/06/20 () In R 3 [t], lo spazio vettoriale dei polinomi nella variabile t di grado al piú 3, sia u = t 2 5t + 6 e w = t 3 + t 2 t. (a) Determinare una

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Nome e Cognome:........................... Matricola...........................

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) settembre 013 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola:

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola: Esercizi 3, 1 Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Stabilità per sistemi a tempo continuo

Dettagli

Stabilità per sistemi a tempo continuo

Stabilità per sistemi a tempo continuo Esercizi 3, 1 Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Calcolo di Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo

Dettagli

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata.

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata. Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare 18 febbraio 1 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 0 Settembre 005 PARTE A Esercizio 1. Nel piano cartesiano Oxy con asse y verticale ascendente, un punto materiale P di massa m è

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/09/2016 - Soluzioni Prof Marcello Farina Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Spiegare

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008 COMPITO DI ANALISI DEI SISTEMI 4 Aprile 28 - AA 27/28 Esercizio Si consideri il sistema a tempo continuo non lineare descritto dalla seguente equazione di stato: ẋ (t) = f (x (t),x 2 (t),u(t)) = ax (t)

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Esercitazione su Filtraggio Adattativo (17 Giugno 2008)

Esercitazione su Filtraggio Adattativo (17 Giugno 2008) Esercitazione su Filtraggio Adattativo 17 Giugno 008) D. Donno Esercizio 1: Stima adattativa in rumore colorato Una sequenza disturbante x n è ottenuta filtrando un processo bianco u n con un filtro FIR

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Compito di MD 4 Giugno 2014

Compito di MD 4 Giugno 2014 Compito di MD 4 Giugno 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive di motivazioni,

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) settembre 013 Tema A Tempo a disposizione: ore e mezza Calcolatrici, libri e appunti non sono ammessi Ogni esercizio

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini A.A.2008/09 - C.d.L. in Chimica 6 Novembre 2009 Prof. Elena Comparini f(x) = x x 2 x +, Esercizio 2. Data la funzione dell esercizio precedente, calcolare l area della regione di piano compresa tra il

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli