METODI MATEMATICI PER LA FISICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "METODI MATEMATICI PER LA FISICA"

Transcript

1 MEODI MAEMAICI PER LA FISICA PROVA SCRIA - 6 SEEMBRE 6 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNEGGIO: 6/3) Si calcoli l integrale S arccos() + 3 Suggerimento È utile iniziare con una integrazione per parti SOLUZIONE DEL PRIMO PROBLEMA Facendo un integrazione per parti integrando in particolare il rapporto di polinomi /( + 3) si ha S arccos() + 3 dove si è posto P ( + 3) π 8 P ( + 3) La funzione integranda di P è polidroma e ha punti di diramazione in ± Consideriamo allora l integrale P (z + 3) z dove Γ ε è il percorso chiuso ad "osso" mostrato in figura Im(z) Γ ε z Γ ε L ε + γ ε + γ ε Re(z) L ε z 6 settembre 6 page of 9

2 ale percorso è l unione di due tratti rettilinei e due archi infinitesimi cioè Γ ε L + L γ γ + con L ε ± {z : z ± iεsen(ε) ( + η η) η ε cos(ε)} γ ε ± {z : z ± εe iθ θ (ε π ε)} L integranda ha due poli semplici indicati in figura con il simbolo " " nei punti z ±i 3 Studiando la radice e scegliamo le fasi dei due fattori come z f (z)f (z) f (z) ± z ± z e iθ θ ( π) θ ( π π) in questo modo tagli di f (z) e f (z) sono entrambi in avanti quindi la loro sovrapposizione fa sì che risulti come unico taglio il segmento ( ) Studiamo il comportamento della radice sui tratti rettilinei L ± ε In particolare si hanno L ε + : θ + θ z L ε : θ π θ + z e iπ I contributi sugli archi sono nulli nel limite ε ovvero lim ε (z + 3) z ciò consegue dai limiti uniformi lim ε γ ε ± z (z + 3) z In definitiva lim ε P lim ε Γ ε (z + 3) z P ( + 3) Per il teorema dei residui si ha anche lim iπ Res z z + Res z z ε (z + 3) z (z + 3) z (z + 3) z Γ ε ne consegue che l integrale P può essere ottenuto dalla somma dei residui P iπ Res z z + Res z z (z + 3) z (z + 3) z 6 settembre 6 page of 9

3 Al fine di calcolare i residui è necessario valutare la radice che compare nell integranda tenendo conto delle scelte delle fasi Nel polo z i 3 si ha z ( + i 3) ( 3) e i arctan( 3)+arctan( 3) e i π/3 π/3 }{{}}{{} f (z ) f (z ) il primo angolo è θ e deve essere definito in ( π) il secondo è θ che è invece definito in ( π π) Allo stesso modo nel polo z i 3 avremo z ( i 3) ( + 3) e i arctan( 3)+arctan( 3) e i 5π/3+π/3 }{{}}{{} f (z ) f (z ) dove θ essendo definito in ( π) deve essere fissato a 5π/3; mentre θ vale π/3 poiché come già detto è definito in ( π π) Alla luce di questi risultati i residui sono uguali infatti Res z z (z + 3) z Res z z (z + 3) z i 3 4i 3 i 3 ( ) 4i 3 L integrale P vale P iπ Res z z + Res z z iπ (z + 3) z (z + 3) z i 3 π 3 da cui il risultato finale S π 8 P π 8 π 4 3 π 4 3 SECONDO PROBLEMA (PUNEGGIO 6/3) Si calcoli il residuo nell origine della funzione SOLUZIONE DEL SECONDO PROBLEMA f (z) (z + )4 sen(z ) z 99 È facile dedurre che l origine rappresenta un polo di ordine 97 per la funzione f (z) ne consegue che se si volesse ottenere il residuo con la formula integrale di Cauchy sarebbe necessario calcolare la derivata 96-esima della funzione f (z) z 97 Per quanto questa sia una strada percorribile la lunghezza e la tediosità del conto la rendono quanto mai dispendiosa in tempo e sforzo intellettivo L altra possibilità è quella di calcolare il coefficiente C della serie di Laurent della funzione centrata nell origine sfruttando lo sviluppo noto della funzione seno Ovvero si ha (z + )4 f (z) () k z(k+) (k + )! z4 + 8z 3 + 4z + 3z + 6 () k z(k+) (k + )! z 99 k z 99 k 6 settembre 6 page 3 of 9

4 Possiamo considerare cinque serie di Laurent una per ognuno dei termini del polinomio a numeratore e ottenere il coefficiente C totale come somma dei coefficienti corrispondenti di ciascuna serie Le cinque serie sono: f (z) k () k z(k+) j k C () z j + (k + )! + 8 k () k z(k+) 98 j () k z(k+) 96 j (k + )! + 4 k (k + )! + 6 () k z(k+) 99 (k + )! k C () z j + C (3) z j + C (4) z j + il coefficiente cercato è C C () + C () + C (3) + C (4) + C (5) Per ottenere C () procediamo come segue il coefficiente ha la forma C () ()k (k + )! j () k z(k+) 97 j (k + )! C (5) z j dove k deve essere scelto in in modo tale che l esponente corrispondente (k +) 95 sia uguale a ovvero k deve verificare l equazione (k + ) 95 da cui Per C () si ha la forma e l equazione per k k + 47 k 3 C () 47! 8 ()k (k + )! C () (k + ) 96 (k + ) 95 C () il coefficiente è nullo poiché questa equazione non ha soluzione in Per il terzo e quarto coefficiente si ottiene un risultato analogo infatti le corrispondenti equazioni non hanno soluzioni ovvero Il quinto infine (k + ) 97 k + 48 C (3) (k + ) 98 (k + ) 97 C (4) 6 ()k (k + )! C (5) non è nullo l equazione che lo definisce è (k + ) 99 quindi Il residuo cercato è k + 49 k 4 C (5) 6 49! C C () + C (5) 47! ! 47! settembre 6 page 4 of 9

5 ERZO PROBLEMA (PUNEGGIO 6/3) Usando la formula integrale di Cauchy si calcolino gli integrali M f (z) R Re f (z) I con z z f (z) z + z + z Im f (z) SOLUZIONE DEL ERZO PROBLEMA Al fine di usare la formula integrale di Cauchy è necessario scrivere il modulo quadro la parte reale e quella immaginaria in forma analitica ovvero come espressioni dipendenti solo della variabile z senza quindi fare uso della variabile complessa coniugata z Ciò è possibile grazie al fatto che sulla circonferenza unitaria si ha l identità z /z Per le tre quantità cercate avremo f (z) f (z)f (z) z + z + z + z + z + z + /z + /z + z + z + z Re f (z) f (z) + f (z) Im f (z) f (z) f (z) i Gli integrali sono M R I z z z z + z + + /z + /z + z + z + /z /z i z4 + z 3 + z + z + z z4 + z 3 z iz f (z) z + z + z iπ d z + z + iπ z z Re f (z) z 4 + z 3 + z + z + z iπ d z 4 + z 3 + z + z + iπ z z Im f (z) z 4 + z 3 z iz π d z 4 + z 3 z π z z 6 settembre 6 page 5 of 9

6 QUARO PROBLEMA (PUNEGGIO 7/3) Siano { u k } N k e {λ k} N k gli insiemi degli autovettori ortonormali e autovalori dell operatore normale  definito nello spazio di Hilbert a dimensione finita E N Si dimostri che l operatore ˆB j  + u j v definito in termini di un dato autovettore u j e un generico v E N diverso dal vettore nullo e non autovettore di  ha gli stessi autovalori di  ad eccezione del j-esimo che vale λ j + v u j Ovvero detto {β k } N k l insieme degli autovalori di ˆB j si ha β k λ k + δ k j v u j k N Nel caso particolare in cui l operatore  definito in E 3 sia rappresentato dalla matrice A si costruisca la matrice B j A + u j v scegliendo opportunamente l indice j e il vettore v affinché tutti gli autovalori di B j siano uguali ovvero si abbia massima degenerazione SOLUZIONE DEL QUARO PROBLEMA L insieme di autovettori { u k } N k rappresenta una base ortonormale dello spazio E N la rappresentazione rispetto a tale base dell operatore ˆB j è data dalla matrice B j di elementi (B j ) k m u k ˆB j u m u k  + u j v u m δ k m λ m + δ k j v u m k m N In dettaglio la matrice B j ha la forma λ λ B j v u v u λ j + v u j v u N λ N tutti gli elementi diagonali coincidono con quelli di A ad eccezione del j-esimo che ha il termine aggiuntivo v u j inoltre tutti gli elementi non diagonali sono nulli ad eccezione di quelli della j-esima riga Ne consegue che l equazione secolare è λ β det(b j β I) det dai cui si ottiene che gli autovalori sono λ β λ j + v u j β λ N β β k λ k + δ k j v u j k N N (λ k + δ k j v u j β) k 6 settembre 6 page 6 of 9

7 Nel caso particolare della matrice A gli autovalori si ottengono come soluzioni dell equazione λ det(a λi) λ λ e sono Gli autovettori ortonormali corrispondenti u 6 (λ + ) [λ( λ) + ] λ λ λ 3 u u 3 3 Per ottenere tre autovalori uguali è necessario modificare il terzo sommando -3 quindi il vettore v dovrà essere tale da avere prodotto scalare con con u 3 uguale a -3 Consideriamo la forma generale v y z il prodotto scalare è v u 3 v u y + z è quindi sufficiente scegliere 3 3 e y z per avere il prodotto cercato In questo caso la matrice B 3 è 3 3 B 3 A + u 3 v Verifichiamo che ci sia massima degenerazione calcolando gli autovalori di B 3 ovvero risolvendo l equazione secolare in β 3 β det(b 3 β I) det β (β + ) 3 β si hanno tre soluzioni coincidenti gli autovalori sono tutti e tre uguali a - la matrice B 3 è completamente degenere QUINO PROBLEMA (PUNEGGIO 5/3) Si verifichi che la funzione senh() cosh(y) G( y) cosh() senh(y) < y y definita in ( π) ( π) rappresenta la funzione di Green dell operatore differenziale ˆD d 6 settembre 6 page 7 of 9

8 SOLUZIONE DEL QUINO PROBLEMA Per verificare quanto richiesto consideriamo l equazione differenziale ˆD u() f () dove u() e f () sono rispettivamente la funzione incognita e la funzione d ingresso Se G( y) è la funzione di Green la soluzione deve essere esprimibile come u() G( y)f (y)d y cosh() senh(y)f (y)d y sinh() cosh(y)f (y)d y Dimostriamo che una funzione così definita è soluzione dell equazione applicando su di essa dell operatore differenziale ˆD u() ˆD d d d cosh() senh(y)f (y)d y cosh() senh(y)f (y)d y sinh() cosh(y)f (y)d y sinh() cosh(y)f (y)d y senh() senh(y)f (y)d y cosh() senh()f () cosh() cosh(y)f (y)d y + senh() cosh()f () senh() senh(y)f (y)d y cosh() senh(y)f (y)d y senh ()f () cosh() senh(y)f (y)d y u() cosh() cosh(y)f (y)d y u() u() senh() cosh(y)f (y)d y + cosh ()f () u() senh() cosh(y)f (y)d y + f () u() } {{ } u() f () Ne consegue che G( y) rappresenta la funzione di Green dell operatore ˆD SESO PROBLEMA (PUNEGGIO 5/3) Si dimostri che la serie m e iπm rappresenta la serie di Fourier rispetto al sistema della fasi della distribuzione periodica di periodo > D() k δ( + k ) 6 settembre 6 page 8 of 9

9 SOLUZIONE DEL SESO PROBLEMA La distribuzione D() è per costruzione periodica con periodo infatti [ / /] e m si ha D( + m ) k δ( + k + m ) {k k m} k δ( + k ) D() Consideriamo la distribuzione D() nell intervallo [ / /] per cui il sistema delle fasi da utilizzare è ϕk () e iπk k infatti rappresenta un sistema ortonormale e completo per le funzioni della classe L ( / /) La serie di Fourier è D() k C k ϕ k () C k (ϕ k D) dove è il simbolo Hurwitz È facile vedere che i coefficienti di Fourier sono tutti uguali a / infatti C k (ϕ k D) / / ϕ k ()D() / / e iπk / D() / e iπk δ() nell ultimo integrale si considera solo il termine con k della serie che definisce D() in quanto tutti gli altri sono nulli nell intervallo di integrazione [ / /] Ne consegue che come volevasi dimostrare la serie completa è D() k C k ϕ k () k e iπk [ / /] Ovviamente l identità può essere estesa a tutto poiché le funzioni ϕ k () sono periodiche con lo stesso periodo di D() 6 settembre 6 page 9 of 9

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 LUGLIO 7 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati:. la correttezza del risultato ottenuto e della procedura utilizzata;.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - GENNAIO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 7/) Si calcoli l integrale J Suggerimento: Si faccia attenzione al residuo

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 2018

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 2018 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 18 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: 1 la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - SETTEMBRE 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale in valore principale P = Pr x sen(x) x

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 20 FEBBRAIO 2019

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 20 FEBBRAIO 2019 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - FEBBRAIO 9 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 24 FEBBRAIO 215 Si svolgano cortesemente i seguenti esercizi. ESERCIZIO 1 (PUNTEGGIO: 6/3) Si calcoli l integrale Im(z) K= cos(x) x d x. Suggerimento: Si

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Si svolgano cortesemente i seguenti esercizi Esercizio (6 punti) Si calcoli l integrale Metodi Matematici per la Fisica Prova scritta - dicembre 03 I = sen (x) cosh 3 (x) Possiamo riscrivere l integrale

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 08 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 7 FEBBRAIO 2017

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 7 FEBBRAIO 2017 METODI MATEMATICI PER LA FIICA PROVA CRITTA - 7 FEBBRAIO 7 i risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 6/3) i calcoli l integrale V = L z dz L = {z : z ( )} {z : Re(z) = Im(z)

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 7 DICEMBRE 6 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si stabilisca per quali valori di α l integrale M(α) = converge

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi. ESERCIZIO (5 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 4 Sia f (z) una funzione analitica nel dominio D = {z : z (, ), > }, con f (z),

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - LUGLIO 9 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttea del risultato ottenuto e della procedura utiliata; la

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - FEBBRAIO 06 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/0) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA Q = cosh (ln

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - giugno 0 Esercizio 8 punti) Si consideri la funzione fz) = z sinz) sin[sinz)], si studino e classifichino le singolarità e, di conseguenza, si stabilisca

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Si svolgano cortesemente i seguenti esercizi Esercizio (6 punti) Calcolare l integrale in valore principale I Pr Metodi Matematici per la Fisica Prova scritta - 6 gennaio 03 γ dz ( + z ) sen (z), con γ

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 SETTEMBRE 4 Si calcoli l integrale S = Γ Re(z) z 4 + z, con Γ = {z : z = Re iθ, θ [, π]}

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 7 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 20 FEBBRAIO 2018

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 20 FEBBRAIO 2018 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - FEBBRAIO 8 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati:. la correttezza del risultato ottenuto e della procedura utilizzata;.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercii. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 30 APRILE 05 ESERCIZIO (PUNTEGGIO: 4/30) Si studi il comportamento dell integrale in valore principale al variare

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 ottobre 0 Esercizio (6 punti Si usi il metodo dei residui per calcolare l integrale J (z + sin 3 (/z, z con il cammino d integrazione percorso in senso

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 19 SETTEMBRE 2018

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 19 SETTEMBRE 2018 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 SETTEMBRE 8 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati:. la correttezza del risultato ottenuto e della procedura utilizzata;.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PRIMO ESONERO - 26 FEBBRAIO 206 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: /0) Si ottenga il valore dell integrale N= z = z 2 + senh(/z) dz.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi. ESERCIZIO (6 PUNTI) Si calcoli l integrale con m, n ed L {z : Im(z) l > 0}. SOLUZIONE METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 26 FEBBRAIO 204 J L (z

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 settembre Esercizio 6 punti Calcolare l integrale π dx I π + 4 cos x. Con la sostituzione z e ix quindi: x i lnz e dx idz/z l integrale diventa dz/z I

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Si svolgano cortesemente i seguenti esercizi. Metodi Matematici per la Fisica Prova scritta - 6 febbraio 3 Esercizio 6 punti Si calcoli l integrale con a e b reali e < a < b. I a x b x + dx, Riscriviamo

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - LUGLIO 7 Si risolvano cortesemente i seguenti problemi sapendo che verranno valutati:. la correttezza del risultato ottenuto e della procedura utilizzata;.

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 7 febbraio Eserciio (6 punti) Calcolare il valore principale di Cauchy dell integrale con a e b reali e a, b >. J = P.V. Soluione L integrale può essere

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 18 GENNAIO 2019

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 18 GENNAIO 2019 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 GENNAIO 09 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttea del risultato ottenuto e della procedura utiliata;

Dettagli

1 Esercizio A Soluzione

1 Esercizio A Soluzione Prova scritta di: Studio di Funzioni di Interesse Fisico del 07/04/200. Firmare e riconsegnare il testo d esame 2. Spegnere e non utilizzare i cellulari 3. Indicare, contrassegnando l opzione scelta, se

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo ANALISI COMPLESSA .6 Calcolo di integrali definiti mediante il teorema dei residui Il teorema dei residui (.33) è di grande utilità perché permette non solo di calcolare integrali naturalmente

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Preparazione al primo compito in itinere. (a) Mostrare che l insieme B = {b, b, b 3 }, formato dai vettori b = (,, ), b = (,, ) e b 3 =

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio 7 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, cos(z ) dz dove é

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005 METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla Prova di recupero 4 settembre 2005 Cognome Nome Corso di Laurea in sostituzione delle prove in itinere segnare) 2 3 penalità esercizio voto

Dettagli

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Alexandre Kamenchtchik Problema No 1 Trovare una soluzione statica (cioè indipendente dal tempo) dell equazione di Klein-Gordon per un campo

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova finale 29 marzo 2004

METODI MATEMATICI DELLA FISICA A.A. 2003/2004 Prof. C. Presilla. Prova finale 29 marzo 2004 METODI MATEMATII DELLA FISIA A.A. /4 Prof.. Presilla Prova finale 9 marzo 4 ognome Nome in sostituzione delle prove in itinere (segnare 1 penalità esercizio voto 1 4 5 6 7 8 Esercizio 1 Determinare tutte

Dettagli

ESERCIZI DI ANALISI COMPLESSA

ESERCIZI DI ANALISI COMPLESSA ESERCIZI DI ANALISI COMPLESSA Varie Sia f una funzione intera tale che + z Mostrare che f è costante 2 Siano θ (, π/2) e f una funzione olomorfa nel settore Γ θ := {z C : arg(z) < θ} e supponiamo che esistano

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A1 3 Maggio 2012

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A1 3 Maggio 2012 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 211/212 Prof. C. Presilla Prova A1 3 Maggio 212 Cognome Nome II anno III anno o successivi penalità esercizio voto 1 2 3 4 5 6 Esercizio 1 Determinare tutte

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

Disequazioni in una variabile. Disequazioni in due variabili

Disequazioni in una variabile. Disequazioni in due variabili Disequazioni in una variabile Disequazioni in due variabili 2 () 2 3 > (2) 2 + + > (3) 2 3 + 2 < (4) 2 > + (5) 2 < 3 (6) 3 8 > 5 + 3 + + 5 (7) + < 2 < 2 (8) 2 α (α parametro reale) (9) 3 log /2 ( ) < 2

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

ESERCIZI DI ANALISI COMPLESSA

ESERCIZI DI ANALISI COMPLESSA ESERCIZI DI ANALISI COMPLESSA Varie Sia f una funzione intera tale che + z Mostrare che f è costante 2 Siano θ (, π/2) e f una funzione olomorfa nel settore Γ θ := {z C : arg(z) < θ} e supponiamo che esistano

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2011/2012 2 Argomento della lezione N. 1 Fondamenti assiomatici. L unità immaginaria Argomento della lezione N. 2 Moduli e coniugati. Disuguaglianza

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio 1 Si consideri la conica affine d equazione 9x 2 + 6y 2 4xy 6x + 8y = 1 (1)

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

x = v y = v Per x = r cos θ e y = r sin θ, si ha x r + v y r = v x Applichiamo CauchyRiemann alla prime due Per confronto otteniamo = +r

x = v y = v Per x = r cos θ e y = r sin θ, si ha x r + v y r = v x Applichiamo CauchyRiemann alla prime due Per confronto otteniamo = +r Soluzioni Esercitazione.. La funzione w = f(z) = R(r, θ)e iφ(r,θ), dove z = + i = re iθ à data in coordinate polari nello spazio su cui è definita (il piano z) e lo spazio in cui assume valori. Per risolvere

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del gennaio 6 - Soluzioni compito E Determinare l insieme di definizione e di olomorfia della funzione ( ) f(z)

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2017-18 Lezione 1, 28 febbraio 2018: Introduzione ai numeri complessi. Rappresentazione cartesiana e polare. Radice n-esima

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 7/9/6 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio. Si consideri la quadrica affine C d equazione cartesiana xy + yz z + 4x =. ()

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 8/9 Prof. F. Cesi e C. Presilla Prova Finale Febbraio 1 Cognome Nome Canale Cesi (Astrofisica) Presilla (Fisica) intendo MANTENEE il voto degli esoneri 1 penalità

Dettagli

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015 Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/0/205 (9 crediti) Esercizio. Si verifichi se nel punto (0, 0) la funzione 3 ye y 2 /x 4 se x 0 f (x, y) = 0 se x = 0, è

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Modelli e Metodi Matematici della Fisica. S2/AC

Modelli e Metodi Matematici della Fisica. S2/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 010 11 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 1 CFU (AA 010-11) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 206/207 Prof. C. Presilla Prova A 27 aprile 207 Cognome Nome Matricola iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo Appello 7 Settembre 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo Appello 7 Settembre 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo Appello 7 Settembre 6 Cognome: Nome: Matricola: Es.: punti Es.: 7 punti Es.3: 7 punti Es.4: 7 punti Totale. Sia f : R 3 R 3 l applicazione

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2 Sapienza - Università di Roma Facoltà di Ingegneria - A.A. -4 Esercitazione per il corso di Metodi Matematici per l Ingegneria (Docente Daniela Giachetti) a cura di Ida de Bonis Esercizio. Calcolare per

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Diagonalizzabilità di endomorfismi

Diagonalizzabilità di endomorfismi Capitolo 16 Diagonalizzabilità di endomorfismi 16.1 Introduzione Nei capitoli precedenti abbiamo definito gli endomorfismi su uno spazio vettoriale E. Abbiamo visto che, dato un endomorfismo η di E, se

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma Quantum Computing Esercizi 1 Qubit Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma ψ = e iγ ( cos(θ/) 0 + e iφ sin(θ/) 1 ), dove γ, θ e φ sono numeri reali. Il fattore di

Dettagli

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale Primo Parziale del Corso di Analisi Matematica 4. Calcolare la soluzione generale dell equazione differenziale 5 + 3 4 + 3 3 + =. Soluzione: Sostituendo = e λ si arriva all equazione caratteristica λ 5

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) Prova scritta 7 giugno 2019 SOLUZIONE ESERCIZIO 1. Si consideri il problema della regolazione di quota dell aerostato ad aria calda mostrato

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

SOLUZIONE della Prova TIPO B per:

SOLUZIONE della Prova TIPO B per: SOLUZIONE della Prova TIPO B per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009 Parziale di Studio di Funzioni di Interesse Fisico, 6/0/009. Riconsegnare il testo degli esercizi, firmato, congiuntamente all elaborato scritto.. Firmare e consegnare solo il materiale che si desidera

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER 6-7 Canale A-K Esercizi 8 Esercizio Si consideri il sottospazio (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U U = L v =, v, v 3 = (c) Si scriva la matrice

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 24 giugno 2009 Tema A. Parte comune

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 24 giugno 2009 Tema A. Parte comune Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 4 giugno 009 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Determinante, autovalori e autovettori

Determinante, autovalori e autovettori Determinante, autovalori e autovettori Lorenzo Pareschi Dipartimento di Matematica, Universitá di Ferrara http://wwwlorenzopareschicom lorenzopareschi@unifeit Lorenzo Pareschi (Univ Ferrara) Determinante,

Dettagli